Problem 1. (a) Prove that the following DT sinusoid is not periodic: \(x(n) = \sin(2\pi^2 n) \).
(b) Consider the following DT sinusoid: \(x(n) = \sin(3\pi n/4) + 0.3\cos(11\pi n/19) \). Is it periodic? If so, find a period of this sinusoid. Do not use Matlab.

Problem 2. Each system below is defined by an input-output relation (the response to the input signal \(x \) is signal \(y \)). For each system, determine whether or not it is:

(i) linear,
(ii) time-invariant,
(iii) causal,
(iv) BIBO stable.

For each of the above properties, if you think it holds, prove it. Otherwise, find a counter-example. In addition, find the unit impulse response.

(a) \(y(n) = x(n - 10)x(n - 9) \cdots x(n - 2)x(n - 1) \) for all integer \(n \).
(b) \(y(n) = 0.25x(n - 1) + 0.5x(n) + 0.25x(n + 1) \) for all integer \(n \).
(c) \(y(n) = x(n) + 2(n + 2) \) for all integer \(n \).

Problem 3. For a fixed integer \(N \geq 1 \), we let \(\mathbb{R}^N \) be the space of all \(N \)-dimensional real vectors. In other words, the elements of \(\mathbb{R}^N \) are all vectors \(x \) of the form:

\[
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix},
\]

where \(x_1, x_2, \ldots, x_N \) are real numbers. As mentioned in class, we will be using \(\mathbb{R}^N \) to model signals of duration \(N \) and also periodic signals with period \(N \). This will help develop intuition about signals by viewing them as geometric objects. In this problem, you will investigate different ways of introducing the notion of length in \(\mathbb{R}^N \).

A function \(\ell \) from \(\mathbb{R}^N \) to \(\mathbb{R} \) is called a length function (or a norm) if it satisfies the following four properties:
A. \(\ell(x) \geq 0 \) for every vector \(x \) in \(\mathbb{R}^N \).

B. \(\ell(x) = 0 \) if and only if \(x \) is the zero vector, i.e. \(x = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \).

C. \(\ell(ax) = |a|\ell(x) \) for every real number \(a \) and every vector \(x \) in \(\mathbb{R}^N \).

D. \(\ell(x + y) \leq \ell(x) + \ell(y) \) for any two vectors \(x \) and \(y \) in \(\mathbb{R}^N \).

(a) Prove that the function \(A \) defined by
\[
A(x) = \sum_{n=1}^{N} |x_n|
\]
is a norm. In order to do this, you need to show that \(A \) satisfies the four properties A,B,C,D listed above.

(b) Prove that the magnitude function \(M \) defined by
\[
M(x) = \max_{1 \leq n \leq N} |x_n|
\]
is a norm.

Problem 4. The following pair of discrete-time difference equations has been used as a model for certain types of population growth:
\[
\begin{align*}
p(n + 1) &= 2q(n) \\
q(n + 1) &= \mu q(n)(1 - p(n)),
\end{align*}
\]
for \(n \geq 0 \). A model in this form, namely one that comprises a set of coupled first-order equations, is said to be in *state-space form*, and the values of the *state variables* \(p(n) \) and \(q(n) \) constitute the *state* of the model at time \(n \).

(a) Is this system linear? Time-invariant?

(b) Find the *equilibrium points* of the model, i.e. values \(\bar{p} \) and \(\bar{q} \) of \(p(n) \) and \(q(n) \) respectively such that \(p(n + 1) = p(n) = \bar{p} \) and \(q(n + 1) = q(n) = \bar{q} \).

(c) Assume \(p(0) = \frac{1}{2} \) and \(q(0) = \frac{1}{4} \). Compute and plot the state vector \((p(n), q(n)) \) for \(0 \leq n \leq 500 \) for \(\mu = 1.8, 1.9, 2.0, 2.1, \) and \(2.2 \) using Matlab (five separate plots). Describe the behavior of the state trajectories as \(n \) increases, for each of these values of \(\mu \). How do these trajectories relate to the equilibrium points found in (b)?

Note: For plotting, you can store the computed \(p(n) \) and \(q(n) \) in vectors \((p \) and \(q) \) and use the following Matlab command:
\[
\text{plot}(p, q, 'b--', p, q, 'ro', p(501), q(501), 'y*');
\]