ECE 302
Homework 5, due in class Wednesday, 2/25/2004.

Reading: Sections 2.5-3.3 and accompanying end-of-chapter problems.

Problem 1. A fair four-sided die (with faces labeled 0, 1, 2, 3) is thrown once to determine how
many times a fair coin is to be flipped: if \(N \) is the number that results from throwing the die, we flip
the coin \(N \) times. Let \(K \) be the total number of heads resulting from the coin flips. Determine and
sketch each of the following probability mass functions for all values of their arguments:

(a) \(p_N(n) \).
(b) \(p_{K|N}(k|2) \).
(c) \(p_{N|K}(n|2) \).
(d) \(p_K(k) \).
(e) Also determine the conditional PMF for random variable \(N \), given that the experimental value \(k \)
of random variable \(K \) is an odd number.

Problem 2. Let \(X \) and \(Y \) be independent random variables. Random variable \(X \) has a discrete
uniform distribution over the set \{1, 2, 3\}, and \(Y \) has a discrete uniform distribution over the set
\{1, 3\}. Let \(V = X + Y \), and \(W = X - Y \).

(a) Are \(V \) and \(W \) independent? Explain without calculations.
(b) Find and plot \(p_V(v) \). Also, determine \(E[V] \) and \(\text{var}(V) \).
(c) Find and show in a diagram \(p_{V,W}(v,w) \).
(d) Find \(E[V|W>0] \).
(e) Find the conditional variance of \(W \) given the event \(V = 4 \).
(f) Find and plot the conditional PMF \(p_{X|V}(x|v) \), for all values.

Problem 3. A pair of fair four-sided dice is thrown once. Each die has faces labeled 1, 2, 3, and
4. Discrete random variable \(X \) is defined to be the product of the down-face values. Determine the
conditional variance of \(X^2 \) given that the sum of the down-face values is greater than the product of
the down-face values.

Problem 4. Evaluate the following summation without too much work:

\[
\sum_{n=0}^{N} \binom{N}{n} n^2 A^n(1 - A)^{N-n},
\]
where $0 < A < 1$ and $N > 2$.

Problem 5. The joint PMF of discrete random variables X and Y is given by:

$$p_{X,Y}(x, y) = \begin{cases} Cx^2 \sqrt{y}, & \text{for } x = -5, -4, \ldots, 4, 5 \text{ and } y = 0, 1, \ldots, 10. \\ 0, & \text{otherwise.} \end{cases}$$

Here, C is some constant. What is $E[XY^3]$? (*Hint:* This question admits a short answer/explanation. Do not spend time doing calculations.)

Problem 6. A random variable X is called a *shifted exponential* when its PDF has the following form:

$$f_X(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\alpha}{\theta}}, & x > \alpha \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find the CDF of X.

(b) Calculate the mean and the variance of X.

(c) Find the real number μ that satisfies: $F_X(\mu) = 1/2$. This number μ is called the *median* of the random variable.