ECE 302 Division 1

- This is a closed-book exam. A formula sheet is provided. No calculators are allowed.
- Total number of points: 150. This exam counts for 25% of your final grade.
- You have 75 minutes to complete 6 problems.
- Be sure to **fully and clearly** explain all your answers to all problems except Problem 1.
- There will not be any discussion of grades. All re-grade requests must be submitted in writing, as stated in the course information handout.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Some random variables, their distributions, and associated transforms:

<table>
<thead>
<tr>
<th>Random variable</th>
<th>PMF or PDF</th>
<th>Mean</th>
<th>Variance</th>
<th>Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>p for $k = 1$; $1 - p$ for $k = 0$.</td>
<td>p</td>
<td>$p(1 - p)$</td>
<td>$1 - p + pe^s$</td>
</tr>
<tr>
<td>Discrete uniform</td>
<td>$\frac{1}{n}$, $k = k_0 + 1, k_0 + 2, \ldots, k_0 + n$</td>
<td>$k_0 + \frac{n+1}{2}$</td>
<td>$\frac{n^2-1}{12}$</td>
<td>$\frac{e^s(e^{(k_0+n)s} - e^{k_0s})}{n(e^s-1)}$</td>
</tr>
<tr>
<td>Geometric</td>
<td>$(1 - p)^{k-1}p$, $k = 1, 2, 3, \ldots$</td>
<td>$\frac{1}{p}$</td>
<td>$\frac{1}{p^2} - \frac{1}{p}$</td>
<td>$\frac{pe^s}{1-(1-p)e^s}$</td>
</tr>
<tr>
<td>Binomial</td>
<td>$\binom{n}{k} (1-p)^{n-k}p^k$, $k = 0, 1, \ldots, n$</td>
<td>pn</td>
<td>$np(1 - p)$</td>
<td>$(1 - p + pe^s)^n$</td>
</tr>
<tr>
<td>Continuous uniform</td>
<td>$\frac{1}{b-a}$, $a \leq x \leq b$</td>
<td>$\frac{b+a}{2}$</td>
<td>$\frac{(b-a)^2}{12}$</td>
<td>$\frac{e^{sb} - e^{sa}}{(b-a)s}$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\lambda e^{-\lambda x}$, $x \geq 0$</td>
<td>λ^{-1}</td>
<td>λ^{-2}</td>
<td>$\frac{\lambda}{\lambda - s}$</td>
</tr>
<tr>
<td>Normal (Gaussian)</td>
<td>$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$</td>
<td>μ</td>
<td>σ^2</td>
<td>$\frac{e^{-\frac{s^2}{2}}}{\sqrt{e^{-\frac{s^2}{2}} + \frac{\mu s}{\sqrt{2\pi}\sigma}}}$</td>
</tr>
</tbody>
</table>

where

$$\binom{n}{k} = \frac{n!}{(n-k)k!}.$$
Problem 1 (40 points). A continuous random variable X has the following probability density:

$$f_X(x) = \begin{cases} C, & 1 \leq x \leq 3, \\ 0, & \text{otherwise}, \end{cases}$$

where C is a positive real number.

a (10 points). Find the constant C.

b (10 points). Find $E[X]$.

c (10 points). Find var(X).

d (10 points). Let $Y = \frac{X-1}{2}$. Find $f_Y(y)$, the probability density of Y.

For each part, provide only the answer without explanation. No partial credit will be given.

Solution. Since the probability density must integrate to one, we have: $\int_1^3 C \, dx = 1$ which means that $C = 1/2$. Since X is uniformly distributed between $a = 1$ and $b = 3$, its mean and variance are 2 and 1/3, respectively (these were given on the formula sheet).

Since X is uniform between 1 and 3, $X/2$ is uniform between $1/2$ and $3/2$, and $Y = X/2 - 1/2$ is uniform between 0 and 1. Alternatively, we can write:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} P(Y \leq y)$$

$$= \frac{d}{dy} P \left(\frac{X - 1}{2} \leq y \right) = \frac{d}{dy} P (X \leq 2y + 1) = \frac{d}{dy} F_X(2y + 1) = 2f_X(2y + 1)$$

$$= \begin{cases} 2C, & 1 \leq 2y + 1 \leq 3 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1, & 0 \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases}$$
Problem 2 (40 points). A discrete random variable \(K \) has the following probability mass function:

\[
p_K(k) = \begin{cases}
1/2, & k = 0,1 \\
0, & \text{otherwise}.
\end{cases}
\]

A continuous random variable \(Z \) has the following conditional densities given \(K \):

\[
f_{Z|K}(z|k = 0) = \begin{cases}
1, & 0 \leq z \leq 1, \\
0, & \text{otherwise},
\end{cases}
\]

\[
f_{Z|K}(z|k = 1) = \begin{cases}
1/2, & 1 < z \leq 3, \\
0, & \text{otherwise}.
\end{cases}
\]

a (8 points). Find \(f_Z(z) \), the marginal probability density function for \(Z \).
b (8 points). Find \(M_Z(s) \), the moment generating function for \(Z \).
c (8 points). Find \(E[Z] \).
d (8 points). Find \(\text{var}(Z) \).
e (8 points). Find the following conditional probabilities: \(P(K = 1|Z \geq 2) \) and \(P(K = 2|Z \leq 2) \).

Solution.

a \(f_Z(z) = f_{Z|K}(z|k = 0)p_K(0) + f_{Z|K}(z|k = 1)p_K(1) = \begin{cases}
1/2, & 0 \leq z \leq 1 \\
1/4, & 1 < z \leq 3 \\
0, & \text{otherwise}
\end{cases} \)

b Since the conditional distribution of \(Z \) given \(k = 0 \) is uniform between 0 and 1, the corresponding moment generating function is \((e^s - 1)/s \). Similarly, the moment generating function associated with \(f_{Z|K}(z|k = 1) \) is \((e^{3s} - e^s)/(2s) \). Combining these, we get:

\[
M_Z(s) = \frac{e^s - 1}{s} \cdot \frac{1}{2} + \frac{e^{3s} - e^s}{2s} \cdot \frac{1}{4} = \frac{2e^s - 2 + e^{3s} - e^s}{4s} = \frac{e^s + e^{3s} - 2}{4s}.
\]

c Method 1:

\[
E[Z] = \int_{-\infty}^{\infty} z f_{Z}(z) \, dz = \int_{0}^{1} \frac{z}{2} \, dz + \int_{1}^{3} \frac{z}{4} \, dz = \frac{z^2}{4} \bigg|_{0}^{1} + \frac{z^2}{8} \bigg|_{1}^{3} = \frac{1}{4} + \frac{9}{8} - \frac{1}{8} = \frac{5}{4}.
\]

Method 2: using the total expectation theorem,

\[
E[Z] = E[Z|k = 0]p_K(0) + E[Z|k = 1]p_K(1) = \frac{1}{2} \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{5}{4}.
\]

Method 3: using the properties of the moment generating function,

\[
E[Z] = \lim_{s \to 0} \frac{d}{ds} M_Z(s) = \lim_{s \to 0} \frac{(e^{s} + 3e^{3s})4s - 4(e^s + e^{3s} - 2)}{16s^2} = \lim_{s \to 0} \frac{se^s + 3se^{3s} - e^s - e^{3s} + 2}{4s^2} = \frac{5}{4}.
\]
d

\[E[Z^2] = \int_{-\infty}^{\infty} z^2 f_Z(z) dz = \int_{0}^{1} \frac{z^2}{2} dz + \int_{1}^{3} \frac{z^2}{4} dz = \left[\frac{z^3}{6} \right]_{0}^{1} + \left[\frac{z^3}{12} \right]_{1}^{3} = \frac{1}{6} + \frac{27}{12} - \frac{1}{12} = \frac{28}{12} = \frac{7}{3}. \]

Therefore, \(\text{var}(Z) = E[Z^2] - (E[Z])^2 = \frac{7}{3} - \frac{25}{16} = \frac{37}{48}. \)

e Since \(K = 0 \) corresponds to \(0 \leq Z \leq 1 \) and \(K = 1 \) corresponds to \(1 < Z \leq 3 \), we have that \(Z \geq 2 \) implies \(K = 1 \): \(P(K = 1 | Z \geq 2) = 1 \). \(K \) can only be 0 or 1 with nonzero probability, and therefore \(P(K = 2 | Z \leq 2) = 0. \)
Problem 3 (10 points). Let \(Z \) be a continuous random variable, uniformly distributed between 0 and \(2\pi \). Are the random variables \(X = \sin Z \) and \(Y = \cos Z \) uncorrelated? Are they independent? (Recall that \(X \) and \(Y \) are said to be uncorrelated if \(E[(X - E[X])(Y - E[Y])]) = 0 \).

Solution. We first find the expectations of \(X \) and \(Y \) and then show that \(\text{cov}(X,Y) = 0 \).

\[
E[X] = \int_0^{2\pi} \frac{1}{2\pi} \sin z \, dz = 0,
\]
\[
E[Y] = \int_0^{2\pi} \frac{1}{2\pi} \cos z \, dz = 0,
\]
\[
\text{cov}(X,Y) = E[XY] = E[\sin Z \cos Z] = \frac{1}{2} E[\sin 2Z] = \frac{1}{2} \int_0^{2\pi} \frac{1}{2\pi} \sin 2z \, dz = 0,
\]

therefore, \(X \) and \(Y \) are uncorrelated. However, note that the knowledge of \(Y \) gives us information about \(X \). For example, given that \(Y = -1 \), we know that \(Z \) must be equal to \(\pi \), and therefore \(X = 0 \): \(P(X = 0|Y = -1) = 1 \). However, given that \(Y = 0 \), \(Z \) is either \(\pi/2 \) or \(3\pi/2 \), and therefore \(X \neq 0 \): \(P(X = 0|Y = 0) = 0 \). Thus, the conditional distribution for \(X \) given \(Y = y \) depends on \(y \), which means that \(X \) and \(Y \) are not independent.
Problem 4 (30 points). Recall that the least squares estimator of X based on Y is given by $\hat{X}(Y) = E[X|Y]$.

a (10 points). Suppose that X and Y are independent, identically distributed exponential random variables with parameter $\lambda = 3$.

(i) What is the least squares estimate of X based on the observation $Y = 10$?
(ii) What is the linear least squares estimate of X based on the same observation $Y = 10$?

Solution. Since X and Y are independent, $E[X|Y = 10] = E[X]$. Since X is exponential with $\lambda = 3$, $E[X] = 1/3$. The least squares estimator is $\hat{X}(Y) = E[X]$ which is linear, and therefore the linear least squares estimator is the same, and the linear least squares estimate of X based on $Y = 10$ is again $1/3$.

b (10 points). Now suppose that $Y = 2X + 3$, and that X is a continuous uniform random variable, uniformly distributed between 0 and 10.

(i) What is the least squares estimate of X based on the observation $Y = 13$?
(ii) What is the linear least squares estimate of X based on the same observation $Y = 13$?

Solution. The least squares estimator in this case is $\hat{X}(Y) = (Y - 3)/2$ which achieves zero mean squared error since $X = \hat{X}(Y)$. Since $\hat{X}(Y)$ is a linear function of Y, it is also the linear least squares estimator. Given $Y = 13$, both estimates are therefore $(13 - 3)/2 = 5$.

c (10 points). Now suppose that the joint probability density function of X and Y is:

$$f_{X,Y}(x, y) = \begin{cases} \frac{6}{(1-y)^2}x^2 + \frac{6}{(1-y)^3}x, & 0 < x \leq 1 - y \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

(i) What is the least squares estimate of X based on the observation $Y = y$ where y is any fixed number between 0 and 1?
(ii) What is the \textbf{linear} least squares estimate of X based on the same observation $Y = y$?

\textbf{Solution.} For a fixed $y = y_0$, the density $f_{X,Y}(x, y_0)$ is a parabola as a function of x. Note that $f_{X,Y}(0, y_0) = 0$ and $f_{X,Y}(1 - y_0, y_0) = 0$, and therefore $f_{X,Y}(x, y_0)$ is symmetric about $x = \frac{1 - y_0}{2}$, as shown in Fig. 1. The conditional density $f_{X|Y}(x|y_0)$, for a fixed $y = y_0$, is related to the joint density as follows:

$$f_{X|Y}(x|y_0) = \frac{f_{X,Y}(x, y_0)}{f_Y(y_0)},$$

i.e., it is the joint density normalized by a constant $f_Y(y_0)$. Therefore, $f_{X|Y}(x|y_0)$ must also be a parabola symmetric about $x = \frac{1 - y_0}{2}$. Therefore, $E[X|Y = y_0] = \frac{1 - y_0}{2}$, and $E[X|Y] = \frac{1 - Y}{2}$. This is the least squares estimator, and, since it is a linear function of Y, it is also the linear least squares estimator.

We may also obtain the same result by computing everything explicitly.

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx = \int_{0}^{1-y} \left(-\frac{6}{(1-y)^3} x^2 + \frac{6}{(1-y)^2} x \right) dx$$

$$= \frac{6}{(1-y)^3} \left(-\frac{x^3}{3} \bigg|_{0}^{1-y} + (1-y) \frac{x^2}{2} \bigg|_{0}^{1-y} \right)$$

$$= \frac{6}{(1-y)^3} \left(-\frac{(1-y)^3}{3} + \frac{(1-y)^3}{2} \right) = 1, \text{ for } 0 < y \leq 1.$$

In other words, Y is uniform between 0 and 1, and therefore

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} = f_{X,Y}(x, y) \text{ for } 0 < x \leq 1 - y \leq 1.$$

Therefore,

$$E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} x f_{X,Y}(x, y) dx = \int_{0}^{1-y} \left(-\frac{6}{(1-y)^3} x^3 + \frac{6}{(1-y)^2} x^2 \right) dx$$

$$= \frac{6}{(1-y)^3} \left(-\frac{x^4}{4} \bigg|_{0}^{1-y} + (1-y) \frac{x^3}{3} \bigg|_{0}^{1-y} \right)$$

$$= \frac{6}{(1-y)^3} \left(-\frac{(1-y)^4}{4} + \frac{(1-y)^4}{3} \right) = \frac{6}{(1-y)^3} \frac{(1-y)^4}{12} = \frac{1 - y}{2},$$

which is the same answer as we obtained before.
Problem 5 (10 points). The random variables B and C are jointly uniform over a $2\ell \times 2\ell$ square centered at the origin, i.e., B and C have the following joint probability density function:

$$f_{B,C}(b, c) = \begin{cases} \frac{1}{4\ell^2}, & -\ell \leq b \leq \ell \text{ and } -\ell \leq c \leq \ell, \\ 0, & \text{otherwise}. \end{cases}$$

It is given that $\ell \geq 1$. Find the probability that the quadratic equation $x^2 + 2Bx + C = 0$ has real roots. (Your answer will be an expression involving ℓ.) What is the limit of this probability as $\ell \to \infty$?

Solution. The quadratic equation has real roots if and only if $B^2 - C \geq 0$. To find the probability of this event, we integrate the joint density over all points (b, c) of the $2\ell \times 2\ell$ square for which $b^2 - c \geq 0$, i.e., over the gray set in Fig. 2. To do this, it is easier to integrate over the white portion of the square and subtract the result from 1:

$$1 - \int_{-\sqrt{\ell}}^{\sqrt{\ell}} \int_{-\sqrt{\ell}}^{\sqrt{\ell}} \frac{1}{4\ell^2} \, dc \, db = 1 - \int_{-\sqrt{\ell}}^{\sqrt{\ell}} \int_{-\sqrt{\ell}}^{\sqrt{\ell}} \frac{1}{4\ell^2} \, db \, dc - \frac{b^3}{12\ell^2} \bigg|_{-\sqrt{\ell}}^{\sqrt{\ell}}$$

$$= 1 - \frac{2\sqrt{\ell}}{4\ell} + \frac{2\sqrt{\ell}}{12\ell^2} = 1 - \frac{1}{3\sqrt{\ell}}.$$

As $\ell \to \infty$, this tends to 1.
Problem 6 (20 points). A stick of unit length is broken into two at random, i.e., the location of the breakpoint is uniformly distributed between the two ends of the stick.

a (10 points). What is the expected length of the smaller piece?

b (10 points). What is the expected value of the ratio \(\frac{\text{length of the smaller piece}}{\text{length of the larger piece}} \)? (You can use \(\ln 2 \approx 0.69 \).)

Solution.

a Let the length of the left piece be \(X \), and the length of the smaller piece be \(Y \). For \(X \leq 1/2 \), \(Y = X \), and for \(X > 1/2 \), \(Y = 1 - X \). In other words, \(f_{Y|X \leq 1/2}(y) = f_{X|X \leq 1/2}(y) \) which is uniform between 0 and 1/2, resulting in \(E[Y|X \leq 1/2] = 1/4 \), and \(f_{Y|X > 1/2}(y) = f_{1-X|X > 1/2}(y) \) which is also uniform between 0 and 1/2, resulting in \(E[Y|X > 1/2] = 1/4 \). Therefore, using the total expectation theorem,

\[
E[Y] = E[Y|X \leq 1/2]P(X \leq 1/2) + E[Y|X > 1/2]P(X > 1/2) = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{4}.
\]

b An application of the total probability theorem, instead of the total expectation theorem, in Part a, shows that

\[
f_Y(y) = f_{Y|X \leq 1/2}(y)P(X \leq 1/2) + f_{Y|X > 1/2}(y)P(X > 1/2) = \text{uniform between 0 and 1/2}.
\]

Therefore,

\[
E\left[\frac{Y}{1-Y} \right] = \int_0^{1/2} 2 \cdot \frac{y}{1-y} \, dy = \int_{1/2}^1 2 \cdot \frac{1-v}{v} \, dv = 2 \ln v \bigg|_{1/2}^1 - 2 \ln v \bigg|_{1/2}^1 = 2 \ln 2 - 1 \approx 0.38,
\]

where we used a change of variable \(v = 1 - y \).