EE 302 Division 1.
Homework 11, due Wednesday, 4/24/2002 at 5pm.

Reading assignment: Sections 6.1-6.4, 7.1-7.4; accompanying practice problems with solutions distributed in class.

Problem 1. Consider the following three-state Markov chain.

\[
\begin{array}{ccc}
0.1 & 0.7 & 0.4 \\
0.3 & 0.1 & 0.2 \\
0.3 & 0.3 & 0.6
\end{array}
\]

Determine the three-step transition probabilities \(r_{11}(3) \), \(r_{12}(3) \), and \(r_{13}(3) \).

Problem 2. For the Markov process pictured here, the questions below may be answered by inspection.

\[
\begin{array}{ccccccc}
1 & 1/2 & 1/4 & 1/2 & 1 & \\
1/2 & 2 & 1/4 & 1/2 & 1/3 & \\
1/3 & 3 & 1/2 & 1/2 & 1/3 & \\
1/3 & 4 & 1/2 & 1/3 & 1/3 & \\
0 & 5 & & & & \\
\end{array}
\]

Given that this process is in state 0 just before the first transition, determine the probability that:

(a) The process enters state 2 for the first time as the result of the \(K \)-th transition.
(b) The process never enters state 4.
(c) The process enters state 2, and leaves state 2 on the transition immediately after it entered state 2.
(d) The process enters state 1 for the first time on the third transition.
(e) The process is in state 3 as a result of the \(N \)-th transition.
Problem 3. Consider the Markov chain below. For all parts of this problem, the process is in state 3 immediately before the first transition.

(a) Find the variance for J, the number of transitions up to and including the transition on which the process leaves state 3.

(b) Find the expectation for K, the number of transitions up to and including the transition on which the process enters state 4 for the first time.

(c) Find π_i for $i = 1, 2, \ldots, 7$, the probability that the process is in state i after 10^{10} transitions or explain why these probabilities cannot be found.

(d) Given that the process never enters state 4, find the π_i's as defined in part (c) or explain why they cannot be found.