3. General Random Variables

Part VIII: Sums of Independent Random Variables

ECE 302 Spring 2012
Purdue University, School of ECE
Prof. Ilya Pollak
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$

$$p_z(z) = P(X + Y = z)$$
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$

$$p_z(z) = P(X + Y = z) = \sum_{\{(x,y)|x+y=z\}} P(X = x, Y = y)$$
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$

\[
p_Z(z) = P(X + Y = z) = \sum_{\{(x,y)\mid x+y=z\}} P(X = x, Y = y) = \sum_x P(X = x, Y = z-x)
\]
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$

\[
p_Z(z) = P(X + Y = z) \\
= \sum_{\{(x,y)\mid x+y=z\}} P(X = x, Y = y) \\
= \sum_x P(X = x, Y = z - x) \\
= \sum_x p_X(x) p_Y(z - x)
\]
Sum of two independent discrete r.v.’s

- X and Y are independent integer-valued r.v.’s
- PMF of X is p_X, PMF of Y is p_Y
- Let $Z = X + Y$

$$p_z(z) = P(X + Y = z) = \sum_{\{(x,y)\mid x+y=z\}} P(X = x, Y = y)$$

$$= \sum_x P(X = x, Y = z - x)$$

$$= \sum_x p_X(x)p_Y(z - x)$$

$$\equiv p_X * p_Y(z)$$

This is the **discrete convolution** of p_X and p_Y
Sum of two independent continuous r.v.’s

- \(X, Y \) independent continuous r.v.’s with respective PDFs \(f_x, f_y \)
- Let \(Z = X + Y \)
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.'s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x)$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x)$$
Sum of two independent continuous r.v.’s

- \(X, Y \) independent continuous r.v.’s with respective PDFs \(f_X, f_Y \)
- Let \(Z = X + Y \)
- To find PDF of \(Z \), first find the joint PDF of \(X \) and \(Z \), then integrate

\[
F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x)
\]
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x) = P(Y \leq z - x \mid X = x)$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x) = P(Y \leq z - x \mid X = x)$$
$$= P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$
Sum of two independent continuous r.v.’s

• X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
• Let $Z = X + Y$
• To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z | X}(z | x) = P(Z \leq z | X = x) = P(X + Y \leq z | X = x) = P(x + Y \leq z | X = x) = P(Y \leq z - x | X = x) = P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = \mathbf{P}(Z \leq z \mid X = x) = \mathbf{P}(X + Y \leq z \mid X = x) = \mathbf{P}(x + y \leq z \mid X = x) = \mathbf{P}(Y \leq z - x \mid X = x) = \mathbf{P}(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z \mid x) = \frac{d}{dz} F_{Z|X}(z \mid x)$$
Sum of two independent continuous r.v.’s

• X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
• Let $Z = X + Y$
• To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z | x) = P(Z \leq z | X = x) = P(X + Y \leq z | X = x) = P(x + Y \leq z | X = x) = P(Y \leq z - x | X = x)$$

$$= P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z | x) = \frac{d}{dz} F_{Z|X}(z | x) = \frac{d}{dz} F_Y(z - x)$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x) = P(Y \leq z - x \mid X = x) = P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z \mid x) = \frac{d}{dz} F_{Z|X}(z \mid x) = \frac{d}{dz} F_Y(z - x) = f_Y(z - x)$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x) = P(Y \leq z - x \mid X = x)$$

$$= P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z \mid x) = \frac{d}{dz} F_{Z|X}(z \mid x) = \frac{d}{dz} F_Y(z - x) = f_Y(z - x)$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x,z) dx$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z \mid x) = P(Z \leq z \mid X = x) = P(X + Y \leq z \mid X = x) = P(x + Y \leq z \mid X = x) = P(Y \leq z - x \mid X = x)$$

$$= P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z \mid x) = \frac{d}{dz} F_{Z|X}(z \mid x) = \frac{d}{dz} F_Y(z - x) = f_Y(z - x)$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x,z) \, dx = \int_{-\infty}^{\infty} f_X(x) f_{Z|X}(z \mid x) \, dx$$
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

\[
F_{Z|X}(z \mid x) = \mathbb{P}(Z \leq z \mid X = x) = \mathbb{P}(X + Y \leq z \mid X = x) = \mathbb{P}(x + Y \leq z \mid X = x) = \mathbb{P}(Y \leq z - x \mid X = x)
\]

\[
= \mathbb{P}(Y \leq z - x)
\]

using the independence of X and Y

\[
= F_Y(z - x)
\]

\[
f_{Z|X}(z \mid x) = \frac{d}{dz} F_{Z|X}(z \mid x) = \frac{d}{dz} F_Y(z - x) = f_Y(z - x)
\]

\[
f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x,z) dx = \int_{-\infty}^{\infty} f_X(x) f_{Z|X}(z \mid x) dx
\]

\[
= \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx
\]
Sum of two independent continuous r.v.’s

- X, Y independent continuous r.v.’s with respective PDFs f_X, f_Y
- Let $Z = X + Y$
- To find PDF of Z, first find the joint PDF of X and Z, then integrate

$$F_{Z|X}(z | x) = P(Z \leq z | X = x) = P(X + Y \leq z | X = x) = P(x + Y \leq z | X = x) = P(Y \leq z - x | X = x)$$

$$= P(Y \leq z - x) \quad \text{using the independence of } X \text{ and } Y$$

$$= F_Y(z - x)$$

$$f_{Z|X}(z | x) = \frac{d}{dz} F_{Z|X}(z | x) = \frac{d}{dz} F_Y(z - x) = f_Y(z - x)$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x,z)dx = \int_{-\infty}^{\infty} f_X(x)f_{Z|X}(z | x)dx$$

$$= \int_{-\infty}^{\infty} f_X(x)f_Y(z - x)dx = f_X * f_Y(z)$$

This is the continuous convolution of f_X and f_Y
Example 4.10: sum of independent uniform r.v.’s
Example 4.10: sum of independent uniform r.v.’s

If X and Y are independent, and $Z = X + Y$, then $f_Z = f_X \ast f_Y$
Example 4.10: sum of independent uniform r.v.’s

If X and Y are independent, and $Z = X + Y$, then $f_Z = f_X \ast f_Y$
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,
i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,

i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$

Suppose X_1, X_2, \ldots, X_n are independent.
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,

i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$

Suppose X_1, X_2, \ldots, X_n are independent.
Let a_0, a_1, \ldots, a_n be real numbers, and let

$Y = a_0 + a_1 X_1 + \ldots + a_n X_n$
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,
i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$

Suppose X_1, X_2, \ldots, X_n are independent.
Let a_0, a_1, \ldots, a_n be real numbers, and let
$Y = a_0 + a_1 X_1 + \ldots + a_n X_n$
Then Y is a normal r.v.
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$, i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$

Suppose X_1, X_2, \ldots, X_n are independent.
Let a_0, a_1, \ldots, a_n be real numbers, and let

$Y = a_0 + a_1 X_1 + \ldots + a_n X_n$

Then Y is a normal r.v. with mean

$\mu_Y = a_0 + a_1 \mu_1 + \ldots + a_n \mu_n$
Sum of independent normal r.v.’s is normal

Let X_i be a normal r.v. with mean μ_i and variance σ_i^2, for $i = 1, 2, \ldots, n$,
i.e., let $f_{X_i}(x) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ for $i = 1, 2, \ldots, n$

Suppose X_1, X_2, \ldots, X_n are independent.
Let a_0, a_1, \ldots, a_n be real numbers, and let
$Y = a_0 + a_1 X_1 + \ldots + a_n X_n$
Then Y is a normal r.v. with mean
$\mu_Y = a_0 + a_1 \mu_1 + \ldots + a_n \mu_n$
and variance
$\sigma_Y^2 = a_1^2 \sigma_1^2 + \ldots + a_n^2 \sigma_n^2$