One page of notes, front and back. Closed book. 50 minutes.

Score ____________________________
1. True or false. (2 points if correct, 1 point if left blank.)
 (If you wish, write an explanation of your thinking.)
 (a) T F In the inverse cdf transformation to generate a random variate from the
 distribution \(F_X \), if \(P(X = x) \) has positive probability, then there is exactly one random
 number \(u \) that yields the value \(X = x \).
 (b) T F If \(U \) has a uniform distribution on the interval \([0, 1]\) and if \(X \) has an
 exponential distribution with mean 2, then the fractional part of \(U + X \) has a uniform
 distribution on the interval \([0, 1]\).
 (c) T F Micro-macro replications can be an effective method for reducing the
 variance of the point estimator \(\theta \).
 (d) T F For independent sampling, obtaining one more meaningful digit in the point
 estimator requires increasing the sample size by a factor of 10.
 (e) T F The performance measure to be estimated is a property of the distribution of
 the output data.
 (g) T F When common random numbers are used to compare two systems, the two
 input models remain unchanged (compared to using independent sampling).
 (h) T F If random numbers are truly random in three dimensions, they are also truly
 random in two dimensions.
 (i) T F If random numbers are truly random in three dimensions, they are also truly
 random in four dimensions.
 (j) T F Floyd’s algorithm can be used even if the functional form of the random-
 number generator is unknown.

2. Consider the sentences
 "When using common random numbers to compare two systems, say \(A \) and
 \(B \), we obtain point estimators \(\hat{\theta}_A \) and \(\hat{\theta}_B \). Let \(\rho = \text{corr}(\hat{\theta}_A, \hat{\theta}_B) \). Positive
 values of \(\rho \) are good in the sense that \(\text{V}(\hat{\theta}_A - \hat{\theta}_B) \) is smaller than when the
 two point estimators are independent.

 Suppose that you rerun a simulation experiment, keeping everything the same except the
 random-number seeds. Using the above three sentences for context, circle "constant",
 "random", and "undefined" for each part below.

 (a) \(\hat{\theta}_A \) constant random undefined
 (b) \(\rho \) constant random undefined
 (c) \((\hat{\theta}_A)^2 \) constant random undefined
 (d) \(\text{V}(\hat{\theta}_A) \) constant random undefined
 (e) \(P(A - B) \) constant random undefined
 (f) \(\text{corr}(A - B) \) constant random undefined
3. Monte Carlo simulation can be used to evaluate an integral by interpreting it as an expected value

\[E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx , \]

where \(f_X \) is the density function of \(X \).

In class, we considered the integral

\[\int_0^\infty \int_0^\infty \min\{x_1, x_2\} f_{X_1}(x_1) f_{X_2}(x_2) \, dx_1 \, dx_2 , \]

where \(f_{X_i} \) is the density function of the time until failure of component \(i \).

(a) In this integral, what is the input model?

(b) In this integral, what is the logic model?

(c) Write pseudo-code to estimate the value of the integral using Monte Carlo simulation. (You do not need to specify how to generate random variates; just say what you want to generate.)

(d) In your pseudo-code, circle your point estimator.
4. Consider using micro/macro replications to estimate the standard error of \(\bar{Y} \), the sample average of \(n = 100,000 \) independent random variables \(Y_i \). Let \(\bar{Y}_j \) denote the \(j \)th macro-replication point estimator, \(j = 1, 2, ..., k \), and assume that \(k = 100 \). Let \(\bar{Y} \) denote the average of the \(\bar{Y}_j \)s.

(a) What is the performance measure?

(b) What is the relationship between \(\bar{Y} \) and \(\bar{Y} \)?

(c) Suppose that \(Y_i \) are binary, one if an event \(A \) occurs and zero otherwise. Explain an alternative to micro/macro replications for estimating \(\text{ste}(\bar{Y}) \).

(d) If \(\bar{Y} = 123.456789 \) and \(\text{ste}(\bar{Y}) = 0.0111111111 \), which digits of \(\bar{Y} \) are meaningful?
5. Suppose that the random variable X has density function $f_X(x) = (x - 1) / 50$ for $1 \leq x \leq 11$ and zero elsewhere. The cdf is then $F_X(x) = (x - 1)^2 / 100$ over the interesting values of x. If we use the inverse transformation to generate random variates from this distribution, for every random number u in $[0, 1]$, what is the corresponding random variate x?

6. Suppose that a particular linear congruential random-number generator

$$X_{i+1} = (aX_i + c) \text{ (mod } m)$$

produces the values u_1, u_2, \ldots

(a) If $u_{32} = u_1$, then what do you know about u_{34}?

(b) If $a = 1$ and $c = 3$, how many Marsaglia hyperplanes will occur for $k = 2$ dimensions?

(c) If we discuss 3-dimensional uniformity, what is it that is 3 dimensional?