Optimizing Power Consumption of Mobile Games

Yu Yan'?, Songtao He'?, Yunxin Liu!, and Longbo Huang?

"Microsoft Research, Beijing, China

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

3University of Science and Technology of China, Hefei, China

Abstract

In this paper we aim to optimize power consumption of mo-
bile games without compromising user experience. We study
the behavior of 40 mobile games on a smartphone and iden-
tify two power-inefficient issues: 1) fixed high frame rate
that consumes a high power but brings negligible extra ben-
efits to user experience when the screen content does not
change rapidly or stays nearly static, and 2) high overdraw
rate—the same pixels are drawn for multiple times and thus
wastes energy. We report the measurement results of our
study and explore possible solutions to mitigate these two
issues. In particular, for the first issue, we have implemented
a prototype to enable dynamic frame rate scaling that is
able to reduce the frame rate to save power based on how
fast the game content changes. A lower frame rate is used
when the game content does not change fast and thus user-
perceived experience is retained. Preliminary experimental
results show that our approach is promising.

Categories and Subject Descriptors
1.3.4 [Computer Graphics|: Graphics Utilities—Software
support

General Terms
Experiments; Measurement; Performance

Keywords
Smartphone; GPU; Power Consumption; Mobile Game

1. INTRODUCTION

The flourish of mobile game industry in recent years benefits
a lot from the increasingly powerful GPU carried by smart-
phones. Smartphones are now able to display images more
livingly and quickly, but can also be very power consuming
for the sake of the heavy workload brought to GPU. Mo-
chocki et al. [8] show that based on some assumptions on the
growth rate of resolution and frame rate, the power demand
on graphics processing of future mobile devices will not be
satisfied if only relying on the development of battery tech-
nology. Therefore, the research in improving mobile power
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

HotPower’15, October 04-07, 2015, Monterey, CA, USA

(© 2015 ACM. ISBN 978-1-4503-3946-9/15/10 ...$15.00

DOT: http://dx.doi.org/10.1145/2818613.2818746

efficiency is extremely necessary, especially for the mobile
games given that there are rare power management studies
in this field [5].

In this paper, we seek for opportunities to reduce power con-
sumption of mobile games. In particular, we aim to not com-
promise user experience. To this end, we study the behavior
of 40 typical Android games from all kinds of game cate-
gories. Based on the measurement results from the study,
we identify two issues that lead to severe power inefficiency.
The first one is that a fixed high frame rate is always used to
render game content regardless of game states. Such a high
frame rate is unnecessary when the game content does not
change rapidly or stays nearly static. Thus, there are oppor-
tunities to reduce the frame rate based on how fast the game
content changes to save power, without compromising the
user experience. The second issue is high overdraw rate: the
same pixels are re-drawn for multiple times, wasting energy
but bringing zero user-perceivable benefits. Consequently,
reducing overdraw provides more power-optimization oppor-
tunities without compromising user experience.

We report our measurement results and describe the two
power-inefficient issues in Section 2. We then investigate
how to mitigate the two issues in Section 3. In particular,
we have built a prototype to enable dynamic frame rate scal-
ing (DFRS) [9] that reduces the frame rate when the game
content does not change rapidly to save power. Preliminary
experimental results show that significant power savings can
be achieved when games are idle. We survey related work
in Section 4 and we conclude and discuss future work in
Section 5.

2. POWER-INEFFICIENT ISSUES

We choose 40 popular Android games from 12 different cat-
egories, such as action, puzzle, racing, etc., to study their
behavior. We focus on two metrics 1) frame rate: frames per
second (FPS) at which the game keeps rendering; 2) average
overdraw rate: the average times that all pixels are painted
over again (so the average overdraw can be 0, meaning that
all pixels are painted only once).

We pay special attention to the frame rate in the game idle
state that is the state that a game will typically enter if the
user does not touch the screen for a while, say 3 seconds.
We also care about the drawing order of multiple graphics
layers in an attempt to study its influence on the overdraw.
For example, the “back to front” order represents that the
game draws the background first, then objects far away, and
the front most objects last.

Category Game Name Game Idle State | FPS | Draw Order | Avg. Overdraw
Action Temple Run 2 Dynamic 60 | Back to Front 1.25x

Strategy | 3D Chess Game Nearly Static 60 | Back to Front 2.16x
Arcade Angry Birds Nearly Static 60 | Back to Front 3.18x
Casual | Plane Parking 3D Nearly Static 60 | Front to Back 3.09x
Racing Angry Birds Go! Dynamic 30 | Back to Front 74.55x
Cards Solitaire Totally Static 60 | Back to Front 61.18x

Table 1: Example Measurement Results of Various Game Categories.

Game Idle State FPS Draw Order Avg. Overdraw
Totally Static | Nearly Static | Dynamic | 30 | 60 | B2F | F2B | Min | Max | Mean
Obs 8 21 11 5 135 39 1 0.3x | 157.9x | 15.5x

Table 2: Statistics Results of the 40 Games. B2F means back to front and F2B means front to back.

We conduct the study on a Nexus 5 smartphone. Due to
space limit, we show a subset of results in Table 1 but the
entire statistical result in Table 2.

2.1 Fixed High Frame Rate

The study result indicates that all the 40 Android games
refresh at a fixed frame rate, with 12.5% (or 5) at 30 FPS
and 87.5% (or 35) at 60 FPS, no matter what the game state
is. However, in some game states where the screen does not
change rapidly, a high frame rate (e.g., 60 FPS) can be a
waste of power with no extra benefits to user experience.

Statistics also suggest that 72.5% (or 29) of the games will
enter a game state with frames totally (20% or 8) or nearly
(52.5% or 21) static if there is no touch event from users for
a while. At this time, the game is typically playing a series
of pictures repeatedly, waiting for players to operate. Due to
the slight changes in the frames, there are less demands for
a high frame rate, making the high frame rate unnecessary.
If a system could switch between different frame rates effi-
ciently whenever it is necessary, the mobile power efficiency
is expected to be improved significantly [11, 9].

Therefore, motivated by this optimization opportunity, we
develop a preliminary DFRS system and present the details
in Section 3.

2.2 High Average Overdraw

Overdraw is the issue that the same pixels are drawn for
multiple times. It is usually caused by rendering multiple
graphics layers. Our study result indicates that the issue
is indeed significant in mobile games. The mean of average
overdraw of the 40 games is as high as 15.5x, and the max-
imum is even up to 157.9x. It means that the same pixels
are re-drawn over and over again for many times. As the
last drawing may make all the previous drawings invisible
to users, the high overdraw rate leads to a large amount of
energy waste. A good rule of thumb for the target maximum
overdraw is 2x [6], but only 47.5% (or 19) of the 40 games
can achieve this 2x target.

This high-overdraw issue is caused by the improper draw
order of back to front. This issue can be avoided by changing
to the opposite draw order of front to back because modern
GPUs support the optimization of not drawing the parts of a
layer overlapped by previously drawn layers. However, even
though this programming practice is well-known, there are
amazingly 97.5% (or 39) of the 40 games that do not follow

Figure 1: NinJump: an example of improper draw order
with extremely high overdraw.

the right draw order of front to back, leading to unnecessary
and significant overdraw issue.

Figure 1, as an example, is a popular Android game called
NinJump, whose average overdraw is as high as 157.9x. We
have traced the OpenGL ES calls and observed that this
game drew objects almost in a completely wrong order: en-
tirely from back to front. From the parameters of the calls
of glDrawElements(), we found that the game drew 1,002
triangles from picture 1 to picture 2, and 582 triangles from
picture 2 to picture 3, respectively, in Figure 1. These trian-
gles were all painted over the top of others, and thus caused
the very high average overdraw.

Another example is shown in Figure 2, showing the improper
drawing habit of game developers: draw the background
first, then characters, and the widgets (buttons, clock, score-
board, etc.) at the last. Even though the drawing order is
natural and easy to program, it results in unnecessary high
power consumption. We discuss how to mitigate this issue
in Section 3.

3. MITIGATING THE POWER ISSUES

In this section we describe our preliminary efforts on miti-
gating the two power-inefficient issues.

3.1 Dynamic Frame Rate Scaling (DFRS)

Motivated by our study, we propose to enable DFRS to ad-
dress the fixed-high-frame-rate issue. Instead of always us-
ing a fixed high frame rate to render the content of a game,
DFRS dynamically adjusts the rendering frame rate based
on the states of the game. When the game content changes
slowly or becomes static, DFRS reduces the frame rate to
save power.

Figure 2: Angry Bird: another example of improper
draw order, to show the improper draw habit of devel-
opers.

[Game Apps

v 4

DFRS Interception Layer [Input Subsystem]

v i

DFRS Input Monitor

[SurfaceFlinger] <} A
L]

[Display]

Figure 3: DFRS system architecture on Android.

[User Inputs]

Implementation. We have implemented a preliminary
DFRS system on Android. Our implementation works as a
system-level service and is transparent from individual game
apps. Thus, it does not require any changes from games and
is able to support any existing games.

As shown in Figure 3, our implementation has two main
components. The first one is the DFRS Interception Layer,
lying between game apps and the OpenGL ES/EGL layer. It
hijacks the OpenGL ES API calls through binary rewriting
to control the rendering frame rate. To reduce the frame
rate, it skips the rendering of certain frames. For example,
to reduce the frame rate from the default 60 FPS to 30
FPS, this DFRS Interception Layer skips one frame for every
two frames. Skipping a frame is done by intercepting all
the OpenGL ES draw functions (in the form of glDraw*()).
We force each glDraw*() call to return, without generating
any GPU drawing workload. As a result, we reduce GPU
computation and thus save power.

It is worth noting that skipping frames may also be done by
simply ignoring the VSYNC signals generated by the oper-
ating system. We do not take this simple approach because
it is hard to be extended to support flexible control of frame
rendering. For example, instead of completely skipping a
frame, we may render the frame at a low resolution for a
better trade-off between power saving and user experience:
we save less power but provide better user experience. This
kind of flexibility can be achieved by our API-interception-

Unlimited

7
ABOUT v
It's White's turn to move (tap piece to move and then its destinstiOM the chess board)

Figure 4: In the red rectangle on the top, it shows
the current rendering frame rate and how long time the
Chess game has been in idle.

Measured Power Data

0

“
Time(s)

w

Figure 5: Power trace of a 3D Chess game with different
frame rates.

based approach but not by the ignoring-VSYNC approach.

The second main component of our DFRS system is the
DFRS Input Monitor. It hooks to the Android input sub-
system to monitor all the touch events from a user. As a
result, we can decide how long time a game has been in idle
(i.e., no touch inputs received from the user). According to
the findings of our study in Section 2, when a game becomes
idle, we may reduce the frame rate of the game to save power.
To do it, the DFRS Input Monitor sends a message to ask
the DFRS Interception Layer to reduce the frame rate. To
ensure good user experience, when a new user touch input is
detected, the DFRS Input Monitor sends another message
to notify the DFRS Interception Layer to increase the frame
rate back.

Despite that we only focus on the game-idle case in this
paper, the DFRS Interception Layer is general enough to
support other cases. For example, if we develop a new com-
ponent to detect how fast the content of a game changes,
we may reuse the same DFRS Interception Layer to con-
trol the frame rate according to the output of such a new
component.

In addition, we also provide a Ul component to show the
current rendering frame rate of a game and how long time
the game has been in an idle state. As shown in Figure 4,
the UI overlays on top of the UI of the game.

Preliminary experimental results. We conducted ex-
periments on a Nexus 5 smartphone for a preliminary eval-
uation on our implementation. We used a Monsoon power
monitor to measure the system power consumption of the
phone.

Power (mW Saving

Game Name |—gmpg (30 F)PS (%)
3D Chess Game 3066.3 | 1357.3 55.7
Bike Racing 3D 3138.3 | 1760.4 43.9
Archery Master 3D | 2606.4 | 1606.5 38.4
Crazy Driver 3D 2596.8 1672.6 35.6
FarmVille 2 2500.7 | 1676.7 32.9
Subway Surfers 2011.8 | 1392.2 30.8
Cut the Rope 2 1709.6 | 1224.5 28.4
My Talking Tom 1877.4 | 1373.2 26.9
Temple Run 2 1761.5 1324.2 24.8
Angry Birds 1370.6 | 1150.8 16.0

Table 3: System power saving of 10 games when the
frame rate is reduced from 60 FPS to 30 FPS.

Figure 5 shows a power trace in playing a 3D Chess game
when the frame rate is changed from 60 FPS to 30 FPS
then to 0 FPS and then back to 60 FPS. It shows that the
system power consumption is significantly reduced when the
frame rate is changed from 60 FPS to 30 FPS, due to the
reduced GPU workload. However, when the frame rate is
further reduced to 0 FPS, less extra power saving is achieved.
This is because that at 30 FPS, the GPU only contributes
a small part of the total system power consumption. Even
though we reduce the GPU computation to zero, the power
consumption of other hardware components such as CPU
and screen are still there.

Table 3 shows how much the average system power consump-
tion can be reduced for 10 popular Android games, when the
frame rate is reduced from 60 FPS to 30 FPS. On average,
the power saving is 33.3%, ranging from 16.0% to 55.7%.
The power saving of 3D games is more significant, as high
as 43.4% on average. In particular, for a game like the 3D
Chess game, the game may stay in idle for a large percent of
the total play time because users usually spend much time
on thinking how to make the next move. Thus, the total en-
ergy saving in playing such a game can be significant, even
though we only reduce the frame rate during game idle time.

In addition, we conducted a user study with 20 experienced
Android game players. We chose several games, randomly
ran them with and without our DFRS system enabled, and
asked the subjects to determine in which case DFRS was
enabled. The result shows that 90% of the subjects could
not tell the difference.

3.2 Reducing Overdraw

To mitigate the high-overdraw issue, a simple solution is re-
quiring game developers to strictly follow certain program-
ming guidelines. As developers exactly know how many
graphics layers their games have and how the layers over-
lap with each other, they have the best knowledge on how
to minimize the overdraw of their games. However, as shown
by our study, most games have a high overdraw rate, demon-
strating that it is very hard for developers to follow the
guidelines in practice, even very basic ones like draw order.

As we cannot trust developers to minimize overdraw, it is
desirable to develop a system tool to help mitigate the over-
draw issue. Ideally, the tool should work with existing games
without requiring any modifications from games. The tool

may analyze the graphics-rendering behavior of a game and
automatically change its behavior to reduce overdraw. How-
ever, it is very challenging to do so without knowing the
internal logics of games: 1) it requires deciding how many
graphics layers a game has and the depth information of the
layers and objects; 2) sometimes it is hard to define the order
between different objects and layers due to mutual coverage
and because some objects and layers may be transparent; 3)
it may be computationally expensive to retrieve the above
information and change game behavior accordingly. Those
are all open research questions and we plan to investigate
how much we could do towards this direction.

4. RELATED WORK

Pathania et al. [11] and Nixon et al. [9] have shown that re-
ducing frame rate leads to significant power savings. With-
out providing a working system, they are motivational to us.
However, blindly lowering frame rate will affect the user ex-
perience of game players [4], and thus adjusting frame rate
must be done carefully.

Overdraw is also a known issue [7]. Olson et al. [10] re-
port that the average overdraw of 2x to 3x in 3D games is
common, but our study shows that the issue becomes more
severe in mobile games. Drawing objects in the order of front
to back can help mitigate this issue [1] but it is rarely fol-
lowed by developers in practice. The tile-based rendering [3]
has been proposed on the PowerVR chipsets [2]. It reduces
overdraw but leads to more external traffic for geometrical
data at the same time.

S. CONCLUSION AND FUTURE WORK

In this paper we have studied the behavior of 40 Android
games and identified two power-inefficient problems: fixed
high frame rate that is unnecessary when games are idle
or slow; and high overdraw caused by improper draw order
in graphics rendering. Although these two issues are not
completely new, we show that they have not been solved
in modern mobile games yet. We report the measurement
results and explore the possible solutions.

For future work, we will continue to improve our DFRS
system, including making the frame rate adaptive to the
content-changing speed of games and conducting more com-
prehensive evaluations. We will also study how to build a
system tool to reduce overdraw of mobile games without
requiring any modifications from game apps themselves.

6. REFERENCES

[1] Mali GPU. Application Optimization Guide.

[2] VR-PowerVR. 3D Graphical Processing, Nov. 14,
2000.

[3] ANTOCHI, 1., JUURLINK, B., VASSILIADIS, S., AND
Livaa, P. Memory bandwidth requirements of
tile-based rendering. In Computer Systems:
Architectures, Modeling, and Simulation. Springer,
2004, pp. 323-332.

[4] CLaypooL, M., CrLaypooL, K., AND Damaa, F. The
effects of frame rate and resolution on users playing
first person shooter games. In FElectronic Imaging 2006
(2006), International Society for Optics and
Photonics, pp. 607101-607101.

[5]

DieTRICH, B., AND CHAKRABORTY, S. Forget the
battery, let’s play games! In Embedded Systems for
Real-time Multimedia (ESTIMedia), 2014 IEEE 12th
Symposium on (2014), IEEE, pp. 1-8.

Guy, R. Android performance case study.
http://www.curious-creature.com/docs/android-
performance-case-study-1.html.

McCAFFREY, J. Exploring mobile vs. desktop opengl
performance 24. OpenGL Insights 337 (2012), 341.
MocHOCKI, B., LAHIRI, K., AND CADAMBI, S. Power
analysis of mobile 3d graphics. In Proceedings of the
conference on Design, automation and test in Europe:
Proceedings (2006), European Design and Automation
Association, pp. 502-507.

Nixon, K. W., CHEN, X., ZHou, H., Liu, Y., AND
CHEN, Y. Mobile gpu power consumption reduction
via dynamic resolution and frame rate scaling. In
Proceedings of the 6th USENIX conference on
Power-Aware Computing and Systems (2014),
USENIX Association, pp. 5-5.

OrsoN, T. J. Hardware 3d graphics acceleration for
mobile devices. In Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International
Conference on (2008), IEEE, pp. 5344-5347.
PATHANIA, A., J1AO, Q., PRAKASH, A., AND MITRA,
T. Integrated cpu-gpu power management for 3d
mobile games. In Design Automation Conference
(DAC), 2014 51st ACM/EDAC/IEEE (2014), IEEE,
pp. 1-6.

