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ABSTRACT
Recently, single-ISA heterogemeous multi-core processors (SI-
HMP) draw attention, pursuing optimal power-performance
scaling. Leveraging differently optimized heterogeneous cores,
SI-HMP can dynamically tune performance with minimal
additional power consumption, or it can find maximum per-
formance core combination with respect to a given power
budget. However, the little-to-big, or big-to-little core switch-
ing has hidden costs. To properly scale up/down the power-
performance, we should carefully analyze the actual perfor-
mance gain, considering the multi-core processing model and
inter-cluster communication. This paper reveals that there
are some good and bad cases for core switching, and presents
a possible way to achieve good power-performance scaling
through big-little switching.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Parallel archi-
tectures—multicore architectures; C.1.4 [Computer Sys-
tems Organization]: Other architectures—Heterogeneous
systems

Keywords
Single-ISA heterogeneous multi-core architecture, power- per-
formance

1. INTRODUCTION
High-performance and energy-efficiency are two topmost

demands for mobile processors. A user wants to play 3D
graphic games smoothly, and wants to send / receive SMS
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Figure 1: Big.LITTLE design with 2 big + 4 little cores

messages for a long time without recharging the battery. Un-
fortunately, the two demands are difficult to be met at the
same time because processor’s power and performance are in
trade-off relationship. Thus, scaling power and performance
has been a hot topic in designing new microprocessors for
last decades. As an evolutionary alternative to traditional
approaches such as DVFS (Dynamic Voltage and Frequency
Scaling), and dynamic core off-lining, single-ISA (Instruc-
tion Set Architecture) heterogeneous multi-core processor
(Single ISA-HMP, SI-HMP) architecture draws attention.

SI-HMP can scale up and down the power consumption
and throughput, leveraging heterogeneous cores that are
finely tuned to different performance goals such as low-power
or high throughput. A SI-HMP includes multiple cores that
share the same ISA, but the cores in the processor would
have different microarchitecture, presenting different power
and performance. For example, ARM introduced big.LITTLE
design in which a microprocessor includes two different types
of cores: big cores, that presents high throughput, and little
cores, that presents low-power consumption.

Figure 1 shows a reference big.LITTLE processor design[2].
In the processor, there are two clusters: a big cluster and
a little cluster. In the big cluster, there are two big cores
(CortexA-57), and 2MB of shared L2 cache. In the little
cluster, there are four little cores (CortexA-53), and 1MB
of shared L2 cache. Figure 1 also shows the CCI (Cache-
Coherent Interconnect)[1]. CCI manages cache coherency
between separated L2 cache in two clusters. According to
the protocol, each cluster’s L2 cache can share data, and
maintain updated value within each cluster’s own cache.

A key mechanism in power-performance scaling is inter-



cluster core switching (or big-little switching)1. Big-little
switching trades power with performance by exchanging the
core configurations. For example, to increase throughput,
sacrificing the power efficiency, one would exchange an ac-
tively running little core with a big core. This paper focuses
on the big-little core switching effect on SI-HMP power-
performance scaling. In general, little-to-big switching is
believed to be a scaling up operation.

However, big-little switching does not always present a
good power-performance scaling. To properly scale with
parallel or multi-core workloads, we should additionally con-
sider parallel processing model, and inter-cluster communi-
cation.

Big-little switching should be carefully performed, consid-
ering the bottleneck performance. When we exchange little
core with big core, the remaining slow little cores would be
performance bottleneck. This results in only marginal per-
formance scaling by big-little switching.

In addition, big-little switching could also incur sequelae,
unexpected a performance degradation after the switching.
That happens particularly often when multi-threaded ap-
plication is running. When a communicating thread shares
data with another core in a different cluster, then the com-
munication cost becomes significant in order to maintain
per-cluster L2 cache coherency. Moreover, synchronization
such as spin lock is critical in performance. The big-little
switching would end up with additional power consumption
without any performance enhancement.

A goal of this paper is to evaluate the big-little core switch-
ing as a means of performance scaling, revealing the actual
configuration for possible scaling. Our results under ap-
plication scenarios identify there is a bad inter-cluster core
switching, or inverse performance scaling, could happen.

The rest of the paper is structured as follows. Section 2
presents related study on SIHMP, and power-performance
scaling in mobile processors. Section 3 presents an opti-
mistic view of big-little core switching with CPU-intensive
benchmark. Section 4 shows some results with some paral-
lel benchmarks, and spinlock, highlighting the bad cases of
inter-cluster core switching. Section 5 concludes the paper
with some possible future work.

2. RELATED WORK
Big.LITTLE design has several variant implementations

according to the core combination, cache coherency support,
and scheduling inside the OS. Hardware architecture is im-
portant in recent power-performance study because differ-
ent architecture presents different power and performance
characteristics. We use Juno platform from ARM [2] that
incorporates 2 big cores and 4 little cores, as shown in Fig-
ure 1. Juno processor is featured with separated per-cluster
L2 cache, and the CCI that manages coherency between the
caches. In fact, CCI manages coherency between bus mas-
ters, such as core cluster, GPU, NIC. CCI is outside of the
core cluster; thus, CCI registers are not directly operated
on CPU. Accordingly, all CCI operation is regarded as bus
transaction, happens beneath the L2 cache.

Hahnel and Hartig presented system-wide energy consump-
tion in a mobile development platform[6]. In the study,

1In this paper, we will use core switching or big-little switch-
ing, instead of inter-cluster core migration to avoid confusion
with task migration.

the authors measured energy consumption by different hard-
ware components for several workloads. The analysis is very
helpful to understand the network, storage-using application
could be affected by big.LITTLE scheduling. In addition,
they present the cluster-switching impact to energy con-
sumption. The result reveals that cluster-switching cost is
substantial particularly when memory heavy applications is
used. Their processor, unfortunately does not fully support
cache-coherency between big and little cluster. Therefore,
their model has inherent heavy cluster switching cost be-
cause all the cores in the cluster have to move with their ar-
chitectural status, such as cache, TLB, etc. Our big.LITTLE
platform fully supports cache coherency, and it supports per-
task migration as well as per-core, and per-cluster switching.
Thus, our study extends the previous migration study with
CCI-related inter-cluster communication cost.

Heterogeneous computing architecture has been explored
by several studies. Shen et al. exploit programmable DSP to
offload computation-intensive module from the application
processor [10]. The authors propose an Android framework
so that android applications and services can take advan-
tage of it. More radical approach, Felix et al. present an
approach to use similar-ISA heterogeneous multi-core archi-
tecture[8]. In the study, the authors present dual core ARM
cpu (dual Cortex-A9) can loosely coupled with co-processor
that supports ARM ISA (Cortex-M3). The co-processor has
1/5 performance numbers, but it presents 1/17 power con-
sumption. To loosely couple the heterogeneous cores, the
authors proposed distributed runtime environment, called
Kage that maintain replicas in two different domains. As a
research prototype, they present interesting approach, but
there are several practical consideration such as programma-
bility, general applicability to DSP offloading, application
transparency in two distributed domains with responsive-
ness, scheduling /inter-process communication across the
heterogeneous domains.

In recent mobile systems, energy consumption by the main
processor takes about 20% of the entire system, which
means that CPU-only energy-saving solutions could be sub-
optimal. Yet, the system performance and energy consump-
tion are highly dependent upon the utilized hardware com-
ponents. That is, when the workload is CPU-intensive, we
still have room for additional improvements. Although the
followings are CPU and GPU-specific studies, they present
a possible improvements under some application scenarios.
DVFS has been widely adopted technique in mobile devices.
Xinxin et al. present an approach to use DVFS on GPU[9].
Taking advantage of DVFS, energy consumption by GPU
can be considerably reduced. Along with the CPU power
management, GPU DVFS can be effectively used. Yifan re-
fined the power model of mobile CPU[11]. In the model, the
authors incorporate multiple-levels of CPUIdle state. Aaron
et al. casted a serious question on mobile multi-core[4]. The
authors measure energy for different workload, with differ-
ent processors. For some processors, idle power consump-
tion is very small, and it is infeasible to scale down power-
performance. Their recent paper addresses unified approach
to utilize DVFS and core offline[5].

Recent Linux has cpufreq driver that controls DVFS level
according to the given hardware platform[7]. It also has
cpuidle driver that changes cpuidle states (C-states or P-
states) according to the wake/sleep duration. Linux also has
governor in power management framework. The governor
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Figure 2: Big.LITTLE scaling with MPWhetstone

can specify the system-wide power management policy. It
uses cpu-hotplug framework, which dynamically controls on-
line and off-line cores in run-time. These cpufreq/cpuidle
drivers and governor closely interplay with the scheduler.
Recent big.LITTLE scheduler tracks the CPU intensity of a
task, and migrates a task to a big core if it has high intensity.

3. SCALING WITH CPU INTENSIVE WORK-
LOAD

Big and little cores present different power-performance,
and inter-cluster core switching tries to take the best advan-
tage of it. To present the net benefit from core switching,
we run Whetstone, that is a CPU-intensive benchmark, on
each core varying the number of cores.

The hardware platform is ARM’s reference big.LITTLE
platform [2], and used kernel is the latest Linaro kernel.
The core clock is set to maximum 850Mhz for little cores,
1.1Ghz for big cores, to comparatively present the big and
little performances.

Figure 2 shows the result. In the graph, X-axis is average
power consumption during execution. Y-axis is throughput
(Million Whetstone Instructions Per Second). In the little
cores graph (solid line), power and performance scales up
as we put more cores. It scales very linearly because there
is no interdependency between threads, and each of them
does its own calculation. After four little cores allocation,
we exchange little cores with big cores, assuming that a big-
little core switching happens (dotted line).

In Figure 2, compared with 4 little cores case, big2+little2
cores present 40% improved throughput from 2756.60 MWIPS
(Million Whetstone Instruction Per Second) to 3887 MWIPS,
with 58% additional power consumption (from 161.96 mW
to 255.9 mW). Big1+little3 cores combination present 20%
improved throughput from little4 cores in MWIPS, with 49
% of additional power consumption.

In the graph, big1+little3 cores throughput increases al-
most linearly, but power consumption has been much more
increased. A reason is that a big core consumes more power
than a little core because it has larger cache, TLB, complex
pipeline structure, etc. In addition, power consumed by per-
cluster hardware resources (L2 cache, interrupt distributer,
snooping control unit, etc.) is introduced by turning on
the first core in the big cluster. When we use more big
core (two big cores and two little cores), power consumption
marginally increases, and the throughput increases sharply.
It shows almost linear scaling when two big cores are used.
The result supports that big.LITTLE core switching can
possibly extend the positive scaling of power-performance.

Table 1: Facesim performance with big-little switching
4L 1B+3L 2B+2L

exec.time (s) 911 895 861
avg. power (mW) 235.25 255.12 264.64

4. SCALING WITH PARALLEL TASKS

4.1 facesim
Beside the Whetstone, we run some PARSEC benchmark[3],

that provides parallel workloads, assuming that those bench-
mark can best utilize multi-core hardware.

At first, we run facesim in PARSEC. Facesim simulates
the facial motion for realistic emotion expressions. The sim-
ulation consists of several phases. At the beginning of bench-
mark, the benchmark process makes multiple threads, and
the process divides a cpu job into small pieces, as many
as the number of threads. Then, each thread performs the
simulation, independently. At the end of each phase, the
calculation results are gathered, and the next phase begins.

To compare the performance scaling according to big-
little switching, we run facesim with different four cores-
combinations: 4 little cores (4L), 1 big core + 3 little cores
(1B+3L), 2 big cores + 2 little cores (2B+2L), assuming the
big-little core switching. Then, we measure the execution
time and average power consumption during the execution

In Table 1, 2B+2L presents a little 5.8% improvements
in throughput, (reduced execution time from 911 s → 861
s) with additional 12.5% power consumption (235 mW →
264 mW), by exchanging 2 little cores with 2 big cores. In
addition, 1B+3L presents only 1.8% of improved through-
put with 8.4% additional power consumption. That is, it
has negligible performance gain, not only in terms of perfor-
mance but also in terms of power consumption.

A reason is that PARSEC facesim wrongly distributes par-
allel workload across big-little cores. Because a little core
runs slower than a big core, if the same amount of job is
given to two different (big and little) cores, a little core be-
comes the performance bottleneck, and a big core would be
idle after the completion, which is observed from our execu-
tion traces. Facesim seems to distribute the same amount
of work to all threads, regardless of the running core (big
or little). In this case, a job is divided into 4 small pieces,
and each thread runs one of 4 pieces. Thus, in all cases,
little cores have high utilization (> 90%), but big cores are
seriously underutilized (∼40%). Accordingly, the execution
time is bound to the slowest little core. Thus, regardless of
the core combination, the execution phase is determined by
the little core’s execution time for 1 piece of the job.

We additionally measured the power consumption and ex-
ecution time with different core-combinations: 2 big cores
(2B), 2 big + 2 little cores (2B+2L), and 2 big + 4 little
(2B+4L) cores. If we divide the job with only two big cores,
a job is divided into two pieces, and each big core is fully
utilized, completing the given work at almost the same time.
For 2B+4L case, a job is divided into 6 pieces, and each core
performs 1/6 of the entire job.

The measured execution time and power consumption is
given in Table 2. For convenience, we additionally put the
normalized power consumption and normalized throughput
along with big/little cores’ utilization (U.B and U.L), re-
spectively. To compare normalized performance number,
we additionally measure the execution time and power con-



Table 2: Facesim for proper scaling with parallel tasks
exec. power norm. norm. U.B U.L

time(s) (mW) thruput power (%) (%)
L1 666 86.7 1 1 100
B2 159 292.3 4.2 3.4 95.88
B2+L2 173 277.7 3.8 3.2 49.3 88.4
B2+L4 131 372.5 5.1 4.3 47.5 88.6
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Figure 3: Big.LITTLE switching with facesim

sumption for one little core (L1).
Observe that B2+L2 has longer execution time than B2

even though B2+L2 uses additional little cores. That is
because big cores in B2+L2 waits until the completion of
slow little cores. Due to the idle time of B2, the actual power
consumption of B2+L2 is smaller than B2. Remember that
a big core consumes more power than a little core.

B2+L4 presents better scaling than B2+L2. In the case,
each core performs so small job not enough to saturate the
CPU utilization; thus, the result presents improved the per-
formance. Yet, big cores’ utilization is still low, seemingly a
room for additional improvements.

Figure 3 summarizes the performance of facesim, scaling
with various cores combinations. Despite subtle inverse scal-
ing (B2 vs. B2+L2), the scaling can be possibly achieved.
Note that little-to-big core switching does not be much help-
ful for scaling (i.e. L4→ B1+L3→ B2+L2) because remain-
ing slow little core becomes the bottleneck.

Dynamic task migration across cores will help to alleviate
the inefficient scaling. By moving a task that is running on
a slow little core to a fast big core, a task can boost the
execution temporarily.

4.2 swaption
In addition to facesim, we run swaption in PARSEC bench-

mark. Swaption performs monte-carlo simulation for price
calculation of swaption portfolio. The benchmark makes
multiple threads, and the threads communicate each other,
sharing large amount of data (several virtual memory pages).
Unlikely the facesim, it does not consists of several phases.
Instead, it statically distributes jobs to multiple threads.
When a thread completes the given execution, the task re-
tires, and the task does not execute any work. Thus, CPU
utilization is very high at the beginning, and the utilization
becomes smaller as threads complete execution.

Table 3 shows the execution time of the swaption for dif-
ferent cores combinations: 4 little cores (4L), 1 big core +
3 little cores (1B+3L), 2 big cores + 2 little cores (2B+2L).
As a comparison, the result of 2 big core (2B) case is also
added in the table.

In Table 3, 2B+2L presents little (about 2.5%) improve-

ments in throughput, (reduced execution time from 532 s→
519 s) with additional 54.8% power consumption (262 mW
→ 406 mW), by exchanging 2 little cores with 2 big cores. In
addition, 1B+3L presents 2.3% of improved throughput with
23% additional power consumption. That is, big-little core
switching does not work well, and end up with additional
power consumption for the same performance. Moreover,
B2 presents smaller execution time than B2L2, and power
consumption of B2 is less than B2L2. Namely, inverse scal-
ing also occurs here.

To investigate the reason of this inefficient scaling, we
compare the profile information from L4 and B2L2, which
is a big-little core switching, exchanging 2 little cores with 2
big cores. Then, we measure branch mis-prediction, instruc-
tion barrier operations, bus transactions on cluster-shared
memory.

B2L2 shows significant number of barrier operations, bus
transactions, branch mispredictions. A reason is that multi-
ple threads use exclusive memory access instructions such
as LDREX/STREX, CLREX. Those instructions allow a
thread to have exclusive memory access by locking the bus.
When a core holds a lock, memory operation is performed
only on the core, making L2 cache dirty. In B2L2 case, af-
ter the exclusive memory operation, bus access occurs in
order to keep the coherency between L2 caches in different
clusters. Therefore, large number of bus transactions are
measured. Comparatively note that L4 does not require bus
access because all the data are on the local L2 cache.

In addition to exclusive memory access instructions, B2L2
presents frequent barrier operations such as ISB, DMB, DSB.
Barriers are software-based methods to preserve the order of
memory access among multiple threads. Memory barrier op-
eration is costly because it could stall the pipeline to flush
the write buffer. Along with the shared bus access, synchro-
nization instructions execution, high branch mis-prediction
events are observed in B2L2, which negatively affects the
performance of B2L2.

4.3 spinlock
Inter-cluster core communication overhead could be more

serious than expected. To illustrate the communication over-
head, we experiment spinlock in two different cores, one in
a big core, and another in a little core. The two threads
race to increase the shared variable up to two hundred mil-
lion. The execution time is comparatively measured with
two threads run on big cores and little cores, respectively.

In Table 4, the execution time with big + little cores are
almost twice longer than 2 big cores case, and even longer
than spinlock with two little cores. The shared variable is
cached in per-core L1 and per-cluster L2 cache. When the
spinlocking cores are in the same cluster, shared L2 cache
can be effectively utilized between cores. However, in big +
little cores spinlock case, shared data in L2 cache is contin-
uously invalidated by another cluster’s core. Although CCI
keeps coherency, there is a definite overhead when there is
intensive communication.

4.4 summary

Table 3: Swaption execution time and IPC
4L 1B+3L 2B+2L 2B

exec. time (s) 532 521 519 496
Avg. power (mW) 262 323 406 321
CPU utilization (%) 99.9 99.9 99.8 99



Table 4: 200M spinlock time on different cores
exec. 2 little big + little 2 big
time (s) 167 288 114
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Figure 4: Power-performance scaling with swaption,
facesim, whetstone

Figure 4 summarizes the power and performance of the
whetstone, facesim, and swaption, scaling with various cores
combinations. Overall, there is a smooth tendency of power-
performance scaling with diverse cores combination. Small
number of little cores present less power consumption with
limited performance numbers. When all cores are used, per-
formance increases along with the number of cores, with
additional power consumption.

Observe that little-to-big core switching does not be much
helpul for scaling (i.e. L4→ B1+L3 → B2+L2) because ad-
ditional performance gain is limited by the remaining bottle-
neck performance and inter-cluster communication. Specif-
ically for swaption case, the big-little switching shows al-
most same throughput with high power consumption, which
presents a bad power-performance scaling. Additionally note
that facesim and swaption results show that B2 present bet-
ter throughput and less power consumption than B2L2.

5. CONCLUDING REMARKS
In this paper, we analyzed the power-performance scaling

with respect to SI-HMP. Big.LITTLE has been proposed to
scale power- performance by adopting single-ISA heteroge-
neous multicore. It has definite advantage because existing
software can be transparently migrated one from another.
However, the core switching could be costly. This paper
evaluates big.LITTLE core switching with several bench-
marks. General results are as follows: First, overall power-
performance scaling can be achieved by diverse cores com-
bination. Second, to scale with parallel applications, paral-
lel processing model has to be considered. Despite the core
switching, remaining little cores are easy to be a performance
bottleneck. Third, some applications do not scale well, par-
ticularly when the threads make intensive inter-cluster com-
munication. Our results show that core switching could sup-
port positive scaling or could end up with additional power
consumption. As future work, we are investigating multi-
thread applications and operating systems impact to evalu-
ate feasibility of big-little switching on mobile platforms.
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