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ABSTRACT
Semiconductor device engineers are hard-pressed to relate observed
device-level properties of potential CMOS replacements to com-
putation performance. We address this challenge by developing a
model linking device properties to algorithm parallelism, total com-
putational work, and degree of voltage and frequency scaling. We
then use the model to provide insight into how device properties
influence execution time, average power dissipation, and overall
energy usage of parallel algorithms executing in the presence of
hardware concurrency. The model facilitates studying tradeoffs: It
lets researchers formulate joint energy-delay metrics that account
for device properties.

We support our analysis with data from a dozen large digital cir-
cuit designs, and we validate the models we present using perfor-
mance and power measurements of a parallel algorithm executing
on a state-of-the-art low-power multicore processor.
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1. INTRODUCTION
There are several candidate device architectures to carry com-

puting systems through deeply-scaled CMOS and beyond. The
candidate devices range from band-to-band tunneling field-effect
transistors (TFETs) [16] and nanoscale-electro-mechanical-system
(NEMS) relay logic [6], to devices employing electron spin [13],
and graphene [15]. These varied devices often have different char-
acteristics from traditional bulk CMOS devices. For example, NEMS
proposals have limited achievable clock speeds; they however have
very low leakage, potentially permitting designs with large transis-
tor counts that make up for their limited clock speeds by employing
architectural parallelism.
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In addition to the many alternative devices and alternative tokens
for representing logic state (charge, spin, and so on), devices of a
given type may be tuned for different regions of operation. Fun-
damental to the choice among operating regimes, devices, and ar-
chitectures, are performance, power dissipation, potential for dense
integration, and the opportunities for tradeoffs between these. The
device characteristics which should be pursued by device engineers
will therefore depend on the existence of a set of metrics which
capture the constraints under which devices will be operated.

In this article, we derive a set of relations linking algorithm paral-
lelism to device properties, and to tradeoffs between performance,
power, and energy. The analysis we present is based on devices that
represent logic values with voltages, and in which logic transfer be-
tween stages is via the charging of a capacitive load. For devices
with other state tokens (e.g., electron spin), our analysis can still
serve as a basis for extension. In this work, we present:
• The derivation of relations between algorithm parallelism

and device properties, presented in Section 3.

• Derivation and new insight into what metrics should be
used for comparing joint energy-efficiency and perfor-
mance, as a function of device characteristics, and under
what conditions these metrics are valid (Section 4).

• Experimental measurement of power consumption and
performance of a parallel algorithm under voltage scaling
on a state-of-the-art multi-core processor (Section 5).

2. RELATED RESEARCH
Theis and Solomon [21] outline two methods for reducing power

dissipation in future devices: Reducing the energy lost during logic
value transitions by lowering supply voltages, and using adiabatic
logic. Given the challenges involved in designing efficient adia-
batic logic circuits, the device research community has thus far fo-
cused on finding alternative logic devices that enable a significant
lowering of supply voltage.

Dynamic supply voltage and frequency scaling (DVFS) in mi-
croprocessors as a means of reducing power dissipation, has been
of interest for several decades [23]. This long-standing interest has
been due to the quadratic dependence of dynamic power dissipation
on supply voltage, for a given implementation circuit. Lowering
supply voltages to reduce power dissipation however often leads to
a loss in performance (although the overall energy usage is still usu-
ally reduced). This is because drain current (and hence gate delay)
depends on supply voltage. For long-channel devices, this depen-
dence, captured by the Shockley model, was linear in the region of
transistor operation typically of interest. For short-channel devices,
the improved delay model of Sakurai and Newton [14] generalized
the Shockley model to account for velocity saturation.
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Given the conflicting influences of supply voltage on performance
of a fixed circuit (higher is better) and energy-efficiency (lower
is usually better), it has been of interest to jointly consider both
energy-efficiency and delay in quantifying system efficiency. For
this, the energy-delay product [8] is often used. However, as noted
by Pénzes and Martin [10], the energy-delay product is depen-
dent on supply voltage, thus conclusions reached in comparing the
energy-delay for two systems at one supply voltage might change
when the systems operate at different supply voltages. They thus
proposed the use of energy-delay2 (E · T 2), which they showed,
empirically for a design in 0.6µm CMOS, to be largely indepen-
dent of supply voltage. We generalize this idea in Section 4 with
the concept of parameter-independent metrics, with the voltage-
independent metric of Pénzes and Martin being a special case, and
we demonstrate how the parameter-independent metrics are func-
tions of device technology parameters.

The joint treatment of device properties, algorithm properties,
and the resulting performance and energy-efficiency that we present
in this article provides new insight into prior efforts [2, 7, 9] to in-
vestigate the energy-efficiency of the use of parallelism.

3. ENERGY AND PARALLELISM MODELS
The power dissipation of a CMOS transistor can be decomposed

into the primary components of dynamic, short-circuit, gate, and
sub-threshold channel leakage. The analysis that follows will fo-
cus on the dynamic power dissipation and sub-threshold channel
leakage; gate leakage has been addressed in recent years through
the use of high-κ dielectrics, while short-circuit currents are typi-
cally small when signal rise and fall times are short.

3.1 Energy model
The energy for operation of a CMOS circuit at clock frequency f

and supply voltage V , with effective circuit switching capacitance
Ceff, for an execution duration T , is given by

E = Ceff · V 2 · f · T + Ilkg(V, VT , θ) · V · T, (1)

where

Ilkg(V, VT , θ) = Klkg,1 · e
Klkg,2·q(V−VT )

k·θ .

VT, is the threshold voltage, Klkg,1 and Klkg,2 subsume several de-
vice properties, k is Boltzmann’s constant, q is the electron charge,
and θ is the operating temperature in Kelvin.

3.2 Capturing the relation between V and fmax

Supply voltage also influences the gate drive current, which in
turn determines the speed at which capacitive loads can be charged
and discharged. The supply voltage therefore determines the maxi-
mum clock frequency, fmax:

fmax = φ
(V − Vmin)α

V
. (2)

The constant φ subsumes several device and circuit parameters,
and is treated as a monolithic constant in this work. For devices
that operate purely in the super-threshold region, Vmin equals VT;
for devices which span the sub- and super-threshold regions, Vmin
however loses its physical interpretation. The parameter α, which
must be greater than or equal to unity1, is treated in this work as a
parameter with no direct physical interpretation.

Although the alpha-power-law voltage-versus-frequency depen-
dence was originally derived by Sakurai and Newton [14] to ac-
count for short-channel effects (velocity saturation) in CMOS, it is
observed to capture the behavior of a wide variety of circuits, even
1
α < 1 would permit decreasing power dissipation with increasing performance.
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Figure 1: Empirical data from voltage-versus-frequency char-
acterizations (points) and fits to Equation 2 (lines), for several
large digital designs published in ISSCC (1986–2012).

those with mixed super- and sub-threshold modes. To illustrate
this, Figure 1 plots published voltage versus frequency “Shmoo”
characterizations for 12 large programmable digital designs from
the IEEE International Solid-State Circuits Conference (ISSCC),
along with the resulting multi-parameter fit to α.

The values of α providing the best fit, shown in Figure 1, range
from 1.0 to 3.61. Both of the designs with large values of α (“2011,
7.5” [5] and “2012, 3.6” [12]) were explicitly designed to enable a
wide supply operating voltage range. In what follows, we there-
fore treat α as a parameter that may be controlled even for a fixed
technology node.

3.3 Decoupling V and fmax

The frequency f at which a circuit operates (in Equation 1) can
be chosen at will under the constraint 0 < f ≤ fmax; doing so
while leaving supply voltage fixed however results only in a reduc-
tion in average power, but no gain in energy-efficiency. The follow-
ing analyses are therefore restricted to the mode of operation where
the supply voltage is always the lowest for a given target operating
frequency.

We use Vmin and Vmax to denote the minimum and maximum
supply voltages at which a system operates (technology param-
eters), and we use σ to denote the degree of voltage scaling (a
system-configuration-dependent parameter). Let σ = 1 indicate
no voltage/frequency scaling, and let σ = σ0 denote a maximally-
scaled voltage, i.e., σ0 < σ ≤ 1, and

σ0 =
Vmin
Vmax

. (3)

Expressed in terms of σ and σ0, Equation 2 becomes

fmax = φV α−1
max

(σ − σ0)α

σ
. (4)

The supply operating point (σ) employed in a system will depend
on the desired tradeoff between performance and energy-efficiency,
and, importantly, on the possibility to make up for lower clock fre-
quencies through the use of architectural parallelism.

3.4 Algorithm parallelism model
The dynamic execution of an algorithm can be represented with

a data dependence graph, a directed acyclic graph (DAG) in which
nodes are units of work and edges represent dependencies. These
units may be instructions, basic blocks, or coarser. In the DAG
model for dynamic parallelism [3], on which the following analysis
is based, the units are sections of the dynamic instruction stream



between points of creation or merging of parallel threads.
The number of nodes in the execution DAG constitutes the total

amount of work,W1, that must be completed. In a serial execution,
this corresponds to the computation performed by a single proces-
sor. The length of the longest dependence chain of work units, or
the span, is denoted byW∞, and the average amount of parallelism,
in units of work, over the course of execution, is W1/W∞.

In an execution employing p processors, the available parallelism
must be at least p in order to achieve linear speedup. We restrict
our analysis in this work to computations which occur in the region
where there is sufficient algorithm parallelism for the chosen num-
ber of processors. Under these conditions, and assuming perfect
load balancing, the work per processor, Wp, is

Wp =
W1

p
. (5)

For the remainder of the analysis, we assume that communi-
cation overheads are minimal, to simplify the derivation of rela-
tions for the interaction between algorithm parallelism and device
properties. For applications with significant amounts of commu-
nication, we have recently derived analogous expressions for per-
formance and power [19]. As we will demonstrate in Section 5,
there are important real-world problems for which these assump-
tions of algorithm parallelism and communication overheads hold.
The model presented can be extended further to capture properties
such as limited parallelism and the memory hierarchy, by build-
ing on existing research into analytic models for computing system
performance [4]; this is one area of future work.

Our succinct model of parallelism in the dynamic execution of
algorithms can now be combined with the device-specific power
and timing relations of Section 3.2.

3.5 How device properties affect performance,
power, and energy-efficiency of parallelism

Given the definitions for maximum clock frequency and energy
in Equations 1 and 2, and per-processor parallel workload in Equa-
tion 5, we reformulate the execution time, T , for a parallel compu-
tation, as

T =
W1

p · fmax
=
W1 · V 1−α

max
pφ

σ

(σ − σ0)α
. (6)

Substituting Equation 6 into Equation 1 yields the expression for
the energy usage of the parallel algorithm execution as

E =
W1

p
σ2V 2

max

(
Ceff +

Ilkg(V, VT , θ)(σVmax − σ0Vmax)−α

φ

)
. (7)

The average power over the course of the execution is thus also

P = σVmax
(
Ceffφ(σVmax − σ0Vmax)

α + Ilkg(V, VT , θ)
)
. (8)

Equations 6, 7, and 8 encapsulate the relation between algorithm
properties (W1), hardware concurrency (p), implementation (Ceff),
device properties (Vmax, α, φ, and σ0), and system operating point
(σ). To understand how a candidate transistor or circuit-level tech-
nique will influence the energy-efficiency of algorithms in the con-
text of the model presented (e.g., for spin logic [1], nanowire TFET
[17], or carbon nanotube FETs [22]), we must therefore be able to
characterize Vmax, α, φ, and σ0. One method to do this is to fit the
model of Equation 4 to characterization data for the maximum op-
erating frequency of the candidate device and circuit technology as
a function of supply voltage scaling level. Examples of such char-
acterizations were presented in Figure 1, and we present another
more detailed study in Section 5.

Both execution time and energy usage can be reduced by more
efficient algorithms (smaller W1) or increased parallelism (larger
p). The appropriate transistor and circuit characteristics and result-
ing values of α, φ, and Vmax however depend on the desired perfor-
mance versus energy tradeoff; we explore this further in Section 4.

Even though the relations presented thus far are structured based
on transistor-level equations, they also accurately capture the ag-
gregate behavior of the millions of transistors making up an inte-
grated circuit such as a microprocessor. We show this in Section 5
by fitting data from empirical measurements for a multi-core pro-
cessor to the models.

Because candidate CMOS replacements such as TFETs and NEMS
have very low leakage compared to CMOS, we will focus our anal-
ysis in the following section on the dynamic component of energy,
for simplicity.

4. PARAMETER-INDEPENDENT METRICS
When a single metric is of interest (e.g., only timing performance

or average power dissipation), it is possible to use Equations 6
through 8 to determine which combinations of algorithms and sys-
tem parameters satisfy a given time, energy, or power constraint.

In practice however, multiple metrics are often of interest. The
traditional approach is to use a product of the metrics of interest,
such as the energy-delay (E · T ) product proposed by Horowitz et
al. [8]. Pénzes and Martin [10] previously argued that the E · T
metric is voltage-dependent, arguing instead for E · T 2. We gen-
eralize this concept further to the idea of parameter-independent
metrics. Using Equations 6 and 7, the appropriate form of these
parameter-invariant metrics can be formulated as functions of de-
vice technology parameters.

To minimize both energy and delay independent of a given pa-
rameter (e.g., supply voltage, V ), an appropriate parameter-indep-
endent metric is of the form Ea · T b. The constants a and b are
picked to be nonzero and such that all terms of the parameter from
which independence is desired cancel in the product Ea · T b.

4.1 Vmax-independent metric
The maximum supply voltage, Vmax, at which a design operates,

may be constrained due to power supply design, supply noise, sup-
ply current, or circuit reliability concerns. It may therefore be of
interest to be able to compare algorithms paired with hardware de-
signs, independent of specific values of Vmax.

From Equation 7, the dynamic component of energy is a function
of V 2

max, while delay (Equation 6) is a function of V 1−α
max . Thus, the

Vmax-independent energy-delay product is achieved when

−2 · a = (1− α) · b,

with both a and b nonzero. One valid solution is achieved with
a = 1 and b = 2

α−1
. For α = 2 (Shockley model), the Vmax-

independent metric is therefore E · T 2. As α approaches unity,
jointly minimizing energy and performance, independent of Vmax,
requires placing more effort on minimizing delay.

4.2 W1-independent metric
AW1-independent metric is desired when comparing the steady-

state behavior of an algorithm and platform combination, regard-
less of the total amount of computational work (W1). An example
of such a scenario is when studying the steady-state behavior of a
streaming application.

From Equations 6 and 7, both energy and delay are functions
of W1 raised to the same exponent (unity). The W1-independent
energy-delay product is therefore achieved when a = −b, yielding
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Figure 3: Measured performance scaling.

the product E · T−1. This is intuitively pleasing, as it corresponds
to the average power dissipation.

4.3 Nonexistent independences
The dynamic component of energy for a parallel computation is

a function of σ2, while the delay is a function of σ/(σ − σ0)
α.

For σ � σ0 (i.e., when far above the minimum supply setting
in a highly voltage-scalable system), delay becomes independent
of the degree of supply voltage scaling, σ. This makes a truly σ-
independent E · T metric unattainable: i.e., jointly minimizing en-
ergy and delay cannot be made independent of the degree of voltage
scaling, σ.

A metric that is jointly independent of both Vmax and W1 has
values of the exponents a and b ofE and T respectively that satisfy
the system of simultaneous equations

−a = b,

−2 · a = (1− α)b,

which has no valid solutions given the constraint that α ≥ 1. Thus,
one cannot jointly minimize energy and delay independent of both
the total amount of computational work W1 (algorithm dependent)
and the maximum supply voltage Vmax (technology dependent).

4.4 How device properties influence energy-
delay metrics

Sections 4.1 and 4.2 provided formulations of the joint energy-
delay metrics to be used under two different system usage models,
yielding three main insights.

First, the metric of interest depends on the system’s evaluation
and usage criteria. For example, for a streaming workload, a W1-
independent metric is likely desirable, and the metric of interest
is therefore E · T−1. Second, the Vmax-independent metric, E ·
T

2
α−1 , is a function of α. Its precise form therefore depends on the

voltage versus frequency characteristics of computing architectures
implemented in a given device and circuit technology. (E · T−1,
by contrast, is always the W1-independent metric, independent of
device properties.) Finally, jointly minimizing dynamic energy and
delay cannot be made independent of the degree of voltage scaling.

5. EMPIRICAL MEASUREMENTS
The preceding sections outlined a model for capturing the inter-

action between device properties (α, σ0, φ, Vmin, and Vmax), algo-
rithm properties (W1), implementation/architecture (Ceff), and the

system operating point (σ). Although empirical values of device-
level parameters were provided to support the argument, one ques-
tion remains: Do the performance, energy, and power models of
Equations 6, 7, and 8 truly reflect the behavior of complete inte-
grated circuits executing parallel algorithms? To address this ques-
tion, we carried out performance and power measurements of a par-
allel algorithm executing on a multi-core platform.

For the evaluation, we employed a cache-oblivious parallel matrix-
matrix multiplication (MMM) kernel. Parallel matrix-matrix mul-
tiplication was chosen as a benchmark as matrix-matrix multipli-
cation is a crucial subroutine in many compute-intensive scientific,
machine learning, and commercial data analytics workloads. The
kernel, which was written in the Cilk dynamic multithreading lan-
guage [11], was run over the Cilk 5.4.6 runtime, which we ported
to the ARM architecture to facilitate the experiments. For input
data, 4 M-entry product matrices were employed, populated with
uniformly distributed random data in the range of 0.0 to 1.0, to
maximize switching activity in the processor datapath.

5.1 Measuring α, φ, σ0, Vmin, and Vmax

For empirical measurements, we used an OMAP4430 dual-core
ARM Cortex-A9 system-on-chip (SoC) from Texas Instruments,
implemented in 45 nm CMOS. To facilitate our measurements, we
modified a hardware evaluation board containing the target SoC
to isolate the power supply rails for just the Cortex-A9 subsys-
tem (VCORE1 on the OMAP4430). This enabled us to measure
power dissipated in just the processor cores, separate from power
dissipated by other on-chip and board-level peripherals. For mea-
surements, we used a Fluke 289 Logging Multimeter, sampling the
voltage across a 40 mΩ resistor at 1 Hz, with 1µV resolution.

The SoC’s Cortex-A9 cores support execution at clock frequen-
cies of 300 MHz, 600 MHz, 800 MHz, and 1008 MHz. The SoC
contains a hardware subsystem (“SmartReflex”) which cooperates
with an external voltage regulator to set supply voltages, based on
the requested clock frequency. On the test hardware platform, we
measured core supply voltages at these aforementioned frequen-
cies, of 0.95 V, 1.11 V, 1.27 V, and 1.35 V.

Figure 2 plots the measured supply voltage at the processor core
(VCORE1 on the OMAP4430) across operating frequencies. Fit-
ting the measurements to Equation 2 yields values of the device
technology parameters φ = 2.6 × 109, α = 1.69, Vmin = 0.67,
Vmax = 1.35, and σ0 = 0.49.

5.2 Model, measurements, and observations
Figures 3, 4, and 5 show measurements of performance, total

energy, and average power of the MMM application, for single-
and dual-core configurations (i.e., p = 1 and p = 2). In the figures,
the points represent measurements, and the dashed lines are the
trends predicted by Equations 6, 7, and 8 for the model constants
estimated in Section 5.1.

From Figure 3, the performance of the MMM application scales
with increases in clock frequency, as well as with increases in the
number of parallel threads. Even though the clock frequency dou-
bles from 300 MHz to 600 MHz between the slowest two configu-
rations in both the single- and dual-core workloads, this doubling
of performance is accompanied by a smaller than two-fold increase
in power dissipation (Figure 5). The energy for task completion
is therefore reduced in going from 300 MHz to 600 MHz. As the
clock frequency is further increased from 600 MHz to 1008 MHz,
which requires operation at yet higher supply voltages, the rate of
increase in power dissipation with clock frequency is observably
higher for both the single and dual-core workloads (Figure 5). This
observed behavior is determined by the device technology parame-



➊

➊ ➊ ➊

➋
➋

➋
➋

500 1000 1500 2000
0.01

0.02

0.03

0.04

0.05

0.06

Cores ´ MHz HMHzL

E
ne

rg
y

Hk
JL

Core Energy, Cilk Strassen 2k´2k MMM; Data: Random@0.0, 1.0D

➊ : One core busy
➋ : Both cores busy

$ = 10.42 J

¯

Figure 4: Measured core-only energy (points) and fit to the
model of Equation 7 (dashed lines). The compared configura-
tions have approximately equal runtimes.

➊
➊

➊
➊

➋
➋

➋

➋

500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

Cores ´ MHz HMHzL

A
ve

ra
ge

P
ow

er
HW

L

Core Power, Cilk Strassen 2k´2k MMM; Data: Random@0.0, 1.0D

➊ : One core busy
➋ : Both cores busy

$ = 1.14 W



¯

Figure 5: Measured core-only power (points) and fit to the
model of Equation 8 (dashed lines). The compared points are
approximately iso-energy in Figure 4.

ters in the models of Equations 6, 7, and 8. In particular, the shape
of Figure 2 and the value of α determine the rate of increase of
clock frequency with increases in supply voltage (and hence in-
creases in power dissipation).

For low values of α, the optimum operating frequency (fmax)
does not increase significantly with increasing supply voltages. For
a device technology that leads to an inherently low α therefore,
it may be better to operate at lower voltages and low clock fre-
quencies, and to make up for the lost performance with parallelism.
However, as both the model and measurements show, the operating
point with the lowest supply voltage and frequency might not be
the most energy-efficient, due in part to the effects of leakage.

The models of Equations 7 and 8 enable a number of additional
insights. For the parameter values extracted in Section 5.1, the
model of Equation 7 predicts lower average power and lower to-
tal energy usage across all degrees of voltage scaling σ, if p = 2;
this is corroborated by the measurements in Figure 4. Similarly,
due to leakage, the model predicts a minimum in energy for both
the single-core and dual-core cases, near 600 MHz, which is again
validated by the measurements.

Even though the performance of the 300 MHz dual-core configu-
ration is only 2% lower than for a single core at 600 MHz (Figure 3)
its energy usage is 24% lower (Figure 4). This measured improve-
ment is within 12 percentage points of the improvement predicted
by Equations 6 and 7.

6. CONCLUSIONS AND INSIGHTS
This article presented a set of relations between the properties

of parallel algorithms, properties of the device technologies of the
architectures on which they execute, and the resultant performance,
power, and energy-efficiency. Using performance and power mea-
surements on a dual-core ARM Cortex-A9, we demonstrated that
the derived relations capture the behavior of real systems in today’s
semiconductor technologies.

When energy and delay are required to be jointly optimized,
the parameter-invariant energy-delay metrics introduced in Sec-
tion 4 specify the precise form of the appropriate joint energy-
delay metrics, as a function of device properties. The relations
presented linking algorithm and device properties, together with

the parameter-invariant energy-delay metrics, provide an analytic
basis for exploring the role of algorithm parallelism in the search
for an energy-efficient CMOS successor.
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