
Data layout for power efficient archival storage systems

Ramana Reddy
NetApp Inc.

ramanar@netapp.com

Atish Kathpal
NetApp Inc.

atish@netapp.com

Jayanta Basak
NetApp Inc.

basak@netapp.com

Randy Katz
University of California,

Berkeley
randy@cs.berkeley.edu

ABSTRACT
Legacy archival workloads have a typical write-once-read-
never pattern, which fits well for tape based archival sys-
tems. With the emergence of newer applications like Face-
book, Yahoo! Flickr, Apple iTunes, demand for a new class
of archives has risen, where archived data continues to get
accessed, albeit at lesser frequency and relaxed latency re-
quirements. We call these types of archival storage systems
as active archives. However, keeping archived data on always
spinning storage media to fulfill occasional read requests is
not practical due to significant power costs. Using spin-down
disks, having better latency characteristics as compared to
tapes, for active archives can save significant power. In this
paper, we present a two-tier architecture for active archives
comprising of online and offline disks, and provide an access-
aware intelligent data layout mechanism to bring power effi-
ciency. We validate the proposed mechanism with real-world
archival traces. Our results indicate that the proposed clus-
tering and optimized data layout algorithms save upto 78%
power over random placement.

1. INTRODUCTION
Archival storage tiers have consisted of tape-based devices

with large storage capacity, but limited I/O performance for
data retrieval. However, the growing capacity and shrink-
ing cost of disk-based devices means that disk-based sys-
tems are now a realistic option for enterprise archival storage
tiers. Energy consumption has become an important issue
in high-end data centers [11], and disk arrays are one of the
largest energy consumers within them. Archives are unique
in the low density of accesses they receive, often spending
significant portions of their time idle, where it may be ac-
ceptable to spin-down disk based storage for significantly
reduced power consumption. Furthermore, archives are of-
ten monotonically increasing in the amount of data stored,
and must store data for decades or longer, far exceeding the
typical 3-5 year hardware life-cycle.
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We consider the case of active archives where data is
still read frequently. For example, in Facebook photo-store
Haystack [3] stores millions of photos that are archived within
a few weeks of creation. The same is true for Yahoo! Flickr
and Apple iTunes. These older objects are transferred to
storage systems with lower storage overheads and cheaper
storage media. In such active archives, it is expensive to
power the entire storage stack. At the same time, if certain
disks are spun down then it may result in degraded per-
formance. It is therefore essential to understand the access
patterns of the objects and then spin down certain disks that
may not be accessed for a certain period of time. To do so,
the relatively active objects that are being accessed within
a short span of time should reside in the same disk (or set
of disks) so that the other disks in a storage shelf can be
spun down. In other words, the data layout across disks in
a storage system, should be such that data reads within the
same interval of time can be served by spinning up only a
small subset of disks.

We envision a two-tier archival storage system where the
writes are initially staged to a disk-cache consisting of al-
ways spinning media and later de-staged to the archival tier
consisting of disks with enhanced spin-up/spin-down capa-
bilities, hence forth referred to as archive disks. The disk
cache also serves read requests for recently written data un-
til the data is migrated to the archive tier with intelligent
data layout across archive disks. We design the data layout
on the archive disks considering it as an optimization task.
First we cluster the objects according to the access patterns
observed from the disk-cache and then place the clusters in
different disks in such a way that maximum power efficiency
is achieved. Our results indicate that the proposed opti-
mized data layout saves upto 78% over random placement.

The rest of the paper is organized as follows. Section 2
describes the related work and previous studies. Section 3
delineates our proposed architecture and optimization algo-
rithm. Section 4 provides the implementation and discusses
the efficiency of our proposed approach. Finally, section 5
gives concluding remarks and future work.

2. PRIOR ART
There is good literature with respect to bringing power

efficiencies in storage systems by leveraging disk spin down
capabilities. MAID [4] focuses on conserving disk energies
in high-performance systems. However, our work focuses on
bringing power efficiencies to archival storage systems where
the read latencies are relaxed. Pelican [2] proposes resource



management techniques for bringing efficiencies to cold data
workloads while our focus is on active archives, where data
is accessed more frequently. Pelican takes the approach of
re-ordering requests to minimize the impact of spin up la-
tency and also imposes hard constraints on number of disks
that can be spun up at the same time (8 %) in the sys-
tem. Our approach is to focus on performing data layout,
based on learning from prior access patterns, such that sub-
sequent read requests consume lesser power by co-locating
co-accessed data on same set of disks. We do not impose any
restrictions on the number of disks that can be spun up si-
multaneously. Pelican and Nakshatra [9] discuss IO schedul-
ing techniques that re-order read requests to club requests
accessing the same media together for better performance
and resource utilization. As part of future work, we can
leverage such ideas to better align incoming requests to our
data layout. This would be especially useful when data ac-
cess patterns considerably change over the life of the archive.
Greenan et al. [6] and Huang et al. [8] discuss that data re-
dundancy introduced for reliability reasons can be exploited
to save power. This is something we quantify through our
results where we in some cases, we observe that increasing
number of replicas reduces storage system power consump-
tion, as it allows for choosing the best replica to serve data.
Grawinkel et al. [5] discuss their analysis of traces from the
ECMWF archival storage system. Our work leverages their
insights and utilizes their traces to evaluate our solution.
Recently, there have also been articles suggesting relevance
of flash to archival storage and the trade-offs it presents be-
tween cost, power-savings and performance [7]. However,
this remains out-of-scope for our investigations.

3. ARCHITECTURE AND ALGORITHMS

3.1 Architecture Overview
We envision a two tier archival system (Fig. 1) consisting

of a) an initial online data staging storage sub-system to
ingest incoming data and serve reads on the newly written
data for the initial duration of time (say 30 days) and b)
a second storage sub-system, consisting of offline disks that
accepts batched writes (data transferred from the staging
area after 30 days) and serves the occasional read requests.

Figure 1: Architecture Overview

The staging area consists of always online disks and is
similar to a disk-cache in typical tape-based storage archive

deployments [5]. Any reads to the archived data during the
initial period are served directly from the staging area. It
is during this time that we log the read access patterns of
the newly archived data that are input to our data layout
algorithms when the data is to be eventually de-staged to
the spin-down archive disks based system. The data layout
engine clusters the newly archived files based on access pat-
terns and determines the placement of these clusters into
disks such that subsequent reads on the data consume much
lesser spin up time of disks as compared to say a random or
round-robin layout of data in the disks. Once the data has
been de-staged to the archive disks based system, we expect
the data to be immutable. Thus this final resting place for
the data serves only read requests and no updates.

3.2 Algorithm
The input to our algorithms is a file or object access trace,

consisting of time-stamp of data access, object-id and size
of the object. There are two steps in the overall procedure.
First we cluster the objects using the trace, and second we
place the clusters of objects in different containers (which
could physically be a single or a group of disks). Since the
number of objects can be very large, it is very difficult to
handle each individual object separately in the optimization
algorithm. Therefore, we need to cluster the objects.

3.2.1 Clustering of the Traces
It is possible to cluster the files or objects into differ-

ent clusters considering various features extracted from the
traces. The features can be file/object size, frequency of
accesses, directory information, namespace etc. It is not
practical to apply the standard clustering algorithms such
as k-means and hierarchical clustering, to cluster the objects
as the time complexity is very high. In achieving the power
efficiency, the files/objects should be clustered based on how
they are accessed together. The notion of distance in such
case, is not obvious (definitely the Euclidean distance is not
measurable on the access pattern), the distance depends on
the access patterns of the objects.

We perform clustering in the following way. Let us assume
that the objects accessed are in a sequence: abcaabdefcgha....
To maintain a one-to-one mapping of object to cluster, we
consider only the first occurrence of an object and ignore the
subsequent occurrences of it. The subsequent accesses of the
same object are taken into consideration by the optimization
algorithm described later. Thus, the new sequence becomes
abcdefgh.... We calculate the total size of all objects in the
new sequence and divide the total size with the number of
partitions we require. Each partition is treated as a cluster
and all clusters are approximately of equal size. We impose
a restriction on the size of the cluster (max size) - a cluster
should not grow very big causing other clusters to be very
small. Also we impose a restriction on the minimum num-
ber of clusters. Note that clustering is only a pre-processing
step, linear in the size of trace and takes approximately 19
seconds for a trace consisting of around 1 million records.

3.2.2 Data Layout
In this step, we model the computation of data layout

task as an optimization problem, to obtain a mapping of
clusters, identified in previous step, to disks. We refer to
the combination of these two steps as OPT in the paper.

• Consider e1 = spin-up time and e2 = spin-down time



of the disks.

• Let xcd: An indicator variable to represent cth cluster
belongs to dth container (disk); i.e, xcd ∈ {0, 1} where
xcd = 1 if the cth cluster belongs to dth container or
else xcd = 0.

• Let aic: An indicator variable to represent that cth

cluster is accessed at the ith time instance (as obtained
from the access pattern trace provided as input for this
optimization problem); aic ∈ {0, 1}

• Ti,d: time taken to perform ith operation on disk d (the
disk needs to remain spun up during the operation)

We define an objective function L,
∑

i,c,d,d′

[aicai+1,c′xcdxc′d′(Ti+1,d′ +(e1d′ +e2d)(1−δdd′))] (1)

where δdd′ =
1 if d == d’
0 otherwise.

The objective function denotes that the cth cluster is ac-
cessed at the ith time instance and c′th cluster is accessed
at the (i + 1)th time instance, in the input trace. The con-
tainer for the cth cluster is d and that for the c′th cluster
is d′. Therefore we have to spin-up d′ and spin-down d if d
and d′ are different. The objective function L thus repre-
sents the total spin-up time of all disks during the course of
the workload, the system is being subjected to.
The optimization is to minimize L subject to following

constraints
1. Rmin <=

∑
d
xcd <= Rmax where Rmin and Rmax are

the minimum and maximum number replicas we want per
cluster, respectively
2.

∑
c
xcdSc < Cd where Sc is the size of cth cluster and

Cd is the capacity of dth disk (to ensure we do not exceed
capacity of the disk)
3.

∑
c,d

xcd ≤ kN where N is the total number of clusters,

k is a constant (say k = 1.5) (to ensure we maintain k copies
of a cluster on an average)

It is possible to specify R as a range such that the opti-
mizer can decide what number of replicas is best for power
efficiency on a cluster by cluster basis. In our evaluations
we used a constant number of replicas per cluster rather
than specifying a range and an average. This is to demon-
strate that we can device constraints to arrive at a more
specific solution space. This is an integer programming task
that is approximated by quadratic programming with linear
constraints and a solution is obtained using integer approx-
imation (branch-and-bound).

4. PRELIMINARY EVALUATION

4.1 Prototype Description and Setup
We implemented a prototype to evaluate the clustering

and data layout algorithms. We leveraged the Python bind-
ings for SCIP optimization library [1] as the solver to specify
the variables, constraints and the objective function of our
formulation. The mapping of clusters to disks returned by
the solver, is then fed to a simulator which re-runs the trace
with the new data layout to measure power-savings. In or-
der to quantify the power-savings obtained we treat a naive,
random data layout approach as the baseline.

We describe our simulator as follows. In steady state,
some disks are spun-up and serving data while others re-
main in spun-down state. The mapping of object to disks is
known to the simulator based on either random placement
of objects/clusters or OPT based layout of data. Any in-
coming request for an object is mapped to a set of disks
containing a copy of the object. If the object belongs to an
already spun-up disk, it is immediately served and the to-
tal spun-up time for the disk is updated with time taken to
serve the object. If none of the required disks are in spun-
up state, we randomly select a disk (from disks containing a
copy of the object) to serve this object, while also accounting
for the 30 second spin-up time of the disk as latency of ac-
cess to the object. The simulator in the background ensures
that any disk that has been idle for more than 5 minutes,
is transitioned to spun-down state. The time to transition
the state is also accounted as spun-up time for the disk. On
the conclusion of the workload trace, the simulator reports
statistics such as, overall spin up time for every disk and the
latency to first byte of objects accessed as part of the trace.

We used a machine with an Intel(R) Core(TM) i5-3320M,
2.60GHz CPU and 8GB RAM running Ubuntu 12.04. We
conducted a wide variety of experiments and evaluated the
power consumption in the form of the total disk spin-up time
with a) clustering and b) OPT (clustering followed by opti-
mized layout) with respect to random placement of objects.

We evaluated the amount of power saving in terms of
disk spin-up times using the clustering approach with and
without the optimizer, compared against random placement.
When evaluating the clustering without optimization, each
cluster is placed into a disk selected randomly, while keep-
ing replicas of clusters on different disks. In the random-
placement approach, one copy of an object in the trace is
placed in a disk selected randomly. On the other hand when
evaluating OPT technique, we first cluster the objects and
then run optimization to obtain a power-optimized mapping
of clusters to disks rather than a random placement. All ap-
proaches take the size of disks and the number of replicas R
as input and calculate the total spin up time taken for the
entire trace.

4.2 Trace Description and Usage
For our evaluations we used a real world archival work-

load trace [5]. We controlled the number of clusters such
that each disk accommodates at least one cluster. We as-
sume disks of size 4TB in our experiments. We ran our OPT
data layout technique on traces worth one month, amount-
ing to total of 96TB of data, around 0.4 million objects and
around 1 million requests. The overall trace [5] itself consists
of approximately 70:30 percentage of write:read ratio which
is representative of archival workloads that tend to be write
once, read seldom. We observed that even over the course
of the 29 month trace, files ingested and/or accessed in the
first month, continued to get accessed in subsequent months,
as shown in Fig. 2, suggesting a good degree of repeatabil-
ity in the trace and a good fit for our use case of active
archives, where data continues to get re-accessed, although
at lesser frequencies. We observed (Fig. 3) that objects are
accessed frequently within relatively shorter spans and then
not accessed for longer durations. This typical character-
istic of the archival trace makes it a suitable candidate for
the use of spin-down media. The group of objects that are
accessed within shorter span can be placed into the same



disks. These disks can be spun down when the objects are
not being accessed.
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Figure 2: Frequency of objects that are common
with the objects in first month
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Figure 3: Inter arrival time of objects

4.3 Results
We place the archived objects into spin down disks by us-

ing access locality based clustering and our mathematical
formulation, together referred to as OPT. OPT decides the
mapping of archived objects to spin down disks, based on
access patterns seen during the first month (30 days) of the
trace. To evaluate this data layout, we execute the subse-
quent month’s traces, to measure what power efficiencies we
are able to obtain as compared to random placement of data
into the archive tier. We varied the number of clusters to
see if that has any effect on power savings we observe. Fig. 4
shows the power savings obtained by using OPT data place-
ment, as compared to random placement, while running the
trace from days 30 to 60 (i.e. the second month in the 29
months long trace). As seen from the figure, we observe
that OPT provides up to 78% of power savings. We also ob-
serve that power savings are sensitive to number of clusters,
in that, if the same data is partitioned into more clusters,
the power savings are seen to reduce. This is because more
number of smaller clusters implies the data gets spread to a
larger number of disks, which in turn implies that more disks
need to be powered on to access the same data set. Recall
that we keep a disk spinning for some time even after data
has been served, in anticipation of any further requests and
also to contain the number of spin down cycles for a disk. In
a nutshell, more granular partitioning of the trace (higher
number of clusters) does not lead to any further gains in the
power efficiency. The increase in number of replicas from 1
to 3 did not contribute to much impact on power savings

in our experiments. For a trace where there is lesser local-
ity of access, as compared to initial months, we expect to
see better gains with higher number of replicas. This is be-
cause higher number of replicas provides more flexibility to
the optimizer to detect the top three groupings of clusters as
against only the best grouping of clusters to be placed in the
same disk. This though comes at the cost of higher storage
overheads, but also provides better resiliency of data.

In Fig. 5, we contrast the power savings of using our clus-
tering approach alone, as compared to a combination of
clustering and our formulation (OPT), for R=2. Clearly,
OPT provides considerable improvement in power savings
as it is able to detect affinity across clusters w.r.t. power
savings. Collocating selective clusters based on OPT data
placement leads to additional 3-8% improvements in power
savings. The comparison of naive clustering with OPT is
something we intend to explore further going forward. Eval-
uating against more traces should yield better insights on
effectiveness of OPT over simple partitioning.

In Fig. 6, we compare power savings observed across dif-
ferent months, for R=2. (while the data placement remains
done, based on access patterns seen in first month). The
goal of this evaluation was to see if our approach continues
to give benefits during the lifetime of the archive. Clearly,
with our trace, we continue to obtain significant power sav-
ings during the course of the 29 month trace, even though
the placement was done based on first month. This shows
that the archive trace patterns do not change much over the
course of time.
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Figure 4: Power Savings w.r.t. Random Placement
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Figure 5: Clustering vs OPT performance

In addition to the power-savings as compared to random
placement, we also observed up to 62% lesser number of
spin-up/spin-down cycles when using the OPT approach.
This has dual advantages of a) consuming lesser disk power-
cycles is known to lead to longer disk shelf life [10] and b) this



implies that we can serve more data, per disk power-cycle,
hence leading to lower latencies when accessing objects as
compared to random placement of data. The running times
of the technique are reasonable (Fig. 7), considering the al-
gorithm gets triggered only when data is de-staged from the
online disk subsystem to the power-efficient storage system.
There is scope to further improve running times by leverag-
ing multiple cores and using multi-threading.
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Figure 6: Clustering vs OPT performance in differ-
ent months
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Figure 7: Time taken to load (in-memory) and solve
optimization problem, with single thread

5. CONCLUSIONS AND FUTURE WORK
We have presented a two-tier architecture for power-efficient

archival storage. We considered the active archives that
serve read requests regularly. We presented a mechanism
for data layout that looks into the past access patterns and
distributes the data into disks in such a way that total spin-
up time is minimized in the active archive. The preliminary
evaluation of our data layout techniques shows significant
power savings as compared to random layout in spin down
disks. In real active archives like Google, Facebook, Yahoo,
and Apple, millions of objects are uploaded within short
span of time. When the objects are uploaded, in our two-
tier architecture, the objects are written in the active tier
and later it is transferred to the active archival tier. The ob-
jects may be accessed within a very short span of time. Our
clustering algorithm groups the objects based on the access
pattern that transforms the access pattern to group access
pattern where a group will be accessed repeatedly within a
short span of time. Even if a few groups are intermingled,
it results into spinning only a few disks as a result. Going
forward we plan to perform a thorough analysis of typical
archival workload access patterns and how we can further

improve the power savings under a wide variety of work-
loads. We have not modeled an adaptive layout where new
data needs to be placed along side already existing data on
the disks and how the same impacts our results. We also
intend to evaluate our techniques in a real world archival
storage system.
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