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Abstract 

Learning from a few examples (one/few-shot learning) on the fly 

is a key challenge for on-device machine intelligence. We present 

the first chip-level demonstration of one-shot learning using a 2T-

2R resistive RAM (RRAM) non-volatile associative memory (AM) 

as the backend of memory-augmented neural networks (MANNs). 

The 64-kbit fully integrated RRAM-CMOS AM core (0.2 mm2 at 

40 nm node) enables long-term feature embedding and retrieval, 

demonstrated in a challenging 32-way one-shot learning task using 

Omniglot dataset. Using only one example per class for 32 unseen 

classes during on-chip learning, our AM chip achieves ~72% 

measured inference accuracy on Omniglot as the first chip accuracy 

report compared to software accuracy (~82%), while reaching 118 

GOPS/W for in-memory L1 distance computation and prediction.  

Introduction 

On-device machine intelligence requires continuous real-time 

learning of never-before-seen data/events. Memory-augmented 

neural networks (MANNs) [1] aim to address this demand by 

utilizing an explicit associative memory to augment the feature 

learning capabilities of neural networks (NNs) with scarce data. A 

MANN consists of a frontend neural feature extractor (such as a 

convolutional neural network) and a backend associative memory 

(AM). The backend AM is where learning occurs in the form of new 

feature embedding (Fig. 1), and where inference occurs as 

similarity-based retrieval. Here, we develop a native hardware 

realization for MANN’s backend using an RRAM-based non-

volatile associative memory that naturally enables long-term feature 

embedding and efficient feature retrieval. In our MANN system, the 

frontend NN is initially trained offline (meta-training), after which 

its weights are fixed and do not need to be updated [1]. During one-

shot learning, novel features (from unseen classes that are not 

included in NN meta-training) are mapped into the associative 

memory, using only one example per class. During inference, the 

associative memory performs similarity-based retrieval given query 

samples and makes predictions based on similarity.  

Fully Integrated RRAM-CMOS Associative Memory 

   Memory cell-level explorations towards new hardware 

architectures will not be able to answer key questions regarding real-

time chip behaviors for target applications [2]. Here, we present a 

64-kbit fully-integrated RRAM-CMOS associative memory (AM) 

chip as the backend of MANNs. The AM core occupies 0.2 mm2 at 

40 nm technology node [3]. Our chip supports the key one-shot 

learning and inference operations needed for a MANN through two 

modes: (1) feature vector embedding within AM; and (2) L1 

distance computation between query set (test images) and support 

set (embedded novel features) for similarity-based prediction. Fig. 

2 illustrates the overall chip architecture for the 64-kbit AM core. 

Feature embedding mode is enabled by operating the AM core as a 

typical 64-kbit random access memory. The 2T-2R memory cells 

encode data in a complementary fashion [4], i.e., high resistance 

state (HRS)-low resistance state (LRS) encodes bit ‘0’ while LRS-

HRS encodes bit ‘1’. As a result, 128 bits per feature vector can be 

stored along bitline (BL) direction. The AM core is partitioned into 

8 sub-AM banks that can be used independently.  Every set of 8 

rows shares a sense amplifier (SA), and partial L1 distance results 

captured by sensing circuitry are accumulated for similarity-based 

prediction. Fig. 3 shows the RRAM array bias schemes used in 

programming and sensing of vectors. With write-verify 

programming applied across full 64-kbit chip, array-level resistance 

distributions (50% cells programmed to HRS and 50% to LRS) are 

obtained and shown in Fig. 4. We choose to trade off HRS 

uniformity for larger memory window (HRS above 100 k) while 

keeping LRS in a tight distribution. This is relevant to the sensing 

circuitry during L1 distance computation. We implement the 

approximate search using two simple inverter-based sense 

amplifiers (SAs) with different Vth to support sensing 3 levels of 

voltage (Fig. 5). Within the context of similarity measurement using 

memory circuits, our chip achieves an energy consumption of 270 

pJ for searching among 32 128-bit vectors. Fig. 6 shows how this 

compares with other reported memory chips that only support exact 

search [6]-[10], using the same workload of 32-entry 128-bit 

approximate search supported natively by our AM core. Compact 

cell structure reduces total wire length and thus dynamic energy 

when multiple rows or columns are activated in parallel.  

One-Shot Learning Experiments on AM Chip 

We demonstrate one-shot learning and inference on a widely 

used Omniglot dataset [11], which consists of 1623 characters from 

50 alphabets, each drawn by 20 different persons. The learning task 

on Omniglot reflects human-learning scenarios with very few 

examples per class, and had never been demonstrated on hardware 

chips before. In our chip demonstrations, 32-way 1-shot learning is 

chosen as a much harder task than the commonly used 20-way or 

10-way tasks [1], [11]. Fig. 7 shows the flow of meta-training, one-

shot learning and inference. We implement the frontend 4-layer NN 

in software for feature extraction, which is pre-trained (meta-

training phase) with full precision and its weights are fixed. 

Extracted feature vectors are then quantized and mapped onto the 

AM subarrays as 4-bit thermometer codes. One 128-bit vector is 

embedded along one BL (256 RRAM cells), corresponding to one 

unique feature vector. For one-shot learning demonstration on chip, 

we pick 32 unseen classes (not present in frontend meta-training) 

from 212 classes. Only 1 image from each of the 32 classes is used 

for learning. Fig. 8 shows the complete map of learned feature 

vectors in the 64-kbit AM core, encoded by the 2T-2R RRAM 

resistance distributions. Running Omniglot inference tests, our chip 

achieves a measured ~72% accuracy (Fig. 9). Note that the 32-way, 

1-shot task is a more difficult task than the commonly reported 20-

way or 10-way learning on Omniglot on software [11]. We test the 

robustness of chip inferencing by continuously running >6 million 

examples (cycling 320 test images), and monitoring the prediction 

accuracies from chip measurements (Fig. 10). Fig. 11 shows the 

measured power-frequency scaling of the AM core. Taking in-

memory L1 distance computation and prediction as the basic 

operations, the chip reaches 118 GOPS/W energy efficiency. Fig. 

12 and Fig. 13 show the measurement setup and the chip micrograph. 

Finally, Table I summarizes the key characteristics of our chip. 
Conclusion 

We report a 64-kbit, 118 GOPS/W non-volatile associative 

memory chip that demonstrates on-chip one-shot learning with 

~72% measured hardware accuracy on the challenging 32-way 1-

shot learning task on Omniglot benchmark. This work, the first 

hardware chip demonstration of one-shot learning, leads towards 

future energy-efficient hardware learning machines with continuous, 

lifelong learning capabilities.  
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Fig. 1. Overview of our MANN system for one-shot learning. Front-
end NN is off-chip and only requires one-time offline training (meta-
training phase). Extracted features from unseen classes are embedded 
into the associative memory (one-shot learning phase), while 
additional query examples are used for retrieval/prediction of labels 
(inference phase).  

Fig. 2. 64-kbit RRAM-based non-volatile AM. Feature embedding and 
L1 distance computation enable one-shot learning and inference. 

Fig. 3. RRAM biasing scheme 

during programming and sensing. 

SET-RESET write-verify is used 

for programming. Sensing uses 

WLs to send in query data while 

BLs are driven by SA circuitry.  

Fig. 4.  Measured array-level 
low and high resistance (LRS, 
HRS) distributions from 64-kbit 
RRAMs. The overlaid dashed 
lines indicate the measured 
resistances from the same array 
after relaxation. 

Fig. 5. Sense amplifier (SA) 

circuit and sensing mechanism. 

V_bias and SA supply voltage are 

tuned for each operating freq. 

 
Fig. 6.  32-vector searching 
energy and bit cell area for 
various memory chips with 
searching capabilities, using the 
same 32-entry 128-bit 
approximate search workload. 

Fig. 7.  Flow of meta-training, one-shot learning and inference. Pre-
trained 4-layer CNN extracts feature vectors that are quantized and 
encoded into 4-bit thermometer codes. During one-shot learning, novel 
feature vectors (from support set) are embedded into all sub-AM 
banks. During inference, L1 distance computation is performed given 
query vectors for similarity-based prediction, while utilizing all the 
sub-AM banks for final voting (ensembling, off-chip). 

 
Fig. 8. 64-kbit data pattern 
(resistance distributions) after 32-
way, 1-shot learning on chip. 32 
novel features are broadcast to 8 
subarrays and programmed as 
vectors along the BLs, for a total 
of 256 feature vectors. 

 Fig. 9.  Measured inference 

accuracy across different chip 

frequencies tested for 32-way, 1-

shot learning task on the 

Omniglot benchmark. 

 

Fig. 10. Measured chip inference 

accuracy on a continuous stream of 

> 6 million images (cycling 320 

Omniglot test images), 

demonstrating chip robustness. 

 

 

 Fig. 11. Power-freq. scaling of 

the AM core up to 200 MHz.  

 

 

Fig. 12. Measurement setup. 

Fig. 13. Chip micrograph. 

 

Table I. Chip summary. 
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