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ABSTRACT
Deep neural network (DNN) inference tasks have become ubiq-
uitous workloads on mobile SoCs and demand energy-efficient
hardware accelerators. Mobile DNN accelerators are heavily area-
constrained, with only minimal on-chip SRAM, which results in
heavy use of inefficient off-chip DRAM. With diminishing returns
from conventional silicon technology scaling, emerging memory
technologies that offer better area density than SRAM can boost
accelerator efficiency by minimizing costly off-chip DRAM accesses.
This paper presents a detailed design space exploration (DSE) of
technology-system co-design for systolic-array accelerators. We
focus on practical/mature on-chip memory technologies, including
SRAM, eDRAM, MRAM, and 3D vertical RRAM (VRRAM). The DSE
employs state-of-the-art optimizations (e.g., model compression
and optimized buffer scheduling), and evaluates results on impor-
tant models including ResNet-50, MobileNet, and Faster-RCNN.
Compared to an SRAM/DRAM baseline, MRAM-based accelerators
show up to 4.68× energy benefits (57% area overhead), while a 3D
VRRAM-based design achieves 2.22× energy benefits (33% area
reduction).

1 INTRODUCTION
Deep neural network (DNN) inference has become ubiquitous in
mobile devices due to effectiveness of DNNs in applications that
incorporate computer vision tasks (e.g., image classification, object
detection, tracking, and segmentation). However, DNN inference
imposes a large compute and storage burden, which is challenging
to meet for low-power mobile SoCs. In response to this challenge,
silicon vendors and IP companies have developed domain-specific
hardware accelerators for DNN workloads [1–3], which offer im-
proved energy efficiency and throughput compared to general-
purpose mobile CPUs or GPUs.

These accelerators typically demonstrate improved throughput
and energy efficiency on matrix-vector and matrix-matrix products
which are heavily used in the convolutional and fully-connected
layers of DNNs. One of the key goals is to achieve a high compute
density, by focusing on a large datapath optimized only for the com-
putation patterns typically required for DNN inference. Systolic
MAC arrays [1] and more flexible variants thereof [4] achieve this
high compute density, with narrow 8-bit integer operands. How-
ever, in addition to achieving high compute density, it is crucial to
minimize data movement costs as well. Weight data can be vast,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317874

especially for a DNN model with a large number of layers, or with
several fully-connected (FC) layers. Similarly, activation data traffic
generated between layers can be heavy. In the case of convolutional
neural networks (CNNs), those data need to be repeatedly read for
each filter in a layer. Therefore, it is essential to optimize the usage
of on-chip memories in order to minimize access to off-chip DRAMs,
which is typically one or two orders of magnitude more expensive
in energy cost. In a systolic-array DNN accelerator design with
1-MB scratchpad SRAM, running ResNet-50 inference, we find that
off-chip DRAM energy can take 75% of the total system energy.

For accelerators in commercial mobile SoCs, silicon area is typi-
cally constrained to a few square millimeters or less. This means
that on-chip storage is limited and expensive off-chip DRAM access
is a dominant power consumer. Next-generation on-chip memory
technologies promise to improve density and energy efficiency,
allowing the traffic of off-chip DRAM access to be ameliorated.
Among on-chip memory solutions, emerging non-volatile memory
(NVM) technologies [5] have been widely explored in the con-
text of in-memory computing for neural networks. However, most
prior works to-date focused on mixed-signal (e.g., analog MAC
implementations) or neuromorphic (e.g., spiking neural networks)
designs. These techniques require further extensive characteriza-
tion and validation of their benefits prior to broad adoption. On
the other hand, large-scale deployment of DNNs on hardware for
domain-specific applications call for robust and easy-to-scale digital
architectures. Riding the industry’s momentum of advancing NVM
technologies for a variety of applications such as small-capacity
embedded memory for MCU and larger-capacity last-level cache, it
is highly desirable to take a deep dive into the evaluation of memory
technologies for digital DNN accelerator products.

In this work, we explore a variety of on-chip memory technol-
ogy solutions, including both volatile and non-volatile technology
fabrics, for area-constrained systolic-array DNN accelerators tar-
geting mobile vision applications. The contributions of this paper
are summarized below:

• We develop a design space exploration (DSE) flow to bench-
mark systolic-array DNN accelerators with incumbent and
emerging memories emphasizing practical technology char-
acteristics.

• The extensive DSE provides a detailed trade-off analysis
for practical mobile DNN accelerator designs, which leads
to an energy-area-efficiency landscape for various on-chip
memory technologies.

• We find that even with current performance gap between
NVM and state-of-the-art SRAM, efficient allocation of chip
area resources balancing dense NVM and low-power SRAM
provides overall energy-efficiency benefits.

https://doi.org/10.1145/3316781.3317874


Figure 1: Schematic of the evaluation methodology for systolic-
array DNN accelerators. Design space explorations for memory
technology benchmarking are performed with different DNN mod-
els and software/hardware optimization techniques (model com-
pression, static/dynamic SRAM allocation) evaluated.

2 BACKGROUND
2.1 DNN Accelerators
A wide variety of DNN accelerator designs for mobile vision appli-
cations have been published in recent years. Of these, most practical
digital accelerators can be categorized into a few basic schemes:
SIMD dot-product machines [6, 7], systolic arrays [1], and network-
on-chip (NoC) based spatial arrays [4]. In general terms, these
architectures all provide a large amount of low-precision MAC
datapath, in combination with on-chip buffering for weights and
activation data. The big difference between these is in the ordering
of the computations, and the way the data movement is orches-
trated. The latter is a real challenge with DNN acceleration because
the volume of data that must be processed can be very large.

Different DNN layers have fundamentally different compute and
storage requirements. Fully-connected (FC) layers are essentially
matrix-vector products; the vector is reused, while the matrix is
large and has no reuse. Multi-layer Perceptrons (MLPs) and the var-
ious forms of recurrent neural networks (RNNs) are built from FC
layers. Convolutional neural network (CNN) layers, on the other
hand, are processed as matrix-matrix products, with significant
reuse of both the weight and activation (feature map) matrices.
Hence, FC and CNN layers present very different challenges in
terms of data movement. Nonetheless, in both cases, and variants
thereof, the on-chip buffering plays a significant role in both perfor-
mance and energy efficiency. Increasing on-chip buffering allows
more weights and activations to be kept closer to computes, with-
out having to access off-chip DRAM main memory. For weight
data, on-chip memory allows for latency buffering in FC layers
with no reuse and enables reuse across feature maps in CNNs. For
activation data, on-chip memory allows feature maps to be buffered
on-chip without spilling to DRAM. To get the most out of con-
strained storage resources, efficient buffer scheduling and model
compression [8] are typically employed.

2.2 On-Chip Memory Technologies
In this section, we provide a brief discussion on various on-chip
memory technologies that are evaluated as the main-memory re-
placement in the remainder of this paper. These include SRAM,
spin-transfer-torque magnetic RAM (STT-MRAM), resistive RAM
(RRAM), and embedded DRAM (eDRAM). We discuss essential

technology characteristics and practical considerations, including
manufacturing availability and technology maturity.
SRAM has been the mainstream on-chip memory technology due
to its high-performance and logic compatibility. In fact, foundries
often announced high-yielding/low-leakage SRAM in leading con-
ferences as an indicator of technology readiness [9]. SRAMs are
assumed to have unlimited endurance (the measure of number of
acceptable writes cycles). However, SRAMs have low density and
high static power, limiting its on-die capacity .
MRAM is a non-volatile memory technology that uses electron
spin direction (up/down) to store a binary bit. MRAM offers in-
herently high speed, low energy, and highest endurance among
NVM technologies [5], being compatible with CMOS logic (both
logic voltage and fabrication processes) [10]. While several MRAM
technologies exist, STT-MRAM is the most mature MRAM tech-
nology currently. To the best of our knowledge, all major foundries
have plans to fabricate STT-MRAM and have MRAM roadmaps that
include promising MRAM technologies like SOT-MRAM (or SHE-
MRAM), VCMA-MRAM, and ME-MTJ MRAM. STT-MRAMs can
be designed to trade off retention (the measure of non-volatility)
with endurance or write energy. Working STT-MRAM in 28nm
with plans down to 22nm by mid-2019 with sub-5ns cycle have
been announced [11]. MRAM seems to be one of most promising
technologies for large on-chip memory requirements.
RRAM is another CMOS-compatible, low-power, non-volatilemem-
ory technology [5]. Scaling-down towards sub-10-nm nodes and
scaling-up in memory capacities (ranging from MByte to GByte)
have been demonstrated [12]. In addition to planar 1T1R structures
commonly used by various NVMs, RRAM can be fabricated in a
3D vertical architecture (3D VRRAM), similar to that of 3D vertical-
NAND (VNAND), providing ultra-high density and low bit cost [5].
A four-layer 3D VRRAM array integrated with silicon CMOS logic
has been demonstrated [13]. Endurance remains as a key factor to
be considered when architecting RRAM into digital systems.
eDRAM technology can broadly be categorized into trench-cap
(specialized process) based 1T1C eDRAM [14, 15] and the gate-cap
based (but logic compatible) gain-cell eDRAM (GC-eDRAM) [16].
eDRAMs have higher density compared to SRAM (3-4x for 1T1C
and 1.5-2x for GC-eDRAM). Both flavors require refresh operations
to preserve data integrity. The storage node’s capacitance for GC
eDRAMs is much smaller and they are highly susceptible to in-
creased leakage in scaled technology nodes. The most advanced
1T1C eDRAMs demonstration has been on 14nm CMOS technol-
ogy on SOI substrate. Since the trench capacitance fabrication is
more difficult to reliably manufacture on bulk CMOS technologies
(the technology of choice for high performance for most leading
foundries) compared to SOI technology, it is unlikely that 1T1C
eDRAM will be available as a design option for future scaled high-
performance designs.

2.3 Related Work
To date, there is a large body of work around DNN accelerator
architectures [2–4, 6, 8]. In this work, we build our DSE and analy-
sis on the well-known systolic array architecture [1], in order to
focus on the technology-system interaction. There is also a signifi-
cant research effort focused on mixed-signal arrays using analog
NVMs as MAC units for DNN acceleration [17, 18]. We focus on the
systolic-array digital architecture, which is a robust, easy-to-scale
architecture that can incorporate the digital NVM technologies in



Table 1: Summary of technology inputs and the explored design space.

PE SRAM MRAM 3D VRRAM eDRAM DRAM
Tech. node 14/16 nm 14/16 nm 28 nm 28 nm 28 nm 28 nm

Energy 0.3 pJ [1.1, 1.5] pJ Read: 4 pJ
Write: 14 pJ

Read: 16 pJ
Write: 48 pJ 19 pJ 120 pJ

Area 525 µm2 32502 µm2/32 KB 0.017 µm2/bit 0.004 µm2/bit 0.035 µm2/bit N/A

Design space {16 × 16, 24 × 24,
32 × 32}

Weight/IFMap/OFMap:
{32, 64, 128, 256, 1024} KB

MRAM-only
(no off-chip DRAM)

VRRAM-only
VRRAM + DRAM eDRAM-only LPDDR3

next-generation products. Finally, DSE for DNN accelerators has
been considered before [19, 20]. Based on FPGA platform, those
works are primarily throughput-oriented and do not involve de-
tailed evaluations of on-chip memory technologies, whereas our
DSE results probe into the energy-area efficiency tradeoffs for mo-
bile DNN accelerators. Additionally, we also add important features
for state-of-the-art model compression and buffer scheduling.

3 EVALUATION METHODOLOGY
It is of paramount importance to have a comprehensive understand-
ing of the vast design space, from software to hardware perspec-
tives, when evaluating and benchmarking memory technologies
for DNN accelerators. Thus, the underlying simulation infrastruc-
ture needs to be built to have multi-dimensional variables exposed.
These application-related and design-related parameters range from
DNN models, to hardware micro-architectures, down to technol-
ogy choices and characteristics. In this section, we introduce the
evaluation methodology for driving technology evaluations and
providing insights into accelerator design trade-offs.

3.1 System Simulation of DNN Accelerators
To capture the essential behaviors of systolic-array accelerators,
we build our simulation infrastructure on top of SCALE-Sim [21],
an open-source 1, cycle-accurate simulator for DNN accelerators.
The SCALE-Sim simulator specifically models the systolic-array
architecture, which consists of processing element (PE) arrays, on-
chip scratchpad SRAM, and off-chip DRAM memory. Different
mapping and data reuse strategies are supported for scheduling
compute/memory operations on the array, leading to a variety of
dataflows [4]. SCALE-Sim consumes DNN model definitions that
describe layer-wise topology hyperparameters. It then simulates the
feed-forward pass in the inference phase, producing cycle-accurate
traces that lead to compute utilization and memory read/write
statistics.

Figure 1 illustrates the overall structure of evaluations performed
in this work. Our DNN accelerator designs consist of a systolic array
(a 2-D mesh of PEs with local data movement), scratchpad SRAM
blocks for buffering filter weights, input feature maps (IFMap), out-
put featuremaps (OFMap), andmainmemory. Themainmemory de-
sign choice is explored as being either off-chip (e.g., DRAM), embed-
ded on-chip (e.g., NVM), or a hybrid configuration (DRAM/NVM).
We simulate state-of-the-art DNN models that represent domain-
specific workload characteristics (e.g., CNNs for computer vision
tasks). For image classification workloads, the models we evaluate
onDNN accelerators include ResNet-50, GoogLeNet, andMobileNet.
For object detection workloads, FasterRCNN and YOLO-tiny are

1www.github.com/ARM-software/SCALE-Sim

Figure 2: Baseline accelerator designs with off-chip DRAM running
ResNet-50. Two PE array sizes, (a) 16 × 16 and (b) 32 × 32, are shown
as examples. Pareto frontiers are extracted optimizing for energy
and area efficiency.

considered in the analysis. As these networks exhibit quite diverse
characteristics (depth, topologies, and layer-wise hyperparameters),
the analysis should generalize well, at least within the mobile vision
domain. We pick ResNet-50 as a workload of focus to drive most
design space explorations and inform technology-aware design
decisions, as it is the largest among the five models in terms of
memory resources required. Thus, if ResNet-50 can fit on chip, the
rest of the CNN models can be accelerated without incurring addi-
tional overhead. For the mapping and scheduling of all the CNN
models, output stationary (OS) dataflow is used, since it is gener-
ally more energy-efficient than other dataflows on systolic-array
architectures [21].

We also extend SCALE-Sim with some new features necessary
to accurately model the data movement in a state-of-the-art accel-
erator. First, we added data compression, which happens before
mapping a DNN model onto the accelerator hardware, and aims
to reduce weight load costs upfront, regardless of the underlying
hardware fabric. Different weight compression ratios are analyzed
(1x to 4x), similar to recent practical designs [22]. Second, as a hard-
ware design choice, scratchpad SRAM can be designed as dedicated
blocks for weights and feature maps, or as a unified SRAM with
run-time buffer allocation based on layer-wise characteristics.

3.2 Design Space Exploration Parameters
Technology characteristics along with micro-architecture parame-
ters are described in this section. For the DNN accelerator designs,
the underlying hardware components include PE, SRAM, on-chip
memory, and/or DRAM. Table 1 summarizes the energy consump-
tion and area costs for the compute and memory fabrics, as well as
the associated design space being explored. Optimizing for a widely-
adopted 8-bit precision for CNN inference, each PE consumes 0.3 pJ



Figure 3: Energy efficiency comparison of design-time (upper) and run-time (lower) SRAM allocation schemes on ResNet-50.

per cycle at 1 GHz and occupies 525 µm2, which are obtained from
an in-house place-and-routed design. Different systolic array size
is considered, ranging from 16× 16 to 32× 32, corresponding to dif-
ferent throughput targets and use cases. Industry-standard 16-nm
SRAM instances are generated from an SRAM compiler, which are
then used to construct small (32 KB) to large (1 MB) SRAM blocks
for buffering filter weights and feature maps. Taking both dynamic
and static energy into account, the size-sensitive energy consump-
tion per byte is obtained, and the 32502 µm2 area corresponds to
one 32-KB instance from the SRAM compiler.

Two promising NVM technologies are analyzed here (Section 2.
An MRAM design [23] features 4 pJ/byte for read access and 14
pJ/byte for write access, including peripherals. An effective bit
area density of 0.017 µm2/bit can be achieved. Without significant
endurance limitation, no off-chip DRAM is included in the MRAM-
based designs. Alternatively, 3D VRRAM provides another level
of vertical scaling to achieve ultra-high density, featuring a 0.004
µm2/bit area cost as a 4-layer main memory option [13]. Yet, read
and write energy per byte access today are higher than that of
MRAM designs. Without endurance optimization and resilience,
3D VRRAM may be used only for weight storage, and feature map
accesses are directed to the off-chip DRAM in a hybrid configura-
tion.

For the off-chip DRAM baseline designs, a key conservative
assumption is that the DRAM DIMM modules are “free” in terms
of chip area costs. In other words, the off-chip DRAM capacity
is shared with mobile applications, and thereby is not included
in the calculation of area costs. With an LPDDR3 interface, 120
pJ/byte is consumed by off-chip DRAM accesses [24]. Due to the the
predictable dataflows in the efficient systolic-array architecture, we
assume that the absolute latency of different memory technologies
are hidden during the overlapped data fetching to PEs.

4 EXPERIMENTAL RESULTS
4.1 Baseline Designs with Off-Chip DRAM
In this section, we present the experimental results based on the
technology-aware design space explorations of DNN accelerators

with off-chip and on-chip memories. We first establish baseline
designs with off-chip DRAM, by exploring design choices with vari-
able sizes of PE arrays and different weight/IFMap/OFMap SRAM
capacities, and then collect the total energy consumption and chip
area of the accelerator designs running ResNet-50. Figure 2 shows
the SRAM-dependency and PE-dependency trends, where we split
the designs into two groups depending on the PE array size (cor-
responding to different throughput targets). In general, a larger
PE array can better exploit data reuse within the systolic array to
utilize cheap computes over expensive memory accesses. We do
not explicitly explore very large PE arrays, but instead focus on a
throughput-determined PE array design (e.g., 24 × 24 array). The
scatter color-map corresponds to the total scratchpad SRAM capac-
ity: darker scatters are collected from large SRAM designs. It can
be observed that even though large SRAM designs tend to result
in lower overall energy consumption due to less traffic to off-chip
DRAM, there do exist “gaps” between multiple energy-efficiency
clusters. This phenomenon manifests the efficiency gap between
different SRAM block allocations among filter weights, IFMap, and
OFMap in various designs that share a similar amount of total
SRAM capacity, which is highly correlated with the nature of DNN
models being accelerated (in this case, ResNet-50). Additionally, the
search from 32 KB to 1 MB is relatively coarse-grained following
the SRAM design practices. By optimizing energy-area efficiency,
the extracted Pareto frontier provides solid baseline designs.

Extracting Pareto-optimal designs that already “distill” charac-
teristics of all layers in a CNN model can be abstracted as a way
of searching for globally efficient SRAM allocation during design
time. Another way of achieving such a goal, by exploiting the de-
terministic nature of feedforward passes in CNNs, is to let NN com-
piler determine layer-wise allocation strategies and have run-time
SRAM allocation. From a hardware implementation perspective,
three SRAM blocks are replaced by a unified SRAM, and address
mapping is performed specifically for weights, IFMap, and OFMap
during layer-wise acceleration of CNN models. To compare the
design-time and run-time SRAM allocation schemes, based on two
Pareto-optimal designs generated previously, we run simulations



Figure 4: Energy-area tradeoffs for accelerator designs with on-
chip MRAM and different weight compression rates.

to search layer-wise allocation strategies with the same total SRAM
capacity between two schemes. The granularity of run-time alloca-
tion is 32 KB in the unified SRAM. Obtaining layer-wise breakdown
for ResNet-50, Figure 3 shows the original energy consumption
using design-time allocation and the layer-wise energy savings
using run-time allocation. Early convolutional layers (e.g., layer
#6 and layer #9) benefit most when total SRAM capacity exceeds
1 MB. Compiler would tend to allocate more SRAM resources for
IFMap (> 800 KB) and only 32 KB SRAM for filter wights. In another
case with 672 KB total SRAM capacity, towards the final layers
of ResNet-50, >500 KB SRAM would be allocated to filter weights
in order to benefit from the “layer evolution” of ResNet-50 (ratio
between feature maps and weights). It is worth noting that the final
fully-connected layer does not see a noticeable difference between
design-time and run-time allocation schemes. Overall, a 8% overall
energy saving is obtained using run-time allocation. Since this work
is not focused on DNN accelerator compilers, we use design-time
allocation scheme (i.e., having weight SRAM, IFMap/OFMap SRAM)
for the following design space explorations and analysis.

4.2 Energy-Area Tradeoffs with MRAM
Embedding MRAM on-chip to eliminate off-chip DRAM accesses is
first analyzed, based on the evaluation methodology and the initial
baseline results introduced previously. The designs use 24 × 24
PE size for iso-throughput DSE. Both weights and activations are
handled by on-chip MRAM, including read and write accesses.

The direct cost of off-loading the model storage capability from
off-chip DRAM to on-chip NVM is the area overhead. With 8-bit
precision, ResNet-50 requires 25 MB memory resources assuming
sequential layer processing. Without hurting inference accuracy as
the quality of service metric, weight compression can be utilized
during the compilation phase. Leveraging the freedom of designing
embedded memories tailored for model compression techniques, in-
stead of sticking with large DIMM modules off-chip, area overhead
can be reduced. Meanwhile, the reduced weight traffic benefits both
off-chip DRAM designs and on-chip NVM designs. Figure 4 illus-
trates these two trends by analyzing the accelerator energy-area
tradeoffs, where all data points are extracted from Pareto fron-
tiers after full design space explorations for the respective memory
technologies. Comparing two Pareto-optimal designs, 3.2× energy
benefits (defined as the ratio between total energies of on-chip

Figure 5: Energy-area tradeoffs for endurance-aware architectures:
embedding 3D VRRAM with endurance resilience or using a hybrid
VRRAM/DRAM configuration.

NVM designs versus off-chip DRAM designs) and 57% area over-
head are obtained for MRAM designs incorporating 4× weight
compression, given that off-chip DRAM baselines also benefit from
reduced weight-traffic energy consumption. Owing to improved
weight compression rates during NN compilation, on-chip NVM de-
signs and off-chip DRAM designs see horizontal shifts and vertical
shifts, respectively, in the area-energy metric space.

4.3 Endurance-Aware 3D RRAM Architectures
3D VRRAM provides the vertical scaling opportunity with ultra-
high density for on-chip memories. Compared to MRAM, relative
increase in read and write energy accesses and the endurance con-
straints would lead to interesting energy-area tradeoffs in design
decisions, sometimes requiring us to re-architect the accelerator
memory hierarchy.

We first consider the 3D VRRAM design with endurance re-
silience techniques incorporated (e.g., wear leveling) [25], such that
activation data also go to on-chip NVM, eliminating off-chip DRAM
accesses. The designs use 24×24 PE size for iso-throughput DSE. As
indicated by Figure 5, vertical scaling (from planar NVM to multi-
layer, 3DNVM) plays an important role in effectively bringing down
the area cost. In fact, 1.83× energy benefits and 33% area reduction
are achieved simultaneously compared to a Pareto-optimal baseline
design, employing 4× weight compression for ResNet-50. This re-
sult implies that, even with a technology performance gap between
NVM and state-of-the-art SRAM, good allocation of chip area re-
sources can lead to a more efficient accelerator design balancing
dense NVM and low-power SRAM .

Aiming for endurance-aware designs that employ a wider range
of device stacks and designs without strong endurance resilience,
we consider a hybrid configuration with both DRAM and 3D VR-
RAM (hybrid-VRRAM). Filter weights utilize ultra-dense 3D VR-
RAM for read-only accesses, whereas IFM and OFM activation data
are directed to DRAM for read and write accesses. Minimum one-
time weight writes are scheduled for 3D VRRAM. In this scenario,
1.36× energy benefits can be obtained at nearly iso-area (only 3%
area overhead).



Table 2: Energy-area-efficiency landscape of on-chip memory solutions accelerating mobile vision applications.

Baseline: DRAM All-SRAM MRAM VRRAM Hybrid-VRRAM eDRAM

DNN models * RN MN FRN RN MN FRN RN MN FRN RN MN FRN RN MN FRN
Energy benefits 3.48× 5.33× 3.14× 3.19× 4.68× 2.89× 1.83× 2.22× 1.88× 1.36× 1.30× 1.38× 1.81× 2.19× 1.64×
Area overhead +733% + 57% −33%(savinдs) + 0.03% (nearly iso-area) + 172%

* RN: ResNet-50. MN: MobileNet. FRN: Faster-RCNN.

4.4 Energy-Area-Efficiency Landscape
In this section, we present energy-area-efficiency benefits for on-
chip memory solutions over off-chip DRAM baseline designs, lever-
aging the design space explorations and extracted designs of inter-
est. In addition to the NVM technology explorations (MRAM and
3D VRRAM), we analyze another two potential solutions: all-SRAM
designs and eDRAM-based designs. All-SRAM designs at 16-nm
node utilize low-energy read and write accesses, yet with large sizes
of SRAM the leakage energy becomes dominant. eDRAM-based
designs feature 20 pJ per access with 0.035 µm2/bit density [15].
Comparing Pareto-optimal designs generated from on-chipmemory
solutions and off-chip DRAM baselines, we summarize the key en-
ergy and area numbers in 2, for accelerating ResNet-50, MobileNet,
and Faster-RCNN. eDRAM-based designs may provide energy ben-
efits replacing off-chip DRAM, but still suffer from high area cost
(172%), while its future scaling remains challenging. While the all-
SRAM design are area-costly even with 16-nm technology, it offers
the highest energy benefits across various solutions for all three
state-of-the-art DNN models (3.14× to 5.33× energy benefits over
the off-chip DRAM baseline). The MRAM-based design shows a
comparable energy efficiency versus the all-SRAM design, even
though an MRAM cell consumes higher write/read energy. This is
mainly due to the trend that leakage energy becomes significant
in the scaled-up all-SRAM design, diminishing the energy bene-
fit of the advanced SRAM technology. The 57% area overhead in
the MRAM design is a 12× reduction over the all-SRAM design.
Without aggressive circuit optimization, the 3D VRRAM design pro-
vides a simultaneous reduction in both accelerator energy (1.83×
to 2.22×) and area (33% less). Furthermore, without endurance
resilience at the worst-case scenario, a hybrid VRRAM/DRAM con-
figuration where 3D VRRAM serves as dense weight storage still
provides energy benefits at near-iso-area. The key finding here is
that ultra-dense NVM technologies (e.g., 3D VRRAM) provide ample
opportunities optimizing accelerator area resource allocation.

5 CONCLUSION
In this paper, we perform technology-system design space explo-
rations that examine the efficacy of on-chip memory technologies
for practical DNN accelerator designs in the mobile vision domain.
State-of-the-art optimization techniques such as model compres-
sion and run-time buffer allocation are included by extending the
SCALE-Sim systolic-array simulator. We emphasize memory tech-
nologies that have practical high-volumemanufacturing and system
integration capabilities (SRAM, eDRAM, MRAM, RRAM). Energy
benefits (up to 4.68× with MRAM) and area reduction (up to 33%
savings with 3D VRRAM) can be attained over Pareto-optimal base-
line designs. Even with today’s performance gap between maturing
NVM and state-of-the-art SRAM, efficient allocation of chip area
resources balancing between dense NVM vs. low-power SRAM pro-
vides overall energy-efficiency benefits to mobile DNN accelerators.
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