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Abstract—Memory-centric computing with on-chip 

non-volatile memories provides unique opportunities for native 

and local information processing in an energy-efficient manner. 

Design and modeling methodology based on resistive random 

access memory (RRAM) is presented in this work. A hierarchical 

RRAM SPICE model having different levels of physics realism is 

described, where the incorporated stochasticity provides a more 

accurate representation of RRAM operations. Three in-memory 

operation schemes are developed and experimentally verified for 

reconfigurable in-memory logic, using RRAM built in 3D vertical 

structure (i.e., 3D RRAM). As a case study for RRAM-centric 

computing systems, we evaluate the use of 3D RRAMs for a 

language recognition system using the hyperdimensional (HD) 

computing model. Utilizing the inherent properties of 3D RRAM, 

we demonstrate, using fabricated 3D RRAM integrated with 

FinFET, the essential kernels for HD operations: multiplication, 

addition, and permutation (MAP). RRAM-centric HD systems 

exhibit strong resilience to hard errors induced by RRAM 

endurance failures, making a promising case for using various 

types of RRAM for memory-centric HD systems.  

 
Index Terms—Resistive random access memory (RRAM, 

ReRAM), memory-centric computing, processing-in-memory, 

hyperdimensional computing, SPICE model, Internet of Things 

(IoT). 

I. INTRODUCTION 

HE Internet of Things (IoT) aims at distributed sensing, 

processing, and exchange of data in a world that is more 

interconnected than ever. The rising demand for real-time 

processing capabilities at the IoT nodes poses new challenges 

for the semiconductor industry across multiple technology 

layers, from device and manufacturing to circuit and 

architecture [1]. Embedded memories in IoT nodes are 

important as they hold great potential of locally and natively 

processing these data to overcome the ‘memory wall’, which 

arises due to the off-chip traffic to pin-limited DRAMs in 

conventional systems [2]-[4]. Among various emerging 

non-volatile memory technologies that may help to address 
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these issues, 3D RRAM technology offers a high-capacity, 

high-bandwidth on-chip storage solution, as well as the 

capability towards fine-grained monolithic 3D integration with 

logic [5]-[7]. Additionally, memory subsystems can be 

designed in a smart way by equipping logic functionalities 

therein, leading towards memory-centric computing systems. 

Previous examples in such context include performing or 

accelerating certain computations within SRAM and TCAM 

[8]-[10], as well as various emerging non-volatile memories 

[11]-[17]. In this work, to facilitate the design and modeling of 

RRAM-centric computing systems, first an RRAM SPICE 

model having three hierarchical levels of physics realism is 

described. This hierarchical model is more compatible with 

circuit and system analysis compared with several RRAM 

physical models [18]-[20], and meanwhile still maintains 

different levels of depth of device physics such as sub-threshold 

stochastic switching, which makes it more accurate with better 

generalization than analytical models [21], [22]. Next, as an 

example of building blocks for RRAM-centric computing 

systems, three in-memory operation schemes are developed for 

flexible and reconfigurable in-memory logic operations within 

3D RRAM. The operation schemes are experimentally verified 

with electrical measurements on one transistor-four resistor 

(1T-4R) 3D RRAM devices. Finally, as a case study, we design 

and implement multiplication-addition-permutation (MAP) 

kernels using 1T-4R 3D RRAMs for hyperdimensional (HD) 

computing, a neural-inspired cognitive computation model 

capable of learning from few examples [23]-[25]. Taking the 

device variations and endurance limitations into account, 

system-level simulations are performed to evaluate an 

RRAM-based HD language recognition system, showing 

strong resilience to hard errors induced by RRAM endurance 

failures.  

The rest of the paper is organized as follows. In Section II, a 

brief overview of RRAM technologies is given, emphasizing 

the use of RRAM for memory-centric computing systems. 

Section III discusses the stochastic switching behaviors of 

RRAM and the corresponding SPICE model. Section IV 

introduces three in-memory operation schemes and 

experimental demonstrations of logic operations with 1T-4R  

3D RRAMs. Section V further presents the evaluation of a 

RRAM-centric HD language recognition system. Finally, we 

conclude the paper in Section VI. 
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II. OVERVIEW OF RRAM TECHNOLOGIES 

RRAM employs resistive switching phenomenon in 

metal-oxide materials to store information in a non-volatile 

manner [26], [27]. An RRAM cell consists of a top electrode 

(TE), a bottom electrode (BE), and a metal-oxide layer in 

between, forming a simple metal-insulator-metal (MIM) 

structure. Resistive switching can be induced by applying 

voltage across an RRAM cell. The applied electrical field 

drives the generation, motion, and recombination of oxygen 

vacancies (VO), which leads to the formation and rupture of 

conductive filaments (CFs) in the oxide layer. As illustrated in 

Fig. 1, the formation of CFs connects the top and bottom 

electrodes, and the two-terminal device changes from a high 

resistance state (HRS) to a low resistance state (LRS) once the 

applied voltage exceeds the threshold voltage for this specific 

write trial. This is referred to as the SET process and the 

threshold voltages are called the SET voltage (VSET), which 

typically follows a statistical distribution due to device 

variability. The rupture of CFs causes the RRAM to switch 

from LRS back to HRS once the applied voltage exceeds the 

threshold value for this write trial. This is referred to as the 

RESET process and the threshold voltages are called the 

RESET voltage (VRESET) following a statistical distribution. 

RRAM can be fabricated in the back-end-of-line (BEOL) 

interconnect wiring layers using CMOS-compatible materials 

[28], and further can be built into a high-density 3D structure 

using low BEOL-compatible fabrication temperatures [5], [6], 

enabling monolithic 3D ICs [7]. Promising characteristics have 

been reported on various types of RRAM, including 50-nA 

low-current AlOx RRAM [29], 300-ps fast-switching HfOx 

RRAM [30], 10 nm scaled RRAM cells [31], TaOx bilayer 

RRAM with 1012 endurance cycles [32], as well as 

Gb-level-capacity functional chip demonstrations [33], [34]. 

Recent advancements have also been reported regarding closer 

integration with state-of-the-art CMOS platform, monolithic 

3D chip demonstration, and reliability improvement at cell 

level and array level [35]-[38].  

These demonstrated characteristics along with inherent 

device properties enables unique logic designs and applications 

using RRAM. Various RRAM-based designs have been 

reported for material implication (IMP) logic [17], [39]-[42], 

sequential logic [43]-[45], and majority-inverter graphs [46]. 

For memory-centric computing systems, RRAM endurance 

might become the bottleneck if write operations are frequent on 

certain physical addresses. At the device level, several 

strategies for improving the endurance have been reported. 

RRAM devices dominated by interfacial switching physics 

have improved endurance characteristics, trading-off the 

retention time [47]. Use of a via-hole device structure can lead 

to two orders of magnitude improvement in endurance over 

conventional cross-point structure, due to confined CF paths 

[48]. A plasma-oxidized bilayer oxide structure exhibits 

endurance up to 1012 cycles [32]. From a circuit operation 

perspective, a large optimization space exists that includes the 

bias scheme, pulse amplitude, pulse width, rise/fall time, and 

pulse shape. For instance, it is reported that optimized 

SET/RESET pulses or shorter RESET pulse width is beneficial 

for HfOx-based and TaOx-based RRAM [49]. Furthermore, 

recovery scheme can be employed in the controller circuitry to 

recover failed bits [50]. Many endurance failures are not due to 

hard breakdown; therefore, a failure bit can be recovered by a 

one-shot DC sweep [49] or AC pulse operation [50]. Besides 

device-level and circuit-level strategies, it may be even more 

important to co-design the algorithms and the memory-centric 

computing systems that can mitigate the endurance limitation 

in the first place. We will elucidate on this point with a case 

study in Section V. 

III. SPICE MODEL OF RRAM WITH STOCHASTICITY 

Developing RRAM SPICE models that capture and 

generalize the key device characteristics is important for 

RRAM circuit design [18]. Moreover, in the context of 

designing RRAM-centric computing systems, having a 

hierarchy of model levels in terms of complexity and depth of 

RRAM device physics can be greatly beneficial for a variety of 

design objectives as well as reducing simulation time. Here, we 

extend our previous Verilog-A coded SPICE models [51], [52], 

and describe three model levels (Level 1, Level 2, and Level 3).  

Resistive switching characteristics of RRAM devices have a 

strong correlation with the CF evolution processes, where the 

electric field and Joule heating effects play critical roles. Based 

on this physical picture, our previous SPICE model captures the 

two-dimensional CF evolution process with tunneling gap 

distance (g) and CF radius (r) as the key variables, and uses a 

set of differential equations, dependent on the electrical field 

and temperature, to describe the evolution of g and r during 

SET/RESET operations [51]. The I-V characteristics are 

determined by the conduction mechanisms consisting of 

hopping current and metallic current, as described by: 

        2

0
/ 4 exp / g sinh /

hop T gap T
I I r g V V               (1) 

 2

0
/ 4

CF CF
I r V g g                            (2) 

where I0 is the hopping current density, and gT and VT are fitting 

parameters. The Level 1 model reproduces the core resistive 

switching behaviors during SET/RESET operations, as 

indicated by Fig. 2 that compares the measured and modeled 

DC I-V characteristics of TiN/HfOx/TiOx/Pt RRAM. The 

 

Fig. 1.  Illustration of conductive filament (CF) evolution process during SET 

and RESET operations of RRAM. g is the gap distance between the top 

electrode and the CF tip. r is the radius of the formed CF, modeling the lateral 

filament growth during SET operation. 
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variability of the gap distance, CF length, and CF radius due to 

the stochastic nature of the processes of 

formation/migration/dissolution of the CF results in a statistical 

distribution of HRS resistance (RHRS) and LRS resistance (RLRS) 

after the write operations [53]-[55]. To model such 

characteristics, randomness is added to the CF geometry during 

resistive switching process in the Level 2 model. The CF 

variables g and r are determined by: 

( / ( ))g dg dt g t dt                         (3) 

( / ( ))r dr dt r t dt                           (4) 

where ɢ(t) is a zero-mean Gaussian sequence with a root mean 

square of unity. ŭg and ŭr are amplitude fitting parameters. Fig. 

3(a) and Fig. 3(b) show the measured and modeled resistance 

distributions, respectively, obtained under various 

programming conditions. The compliance current (IC) used for 

SET impacts the CF lateral growth, leading to lower RLRS levels 

for larger compliance currents. The maximum voltage during 

RESET (Vstop) determines the final gap distance or the CF 

length, resulting in a higher RHRS for a larger maximum voltage. 

Such variations are reproduced using the Level 2 model, which 

dynamically captures two-dimensional CF evolution in a 

formulation that includes CF geometry variability. 

 For a SET operation of a filamentary RRAM device, when 

the applied voltage is lower than the nominal VSET threshold 

(median threshold voltage extracted from DC I-V curves), 

switching from HRS to LRS becomes a stochastic process, 

which can be characterized by a SET probability (PSET). Such 

sub-threshold stochastic behaviors of RRAM from cycle to 

cycle and from device to device are important for the circuit 

design in the low-voltage regime, where lowering voltage 

reduces both static/resistive (~t×V2/R) and dynamic (~CV2) 

energy consumption. They may also inspire unconventional 

applications of RRAM in certain cases such as randomness 

generator, which can be useful for various scenarios. We 

characterize the stochastic SET behaviors on HfOx RRAM [56] 

by applying 100 cycles of SET-read-RESET operations on a 

typical device and calculating a PSET value. In this way, a 

complete map of PSET is obtained as a function of applied pulse 

amplitude and pulse width, as shown in Fig. 4. It is observed 

that for certain PSET values obtained from an individual RRAM 

cell, the pulse amplitude and pulse width follows a nonlinear 

voltage-time relationship in the sub-threshold regime. This 

suggests that a large design and optimization space exists in the 

low-voltage regime. To capture the characteristics in a model 

(Level 3), we incorporate the cycle-to-cycle (C2C) and 

device-to-device (D2D) stochasticity into the VO activation 

energy (Ea) and the oxygen ion (O2-) hopping barrier (Eh). 

Previous experimental evidence has implied that C2C and D2D 

variations are mathematically equivalent [54]. Therefore, such 

add-on stochasticity for the key energy barriers for 

cycle-to-cycle operations is also valid for variations across 

different devices. On top of Level 1 and Level 2, Level 3 can be 

described by a Monte Carlo approach in SPICE: 

Ὣ ᷿ὨὫȾὨὸὉȟὉ Ὠὸ 

Ὁ ὲ Ὁ Ὁ‏

Ὁ ὲ Ὁ Ὁ‏

                       (5) 

where Ea is associated with the SET process and Eh is 

associated with the RESET process. Since the condition of the 

filamentary switching region varies from cycle to cycle, the 

energy barriers are effective values that change from cycle to 

cycle, instead of fixed ones. Ea and Eh are sampled from normal 

distributions during the Monte Carlo simulations of CF 

evolution. To reproduce stochastic SET behaviors, C2C and 

D2D measurements are performed on RRAM devices using 

three pulse conditions selected from Fig. 4 that result in 50% 

PSET, while the stochasticity of Ea is turned on in the Level 3 

model. Using the stochasticity incorporated into the energy 

barriers, the Monte Carlo simulations using Level 3 model are 

able to reproduce the experimental observations under different 

pulse conditions, as indicated in Fig. 5. Although the three 

pulse conditions are chosen to achieve 50% PSET, there exists 

 

Fig. 2.  Measured and modeled DC I-V characteristics of HfOx/TiOx RRAM 

using Level 1 model.  
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Fig. 3.  Measured (a) and modeled (b) four-level resistance distributions of 

RRAM using Level 2 model. IC is compliance current controlling different RLRS 

levels, while Vstop is the maximum voltage during RESET controlling RHRS 

levels. 
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Fig. 4.  Measured SET probability (PSET) map as a function of applied pulse 

amplitude and pulse width on a typical device. Pulse rise/fall times are 10% of 

pulse width. 
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D2D variations of PSET values collected from different RRAM 

devices. As exhibited by both experimental and modeling data, 

shorter pulses produce tighter distributions of PSET centering 

around 50% across multiple RRAM devices. The PSET values 

measured from multiple devices (D2D measurements) show 

relatively tight distributions as compared to C2C variability; 

C2C variability is large under weak programming conditions. 

This hierarchical RRAM SPICE model with a more accurate 

representation of resistive device properties can facilitate 

RRAM circuit designs that may capitalize on the inherent 

RRAM physics. 

IV. LOGIC OPERATIONS WITHIN 3D RRAM 

 In this section, we describe the design principles and 

experimental demonstrations of in-memory logic operations 

with 1T-4R 3D vertical RRAM. Compared with previous 

studies [17], [39]-[46], our design methodology features the 

following aspects: 

(1) 3D RRAM device/circuit structure provides 

cost-effective, high-density data storage/manipulation 

capabilities over conventional 2D RRAM structures; 

(2) Three in-memory operation schemes are provided 

addressing different computation needs: half-VDD scheme, 

VDD/GND scheme, and 3D-LUT scheme; 

(3) operations are non-volatile, cascadable, and free from 

destructive read; 

(4) reconfigurable LUTs are formed in 3D memories during 

computation to help mitigate endurance limitations.  

A. Three In-Memory Operation Schemes  

Fig. 6 shows the schematic of a 3D vertical RRAM array 

with select transistors, where RRAM cells are located between 

vertical pillar electrodes and horizontal plane electrodes and 

can be individually randomly accessed by addressing the 

corresponding word line (WL), bit line (BL), and select line 

(SL). Three in-memory operation schemes for implementing 

logic functions are developed for the 3D vertical RRAM. The 

four-layer HfOx 3D RRAM/FinFET devices reported in [56] 

are used for early-stage experimental verification. Logic 

variables are initialized and stored in 3D RRAM in the 

non-volatile fashion, where HRS corresponds to bit ‘0’ and 

LRS corresponds to bit ‘1’. Executing Boolean logic functions 

is essentially a mapping from inputs to an output. To achieve 

the initialization and mapping operations, three operation 

schemes are designed, as illustrated in Fig. 7 for a 2-input logic 

function. In the 4-layer 3D RRAM structure, A and B store logic 

inputs, and C and D are logic outputs. The input values (A and B) 

are loaded in via conventional SET/RESET operations on 

RRAM cells [57]. 

In the half-VDD scheme, the integrated transistor is turned on 

and biased in the linear region. Meanwhile, a pair of VDD and 

VDD/2 biases are applied on the WL plane electrodes of two 

RRAM cells, e.g., A and C, which share the same vertical pillar 

electrode. The output cell C is initialized to ‘1’ via a SET 

operation. As shown in Fig. 7(a), the biased RRAM cells and 

the linear-region transistor together form a voltage dividing 

structure. As a result, the voltage across cell C (VC) is 

dependent on the logic input or the resistance state of cell A. If 

bit ‘1’ is written into A, voltage on the pillar electrode (VP) will 

be pulled up due to the voltage dividing with the linear-region 

transistor. Since VC = VDD – VP, it leaves insufficient voltage for 

a write operation on C. In contrast, if bit ‘0’ is written into A, VP 

will be pulled down as the high resistance of A will ‘cut off’ the 

current path from VDD/2. Thus, when A is a “1”, a sufficient 

voltage is generated across C to change the logic state. 

Additionally, a variant of half-VDD scheme can be used, as 

shown in Fig. 7(b). In this case, VDD is applied to the drain of 

the transistor, VDD/2 is applied to A, and C is grounded. In this 

variant, the INV function and IMP logic can be realized more 

efficiently. It is worth noting that C can also serve as an input 

either for a 3-input logic function, or for another cascading 

function that takes the C output as the new input. 

 In the VDD/GND scheme, a different bias condition is 

employed on the same structure, with the same purpose of 

triggering the logic mapping from inputs to an output. As 

shown in Fig. 7(c), the select transistor is turned off, and a pair 

of VDD and GND are applied to the WL plane electrodes of two 

RRAM cells, e.g., B and D. The two biased RRAM cells form 

an in-series structure due to the common vertical pillar. This 

operation mode with two RRAM cells in series is different from 

the complementary switches [43], as it does not suffer from the 

destructive read issue that complementary switches have. In 

this scheme, all the logic outputs such as D are initialized to ‘0’ 

 

Fig. 5.  Measured and modeled PSET values obtained from multiple RRAM 

devices under stochastic SET mode, using three different pulse conditions 

extracted from Fig. 5. Each symbol represents one series of C2C measurements 

to obtain a PSET value. Level 3 model well reproduces the stochastic behaviors. 

30 40 50 60 70

0.5

2

10

30

50

70

90

98

99.5

1 s

0.79 V

500 ns, 0.86 V

 

 

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y
 (

%
)

SET Probability (%)

100 ns

0.92 V

Symbol: exp.

Line: Level 3

 

Fig. 6.  Schematic of a 3D vertical RRAM array with select transistors for 

in-memory computing. 
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first. If B = 0, the voltage division between two RRAM cells 

alone will not SET or RESET either of the RRAM cells. 

However, if B = 1, most of VDD will be dropped on the pillar 

electrode of cell D due to voltage division. In this way, a SET 

operation is performed on D, triggering the logic state transition 

from ‘0’ to ‘1’. Timing diagrams of half-VDD and VDD/GND 

schemes are shown in Fig. 8. For the half-VDD scheme (Fig. 8(a) 

and Fig. 8(b)), different input cell states result in different pillar 

voltage (VP), and thereby different voltage across the output 

RRAM cell (VRRAM). Similarly, for the VDD/GND scheme (Fig. 

8(c) and Fig. 8(d)), it is shown that VRRAM has dependency on 

the input cell state in this common-pillar vertical structure.  

In the 3D-LUT scheme, RRAM cells along the 3D vertical 

pillars are programmed to represent various logic input/output 

data. Therefore, for the mostly-read logic activities, logic inputs 

are decoded, and the corresponding transistor is turned on to 

select the correct vertical pillar, where the logic outputs are 

already stored in upper layers. Read voltage (VREAD) is applied 

to the WLs for logic evaluation, which aligns with the readout 

operations. As illustrated in Fig. 7(d), in this 3D-LUT structure, 

a certain logic function block with different input/output 

combinations is pre-programmed on multiple vertical pillars, 

which share the same BL. Meanwhile, other logic function 

blocks share the other BLs. The 3D-LUT scheme minimizes the 

write cycles on RRAM cells, which can greatly alleviate the 

endurance requirement. 

B. Experimental Demonstrations 

To verify the in-memory operation schemes and demonstrate 

logic primitives, electrical measurements are conducted on 

1T-4R 3D RRAMs, using Keithley 4200 semiconductor 

characterization system with pulse measurement units. Fig. 9 

shows the measured waveforms during the execution of AND 

logic. There are 3 cycles in total. A and B are the logic inputs 

 

Fig. 7.  Illustration of three in-memory operation schemes on the 3D vertical RRAM structure, where logic inputs (A, B) and outputs (C, D) are initialized and stored 

in RRAM cells. (a) In the half-VDD scheme, a pair of VDD and VDD/2 biases are applied to two target RRAM cells (e.g., A, C), and the select transistor is biased in the 

linear region. Plane electrodes of the rest two RRAM cells (B, D) are floating. (b) A variant of half-VDD scheme with a different bias design. (c) In the VDD/GND 

scheme, a pair of GND and VDD biases are applied to two target RRAM cells (e.g., B, D), while the select transistor is turned off. Plane electrodes of the rest two 

RRAM cells (A, D) are floating. (d) In the 3D-LUT scheme, multiple vertical pillars store different input and output combinations after programming with the first 

two schemes. Subsequent logic inputs are decoded to turn on a transistor selecting the correct vertical pillar, where the logic outputs are stored in upper layers and 

are ready for readout.  
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Fig. 8.  Timing diagrams of (a) (b) half-VDD scheme and (c) (d) VDD/GND 

scheme from SPICE simulations. Input state is ‘1’ for (a) (c), and is ‘0’ for (b) 

(d). VP is the voltage on the vertical pillar. VRRAM is the resulting voltage across 

the output RRAM cell.  
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Fig. 9.  Experimental demonstration of AND logic (C = AB) with 1T-4R 3D 

RRAMs, where two cycles of half-VDD scheme are employed after the 

initialization cycle (3 cycles in total). The readout states of RRAM cells 

including intermediate states indicate the correct implementation of C = AB.  
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and C is the logic output (initialized to ‘1’ by forming or SET 

operation during the initialization cycle). Cell D is not used in 

this case. Then, two cycles of half-VDD scheme are applied on 

the 1T-4R structure, addressing three RRAM devices. VDD/2 

pulses are applied on cell A and B during the two cycles, 

respectively, while the VDD pulses are applied only on cell C. 

The pulse width is set to be 200 ns. These two cycles of pulses 

trigger the switching of C from ‘1’ to ‘0’, as indicated by the 

measured readout current, and thereby programmed the output 

C to yield an AND operation. Logic inputs and outputs are 

memorized in the non-volatile manner. A & B can be set to 

other input combinations, yet the AND operation is always 

ensured through two cycles of half-VDD scheme. Half-VDD 

scheme is suitable for AND-rich computations. As mentioned 

before, a variant of the half-VDD scheme can be used for 

INV-rich computations, where the drain of the transistor is 

biased with VDD, the input cell is biased with VDD/2, and the 

output cell is grounded. Such scheme is similar to the 

IMP-based INV operation [17], [39]. Fig. 10 shows the 

measured waveforms during the execution of OR logic. There 

are 3 write cycles in total.  A = 0 & B = 1 are initialized as the 

inputs and C is initialized to ‘0’ during the initialization cycle. 

Here, the VDD/GND scheme is employed for two cycles on the 

1T-4R 3D RRAM. The measured readout after the two-cycle 

operation indicate that a correct OR operation is performed, 

where C = A + B after being switched from ‘0’ to ‘1’. VDD/GND 

scheme is convenient for OR-rich computations for a complex 

Boolean expression. Here we show that the developed 

in-memory operation schemes are available for both AND-rich 

and OR-rich logic. 

The 3D-LUT scheme is designed to hold the logic data in a 

non-volatile manner for mostly-read use cases. Thus, it is 

important to scrutinize the reliability. Here, the reliability of the 

3D-LUT scheme is examined by performing logic evaluations 

and measuring bit error rates (BER) on 3D RRAMs. 

Specifically, in the worst-case scenario, there can be 

unintentional resistive switching from HRS (‘0’) to LRS (‘1’) 

during read operations, and error bits can be induced in logic 

outputs by such disturb events. Long-term electrical 

measurements are performed for 3D-LUT evaluations and 

obtain the BER statistics. Fig. 11 shows the measured and 

modeled data of output BER, as a function of evaluation 

voltage and operating temperature. The 3D-LUT scheme is 

read-dominant, and therefore is immune to switching-induced 

variations. The results also indicate that the 3D-LUT scheme is 

robust over a wide range of operating voltages and 

temperatures. Furthermore, a linear reduction of LUT 

 

Fig. 11.  Measured and modeled bit error rates (BER) as a function of 

evaluation voltage and operating temperature in the 3D-LUT scheme. 

Long-term testing is performed on 3D RRAMs that store logic outputs. Error 

bits are induced by undesired disturb on these RRAM cells during LUT 

evaluation.  
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Fig. 10. Experimental demonstration of OR logic (C = A + B) with 1T-4R 3D 

RRAMs, where two cycles of VDD/GND scheme are employed after the 

initialization cycle (3 cycles in total). The readout states of RRAM cells 

including intermediate states indicate the correct implementation of C = A + B. 
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DESIGN CHOICES OF DIFFERENT OPERATION SCHEMES 
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Fig. 12.  Experimental demonstration of reconfigurable in-memory computing 

enabled by integrating all the three operation schemes. Resistance (logic) states 

of A to D in 1T-4R 3D RRAMs are measured during the computing. For the 

computing cycles in each of the gray regions, a new function is performed (as 

indicated by Boolean expressions) using half-VDD scheme and VDD/GND 

scheme. C/D are initialized and A/B are intentionally set to different input 

combinations. For the rest of computing cycles, 3D-LUT scheme is employed 

for logic evaluations. Eight different functions with various input combinations 

are implemented and measured correctly. 

D=AB

10

0

1

C=AB

01 10

C=AB

D=AB

0

1

00

D=AB

C=B

D=A+B

C=A

11 11

0 10 20 30 40

1M

100k

10k

 

R
e

s
is

ta
n

c
e

 (


)

Computing Cycle (#)

  B

  A

1M

100k

10k

 

 

 

  D

  C

0 10 20 30 40

1M

100k

10k

 

R
e
s

is
ta

n
c
e
 (


)

Computing Cycle (#)

  B

  A

1M

100k

10k

 

 

 

  D

  C

0 10 20 30 40

1M

100k

10k

 

R
e
s

is
ta

n
c
e

 (


)
Computing Cycle (#)

  in. B (L2)

  in. A (L1)

1M

100k

10k

 

 

 

 out. D (L4)

 out. C (L3)



 

evaluation voltage decreases the output BER exponentially, 

which is well reproduced by the RRAM SPICE model. This is 

because the disturb error bits originate from the nonlinear 

accumulation effect of CF growth. Such nonlinearity is 

manifest in the experimental data presented in Fig. 4 as well. 

When the LUT evaluation voltage is set to be 0.1 V (typical 

voltage for RRAM read operations), the projected BER at 

150°C is below 10-15.  

Table I summarizes the design choices of different operation 

schemes discussed above for different cases, as a guideline for 

breaking down and scheduling the computation tasks for 

memory-centric systems. The green boxes in Table I means that 

the operation scheme is inherently more suitable or efficient for 

certain type of logic. For example, OR-rich logic can be 

straightforward by employing VDD/GND scheme. Both 

half-VDD scheme and VDD/GND scheme (or combination of 

them) support cascading logic for multiple stages, which is 

enabled by operating on additional RRAM cells along the 

vertical pillar. After programming 3D RRAM pillars in an array 

fashion, 3D-LUT scheme leads to fast and efficient logic 

evaluations. It does not directly support cascading logic on the 

fly as the stored LUTs are static. However, the contents of the 

LUT can be easily reconfigured with new programming cycles. 

Here, reconfigurable logic is demonstrated for the use of all 

three operation schemes in the same structure, as shown in Fig. 

12. Logic states of A to D in 1T-4R 3D RRAMs are monitored 

during the computation. The computing cycle marked by the 

gray background in Fig. 12 performs a specific logic operation 

with certain logic inputs using half-VDD scheme and also the 

VDD/GND scheme. For example, the first XOR/XNOR 

functions are implemented with a combination of AND, OR, 

IMP, and INV on the 1T-4R 3D structures. After programming, 

3D-LUT scheme is employed for the mostly-read logic 

evaluations, which is verified by the readout resistance values 

of multiple cycles. The programmed LUTs can also be 

reconfigured for new logic functions with new input data, using 

a combination of the three operation schemes. Note that the 

operation schemes that involve resistive switching processes 

should be aware of the intrinsic variability of RRAM such as 

resistance and switching voltage variations. It is therefore 

desirable that device stack engineering and material 

optimization can improve device uniformity. However, it is 

also worth noting that the demonstrated logic operations on 3D 

RRAM are more “digital like”, and a reasonable ON/OFF 

resistance ratio (e.g., 50~100) can help to yield relatively 

reliable outputs. In the next section, we will also discuss the 

interaction between new computation models/algorithms and 

system design, where the RRAM-centric systems can be 

resilient to even hard memory errors (endurance failure).  

V. HYPERDIMENSIONAL COMPUTING: A CASE STUDY 

If the key computation primitives can be identified, novel 

computation models and algorithms can be efficiently mapped 

onto RRAM-centric computing systems. As a case study, we 

evaluate the use of 3D RRAM-centric architecture for 

hyperdimensional (HD) computing, a neural-inspired 

computation model that represents and processes information 

in high dimensionality [23]. Instead of computing with 

numbers, HD computing represents and processes data with 

high-dimensional (e.g., kilo-bit length) vectors, inspired by the 

remarkable correspondence of mathematical properties of 

high-dimensional space to human’s perception, memory, and 

cognition [23]. Regardless of specific applications (e.g., 

language recognition, scene understanding) and algorithms 

(e.g., random indexing), HD computing requires three key 

operations on HD vectors: multiplication, addition, and 

permutation (MAP). From a hardware perspective, these vector 

operations are all memory-intensive. Therefore, it is desirable 

to perform these computation kernels for MAP operations 

native within the memory array without moving the data in and 

out of the memory array. Here we demonstrate the use of 3D 

RRAM to implement the MAP kernels and compare the design 

of an HD language recognition system with conventional 

CMOS logic using system-level and circuit-level simulations.  

A. RRAM-Based MAP Kernels  

 The MAP kernels can be efficiently constructed for a 3D 

RRAM using the three in-memory operation schemes described 

 

Fig. 13.  RRAM-based multiplication kernel is implemented with 3D-LUT 

scheme. Measured data up to 1012 cycles indicate the correct and robust XOR 

evaluations of different input/output combinations. Gray lines in each subplot 

represent 10 independent programming events of 3D LUTs and the colored line 

is the median thereof.  
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Fig. 14.  Measured in-memory addition (accumulation) results on 4-layer 3D 

RRAMs up to 1011 read cycles.    
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earlier. The HD vector operations are then performed directly 

in the 3D memory. The multiplication between two HD vectors 

consisting of binary bits is essentially a bit-wise XOR [24], 

yielding a new binary HD vector with the same dimensionality 

or vector length. Using the half-VDD scheme and the VDD/GND 

scheme described in Section IV, XOR logic can be 

programmed in the 3D RRAM. The 3D-LUT scheme is 

employed afterwards for read operations, as shown in Fig. 12. 

Measurements of XOR evaluations on different vertical pillars 

last for 1012 cycles and are repeated, showing the correct and 

reliable functionality. The addition operation in HD computing 

is bit summation or accumulation. It is naturally enabled by the 

3D configuration of the 3D RRAM array, via current summing 

along the shared vertical pillars of 3D RRAMs. Fig. 14 shows 

the measured addition outputs up to 1011 recurrent cycles for 

various 4-bit vectors, which are written into 1T-4R 3D 

RRAMs. As long as a reasonable memory window (e.g., 

RHRS/RLRS > 10) is maintained, distinct levels of correct outputs 

can be obtained from the addition kernel. The third operation, 

i.e., permutation, is shifting or shuffling of bits, and can be 

implemented through in-memory bit transfer following the 

VDD/GND scheme. As illustrated in Fig. 15, cell A is initialized 

to ‘1’ via a SET operation and the rest of three cells are 

initialized to ‘0’ via RESET operations. Then, the VDD/GND 

scheme applied to a pair of RRAM locations and triggers the 

direct data copy from one cell to another without extra readout 

or write-back operations. The measured resistance state 

evolutions of RRAM cells illustrate the processes of moving bit 

‘1’ and bit ‘0’ up (Fig. 15 (a)) and down (Fig. 15 (b)) in the 3D 

vertical structure. Moreover, arbitrary in-memory bit transfer is 

supported as well using the VDD/GND scheme. Fig. 16 shows 

the measured resistance state evolution of 4-layer 3D RRAM 

for the transfer of bit ‘1’ (Fig. 16(a)) and bit ‘0’ (Fig. 16(b)) in 

two arbitrary orders.   

B. System-Level Evaluations 

To evaluate in-memory HD computing systems with 

RRAM-based MAP kernels, a language recognition application 

(recognizing/identifying a given sentence as one of the 21 

European languages) is chosen and system-level evaluations 

are performed based on the developed RRAM model and 

simulation tools. Fig. 17(a) illustrates the algorithm pipeline 

and Fig. 17(b) shows how the algorithm stages are 

implemented in multiple blocks in a 36-layer 3D array. Results 

are obtained from simulations with device-level experimental 

data and compact models incorporated. Details of the algorithm 

pipeline can be found in [24], where a digital CMOS 

implementation was reported. For training, 21 sample texts are 

taken from Wortschatz Corpora [58]. The procedure starts with 

taking input letters sampled from a sample text and encoding 

them into HD vectors (vector length = 1 kbit). The random 

distribution of ‘1’s and ‘0’s in HD vectors is achieved by 

utilizing the stochastic SET properties of RRAM, as 

characterized and modeled in Section III. RRAM cells are 

 

Fig. 15.  Permutation is implemented via in-memory bit transfer using the 

VDD/GND scheme. (a) Measured resistance evolution of RRAM cells moving 

‘1’ up from A to D vertically. (b) Measured resistance evolution of RRAM cells 

moving ‘0’ down from D to A. After each cycle of transfer, the state of the 

‘source’ cell is switched intentionally for better illustrating the transfer path. 

1

2

3

4

B

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

0

0

0

1

1

2

3

4

B

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

0

0

1

0

1

2

3

4

B
4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

0

1

0

0

1

2

3

4

B

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

1

0

0

0

A

B

D

C

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

4.000E+05

5.030E+05

6.325E+05

7.953E+05

1.000E+06

 
 

 

 

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

A

B

D

C

1 2 3 4

B

4
.0

0
0

E
+

0
5

5
.0

3
0

E
+

0
5

6
.3

2
5

E
+

0
5

7
.9

5
3

E
+

0
5

1
.0

0
0

E
+

0
6

Measured HRS

(400kɋ-1Mɋ)

Measured LRS 

(~10kɋ)

1 2 3 4

B

4
.0

0
0

E
+

0
5

5
.0

3
0

E
+

0
5

6
.3

2
5

E
+

0
5

7
.9

5
3

E
+

0
5

1
.0

0
0

E
+

0
6

1

B
i
t
 
ó
1
ô
 
u
p

B
i
t
 
ó
0
ô
 
d
o
w
n

 
 

 

 (a)

(b)

0

 

Fig. 16.  Arbitrary in-memory bit transfer of (a) ‘1’ and (b) ‘0’ using the 

VDD/GND scheme. Color maps represent the measured resistance states of the 

4-layer 3D RRAM. 
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Fig. 17.  (a) Algorithm pipeline for HD language recognition. (b) Schematic of 

a 36-layer 3D RRAM array, where different stages in the algorithm are 

implemented in certain layers based on simulations with device-level 

experimental data and compact models incorporated.  
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programmed to achieve ~50% PSET with 4% D2D variations, 

which results in a balanced but random ‘1’/‘0’ distribution in a 

HD vector.  With a sliding window of 3 letters (trigrams), the 

HD vectors are then multiplied (XORed), permuted, and added 

to generate trigram vectors. A single 1-kb-length language 

vector is produced after addition of all trigram vectors from a 

single sample text. The language vectors generated from 26 

sample texts are stored in 6 layers (ñLangMapò) of a 3D 

RRAM array (Fig. 17(b)). For inference, 21,000 unseen 

sentences (1,000 sentences/language) are taken from Europarl 

Parallel Corpus [59]. The encoded test vectors go through the 

same pipeline yielding test vectors for the test sentences. To 

identify an unseen sentence to a language, Hamming distances 

between learned language vectors and the test vector are 

measured through XOR and addition operations, and the 

language vector with the smallest Hamming distance points to 

the identified language. Simulations are performed to evaluate 

the system recognition accuracy while considering the 

constraint of RRAM endurance as write operations on RRAM 

cells are involved. Hard stuck-at errors are assumed when 

endurance failures (stuck at ‘1’ or stuck at ‘0’) occur on RRAM 

cells during the entire simulation. As shown in Fig. 18, under 

various levels of RRAM endurance constraints from 107 cycles 

down to 103 cycles, the HD system is resilient to hard errors and 

the simulated recognition accuracy is maintained. This error 

resilience originates from the properties of the HD computation 

model. HD representation is holographic, which means the 

encoded or learned information is equally distributed among all 

the bits in an HD vector. Thus, certain amount of error bits can 

be tolerant. To compare with conventional CMOS design, the 

3D RRAM design with peripheral circuits is benchmarked with 

a digital CMOS design [24], using the same 28-nm PDK. 

Owing to the compact implementation of MAP kernels and the 

3D architecture, greater than 400× area savings and 2× lower 

energy consumption are obtained using the RRAM-centric 

design, with 3% drop in recognition accuracy [25].   

A variety of essential computation kernels can be further 

explored with 3D RRAM technologies. For instance, the 

addition kernel in this work can be regarded as a special case of 

dot product. Utilizing the efficient current summing in 3D 

RRAM, a dot product kernel can be built for a class of machine 

learning algorithms. With parallelism, it can be extended to a 

matrix-vector multiplication kernel.    

VI. CONCLUSION 

This work presents a design and modeling example of an 

RRAM-centric computing system, covering various design 

aspects including device compact modeling, novel 3D 

architecture and operation schemes, experimental 

demonstration of key computational kernels, and 

algorithm-hardware co-design. The RRAM SPICE model with 

three hierarchical levels of physics realism can facilitate 

energy-efficient RRAM circuit design with a more accurate 

representation of RRAM behaviors. In-memory logic 

operations with 3D RRAMs are experimentally demonstrated; 

they have the benefit of having a set of flexible write and read 

schemes that fully utilizes inherent 3D RRAM properties. 

Furthermore, co-designing RRAM-centric computing systems 

with HD computing model is explored. Results suggest that 

RRAM-centric cognitive systems are resilient to hard errors 

induced by endurance failures, making various types of RRAM 

feasible for memory-centric HD computing systems.  

ACKNOWLEDGEMENT 

The authors would like to thank Dr. Kai-Shin Li, Dr. 

Chang-Hsien Lin, Dr. Juo-Luen Hsu, Dr. Wen-Cheng Chiu, Dr. 

Min-Cheng Chen, Dr. Tsung-Ta Wu, Dr. Jia-Min Shieh, and Dr. 

Wen-Kuan Yeh from National Nano Device Laboratories, 

Taiwan, for device fabrication. The authors also appreciate Dr. 

Abbas Rahimi, Mr. Miles Rusch, Dr. Pentti Kanerva, and Prof. 

Jan Rabaey from UC Berkeley for the help with system 

simulations and fruitful discussions. 

REFERENCES 

[1] Atzori, Luigi, A. Iera, and G. Morabito, "The internet of things: A 

survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010. 

[2] M. M. S. Aly et al., “Energy-efficient abundant-data computing: the 

N3XT 1,000 x.,” IEEE Computer, vol. 48, no. 12, pp. 24–33, Dec. 2015.  

[3] H.-S. P. Wong and S. Salahuddin, “Memory leads the way to better 

computing,” Nature Nanotech., vol. 10, no. 3, pp. 191–194, March 2015. 

[4] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, Y. Solihin, “Scaling the 

bandwidth wall: challenges in and avenues for CMP scaling,” ACM 

SIGARCH Computer Architecture News, vol. 37, no. 3, pp. 371-382, June 

2009. 

[5] I. G. Baek, C. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, 

S. H. Song, E. M. Kim, S. O. Park, C. H. Park et al., “Realization of 

vertical resistive memory (VRRAM) using cost effective 3D process,” 

IEEE International Electron Devices Meeting (IEDM), 2011, pp. 

737-740. 

[6] H.-Y. Chen, S. Yu, B. Gao, P. Huang, J. Kang, and H.-S. Philip Wong, 

“HfOx based vertical RRAM for cost-effective 3D cross-point architecture 

without cell selector,” in IEEE International Electron Devices Meeting 

(IEDM), 2012, pp. 497–500. 

[7] M. M. Shulaker, T. F Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, H.-S. P. 

Wong, and S. Mitra, “Monolithic 3D integration of logic and memory: 

Carbon nanotube FETs, resistive RAM, and silicon FETs,” IEEE 

International Electron Devices Meeting (IEDM), 2014, pp. 1-4. 

[8] S. Jeloka, N.B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm 

configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell 

enabling logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51, 

no. 4, pp. 1009-1021, April 2016. 

[9] J. Zhang, Z. Wang, and N. Verma. "A machine-learning classifier 

implemented in a standard 6T SRAM array," IEEE Symp. VLSI Circuits 

(VLSI-Circuits), 2016, pp. 1-2. 

 

Fig. 18.  Simulated recognition accuracy of the HD language recognition 

system as a function of RRAM endurance and HD vector length. 

10M 1M 100k 10k 1k 100 10

20

40

60

80

100

 

 

R
e

c
o

g
n

it
io

n
 A

c
c

u
ra

c
y

 (
%

)

RRAM Endurance Constraint

HD vector length

 10 kb

 8 kb

 6 kb

 4 kb

 2 kb



 

[10] M. Kang, M. S., Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An 

energy-efficient VLSI architecture for pattern recognition via deep 

embedding of computation in SRAM,” IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 8326-8330. 

[11] X. Guo, E. Ipek, and T. Soyata. "Resistive computation: avoiding the 

power wall with low-leakage, STT-MRAM based computing," ACM 

SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 371-382, June 

2010. 

[12] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices and 

a uniform methodology for their benchmarking,” Proc. IEEE, vol. 101, no. 

12, pp. 2498–2533, Dec. 2013. 

[13] W. Zhao, D. Ravelosona, J. Klein, and C. Chappert, “Domain wall shift 

register-based reconfigurable logic,” IEEE Trans. Magn., vol. 47, no. 10, 

pp. 2966–2969, Oct. 2011. 

[14] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, “Proposal for an 

all-spin logic device with built-in memory,” Nature Nanotechnol., vol. 5, 

pp. 266–270, Feb. 2010. 

[15] M. Cassinerio, N. Ciocchini, and D. Ielmini, “Logic computation in phase 

change materials by threshold and memory switching,” Adv. Mater., vol. 

25, no. 41, pp. 5975–5980, 2013. 

[16] T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono “Atomic switch: 

atom/ion movement controlled devices for beyond von-Neumann 

computers,” Adv. Mater., vol. 24, no. 2, pp. 252–267, Jan. 2012. 

[17] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. 

Williams, “‘Memristive’ switches enable ‘stateful’ logic operations via 

material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010. 

[18] S. Yu, X. Guan, and H.-S. P. Wong, “On the switching parameter 

variation of metal oxide RRAM—Part II: Model corroboration and device 

design strategy,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1183–

1188, Apr. 2012 

[19] D. Ielmini, “Modeling the universal set/reset characteristics of bipolar 

RRAM by field-and temperature-driven filament growth,” IEEE Trans. 

Electron Devices, vol. 58, no. 12, pp. 4309-4317, Dec. 2011. 

[20] R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y. Chen, D. 

Wouters, P. Roussel, G. Kar, G. Pourtois, S. Cosemans, et al., “Dynamic 

‘hour glass’ model for SET and RESET in HfO2 RRAM,” Symp. VLSI 

Tech., 2012, pp. 75-76. 

[21] P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen, and W. Lu, “Device 

and SPICE modeling of RRAM devices,” Nanoscale, vol. 3, no. 9, pp. 

3833–3840, 2011. 

[22] S. Ambrogio, S. Balatti, D. Gilmer, D. Ielmini, “Analytical modeling of 

oxide-based bipolar resistive memories and complementary resistive 

switches,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2378-2386, 

July 2014. 

[23] P. Kanerva, “Hyperdimensional computing: An introduction to 

computing in distributed representation with high-dimensional random 

vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139-159, June 2009. 

[24] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient 

classifier using brain-inspired hyperdimensional computing,” 

International Symp. Low Power Electronics and Design (ISLPED), 2016, 

pp. 64-69. 

[25] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. 

M. Sabry, S. B. Eryilmaz, J. Sohn, W.-C. Chiu, M.-C. Chen, T.-T. Wu, 

J.-M. Shieh, W.-K. Yeh, J. M. Rabaey, S. Mitra, and H.-S. P. Wong, 

“Hyperdimensional computing with 3D VRRAM in-memory kernels: 

device-architecture co-design for energy-efficient, error-resilient 

language recognition,” IEEE International Electron Devices Meeting 

(IEDM), 2016, pp. 16-1. 

[26] R. Waser et al., “Redox-based resistive switching memories-nanoionic 

mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, no. 25-26, 

pp. 2632-2663, July 2009. 

[27] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P. Chen, B. Lee, 

F.-T. Chen, and M.-J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100, 

no. 6, pp. 1951-1970, June 2012. 

[28] W. Shen, C. Mei, Y. Chih, S. Sheu, M. Tsai, Y. King, C. Lin, et al., 

“High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic 

process,” IEEE International Electron Devices Meeting (IEDM), 2012, pp. 

31-36. 

[29] W. Kim, S. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H.-S. P. Wong, and 

S. S. Wong, “Forming-free nitrogen-doped AlOx RRAM with sub-μA 

programming current,” Symp. VLSI Tech., 2011, pp. 1-2. 

[30] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. 

Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin et al., “Evidence and 

solution of over-RESET problem for HfOx based resistive memory with 

sub-ns switching speed and high endurance,” IEEE International Electron 

Devices Meeting (IEDM), 2010, pp. 1-4. 

[31] B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. 

Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, et al., “10×10 nm2 

Hf/HfOx crossbar resistive RAM with excellent performance, reliability 

and low-energy operation,”, IEEE International Electron Devices 

Meeting (IEDM), 2011, pp. 729-732. 

[32] M.-J. Lee, C. Lee, D. Lee, S. Lee, M. Chang, J. Hur, Y. Kim, C. Kim, D. 

Seo, S. Seo, U. Chung, et al., “A fast, high-endurance and scalable 

non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x 

bilayer structures,” Nature Mater., vol. 10, pp. 625–630, Aug. 2011. 

[33] A. Kawahara et al., “An 8Mb multi-layered cross-point ReRAM macro 

with 443MB/s write throughput,” in IEEE ISSCC Tech. Dig. Papers, Feb. 

2012, pp. 432-434. 

[34] T.-Y. Liu et al., “A 130.7 mm2 2-layer 32 Gb ReRAM memory device in 

24 nm technology,” in IEEE ISSCC Tech. Dig. Papers, Feb. 2013, pp. 

210–211. 

[35] H. Pan, K. Huang, S. Chen, P. Peng, Z. Yang, C. Kuo, Y. Chih, Y. King, 

and C. Lin, “1Kbit FINFET dielectric (FIND) RRAM in pure 16nm 

FinFET CMOS logic process,” IEEE International Electron Devices 

Meeting (IEDM), 2015, pp. 10-5. 

[36] B. Govoreanu, L. Di Piazza, J. Ma, T. Conard, A. Vanleenhove, A. 

Belmonte, D. Radisic, M. Popovici, A. Velea, A. Redolfi, O. Richard, et 

al., “Advanced a-VMCO resistive switching memory through inner 

interface engineering with wide (> 102) on/off window, tunable μA-range 

switching current and excellent variability,” Symp. VLSI Tech., 2016, pp. 

1-2. 

[37] F. Hsueh, C. Shen, J. Shieh, K. Li, H. Chen, W. Huang, H. Wang, C. Yang, 

T. Hsieh, C. Lin, B. Chen, et al., “First fully functionalized monolithic 

3D+ IoT chip with 0.5 V light-electricity power management, 6.8 GHz 

wireless-communication VCO, and 4-layer vertical ReRAM,” IEEE 

International Electron Devices Meeting (IEDM), 2016, pp. 2-3. 

[38] C. Ho, T.Y. Shen, P.Y. Hsu, S.C. Chang, S.Y. Wen, M.H. Lin, P.K. Wang, 

S.C. Liao, C.S. Chou, K.M. Peng, C.M. Wu, et al., “Random soft error 

suppression by stoichiometric engineering: CMOS compatible and 

reliable 1Mb HfO2-ReRAM with 2 extra masks for embedded IoT 

systems,” Symp. VLSI Tech., 2016, pp. 1-2. 

[39] G. C. Adam, B. D. Hoskins, M. Prezioso, D. B. Strukov, “Optimized 

stateful material implication logic for three-dimensional data 

manipulation,” Nano Research, vol.9, no. 12, pp. 3914-3923, Dec. 2016.  

[40] P. Huang, J. Kang, Y. D. Zhao, S. Chen, R. Han, Z. Zhou, Z. Chen, W. Ma, 

M. Li, L. Liu, and X. Liu, “Reconfigurable nonvolatile logic operations in 

resistance switching crossbar array for large-scale circuits,” Adv. Mater., 

Sep. 2016. 

[41] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, 

A. Kolodny, and U. C. Weiser, “MAGIC—Memristor-Aided Logic,” 

IEEE Trans. Circuits Syst. II: Express Briefs, vol. 61, no. 11, pp. 895-899, 

Nov. 2014. 

[42] M. F. Chang, S. M. Yang, C. C. Guo, T. C. Yang, C. J. Yeh, T. F. Chen, L. 

Y. Huang, S. S. Sheu, P. L. Tseng, Y. S. Chen, 

“Set-triggered-parallel-reset memristor logic for high-density 

heterogeneous-integration friendly normally off applications,” IEEE 

Trans. Circuits Syst. II: Express Briefs, vol.62, no. 1, pp. 80-84, Jan. 2015. 

[43] H. Manem, J. Rajendran, and G. S. Rose, “Stochastic gradient descent 

inspired training technique for a CMOS/nano memristive trainable 

threshold gate array,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 

59, no. 5, pp. 1051–1060, May 2012. 

[44] E. Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, and R. Waser, 

“Beyond von Neumann—logic operations in passive crossbar arrays 

alongside memory operations,” Nanotechnology, vol. 23, no. 30, pp. 

305205, Jul. 2012. 

[45] S. Balatti, S. Ambrogio, and D. Ielmini, “Normally-off logic based on 

resistive switches—part I: logic gates,” IEEE Trans. Electron Devices, 

vol. 62, no. 6, pp. 1831-1838, May 2015. 

[46] S. Shirinzadeh, M. Soeken, P. E. Gaillardon, and R. Drechsler, “Fast logic 

synthesis for RRAM-based in-memory computing using majority-inverter 

graphs,” Design, Automation & Test in Europe Conference & Exhibition 

(DATE), 2016, pp. 948-953. 

[47] C. W. Hsu, I. T. Wang, C. L. Lo, M. C. Chiang, W. Y. Jang, C. H. Lin, T. 

H. Hou, “Self-rectifying bipolar TaOx/TiO2 RRAM with superior 

endurance over 1012 cycles for 3D high-density storage-class memory,” 

IEEE Symp. VLSI Tech., 2013, pp. 166-167. 

[48] Y. Wu, H. Yi, Z. Zhang, Z. Jiang, J. Sohn, S. Wong, and H.-S. P. Wong, 

“First demonstration of RRAM patterned by block copolymer 



 

self-assembly,”. EEE International Electron Devices Meeting (IEDM), 

2013, pp. 20.8. 

[49] Y.-Y. Chen et al., “Balancing SET/RESET pulse for > 1010 endurance in 

HfO2/Hf 1T1R bipolar RRAM,” IEEE Trans. Electron Devices, vol. 59, 

no. 12, pp. 3243-3249, Dec. 2012. 

[50] P. Huang, B. Chen, Y. Wang, F. Zhang, L. Shen, R. Liu, L. Zeng, G. Du, 

X. Zhang, B. Gao, J. Kang and X. Liu, "Analytic model of endurance 

degradation and its practical applications for operation scheme 

optimization in metal oxide based RRAM," IEEE International Electron 

Devices Meeting (IEDM), 2013, pp. 22.5. 

[51] H. Li, Z. Jiang, P. Huang, Y. Wu, H.-Y. Chen, B. Gao, X. Liu, J. Kang, 

and H.-S. P. Wong, “Variation-aware, reliability-emphasized design and 

optimization of RRAM using SPICE model,” Design, Automation & Test 

in Europe Conference & Exhibition (DATE), 2015, pp. 1425-1430. 

[52] Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, and H.-S. P. Wong, 

“A compact model for metal–oxide resistive random access memory with 

experiment verification,” IEEE Trans. Electron Devices, vol. 63, no. 5, pp. 

1884-1892, May 2016. 

[53] X. Guan, S. Yu, and H.-S. P. Wong, “On the switching parameter 

variation of metal-oxide RRAM—Part I: physical modeling and 

simulation methodology,” IEEE Trans. Electron Devices, vol. 59, no. 4, 

pp. 1172-1182, April 2012. 

[54] A. Fantini, L. Goux, R. Degraeve, D. Wouters, N. Raghavan, G. Kar, A. 

Belmonte, Y. Y. Chen, B. Govoreanu, and M. Jurczak, “Intrinsic 

switching variability in HfO2 RRAM,” in Proc. 5th IEEE IMW, 2013, pp. 

30–33. 

[55] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and D. 

Ielmini, “Statistical fluctuations in HfOx resistive-switching memory: Part 

I-Set/Reset variability,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 

2912-2919, Aug. 2014. 

[56] H. Li, K.-S. Li, C.-H. Lin, J.-L. Hsu, W.-C. Chiu, M.-C. Chen, T.-T. Wu, J. 

Sohn, S. B. Eryilmaz, J.-M. Shieh, W.-K. Yeh, and H.-S. P. Wong, 

“Four-layer 3D vertical RRAM integrated with FinFET as a versatile 

computing unit for brain-inspired cognitive information processing,” 

Symp. VLSI Technology (VLSI-T), 2016, pp. 1-2. 

[57] B. Gao, B. Chen, R. Liu, F. Zhang, P. Huang, L. Liu, X. Liu, J. Kang, 

H.-Y. Chen, S. Yu, and H.-S.P. Wong, “3-D cross-point array operation 

on AlOy /HfOx -based vertical resistive switching memory,” IEEE Trans. 

Electron Devices, vol. 61, no. 5, pp. 1377–1380, May 2014. 

[58] U. Quasthoff, M. Richter, C. Biemann, “Corpus portal for search in 

monolingual corpora,” International Conference on Language Resources 

and Evaluation (LREC), 2006, p. 21. 

[59] P. Koehn, “Europarl: A parallel corpus for statistical machine translation,” 

MT Summit, 2005, pp. 79-86. 


