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Outline for first half (B

Backward search (regression) techniques

• Model minimization

• Structured dynamic programming

Forward search techniques

• Nondeterministic conformant plannin

• Monte-Carlo Sampling

As time allows: Relational factoring

Second half (Ron): Value function approx
Hierarchical abstracti
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Backward Search Tech

Idea: start with immediate reward definitio
through action dynamics

• Initially group states with similar
immediate reward

• Separate states with different
horizon one value

• Separate states with different
horizon two value....etc.

Model minimization carries this process t
and then aggregates the resulting groups
explicit aggregate model amenable to trad
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Backward Search Tech

• Structured dynamic programming

[Boutilier, Dearden, and Goldszmidt,

• Model minimization

[Dean and Givan, AAAI-97]
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Model Minimization Ov

1.  Constructing aggregate-
state MDPs

2.  Operating directly on
factored representations

Our methods are inspired by work in the m
community on reducing non-deterministic
particular [Lee and Yannakakis, STOC 1

M
(a)

(b)

explicitly
minimize



Model Minimization - 6

State Space Partitions & Aggregation

aggregate MDP

Under what conditions does the aggregate MDP capture
what we want to know about the original MDP?
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Desired Partition Prop
• Reward Homogeneity

• DynamicHomogeneity

Theorem: Each equivalent aggregate MD
same policy values and optimal policies a
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Constructing Homogeneous
Definition: We say refines , written
can be constructed from  by splitting b

Every homogeneous partition refines the

P1 P2
P1
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Refining a Partitio
Let  be a partition which every homogen
refines. How can we refine maintainin

 is a new partition with th

Thm: Repeating derives smallest

P
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Complexity

• Number of calls to  is quadrat
of states in the resulting minimal mo

• Cost of each call to  depends 
representation for both the MDP and

• [Goldsmith&Sloan AIPS-2000] –
for factored representations

SPLIT

SPLIT

SPL
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The Factored  Operation
Each variable in destination block formula induces a
(factored) partition of source block:

A clustering of the intersection of these partitions is the
desired splitting of .

SPLIT

v1 v2∧ C=

a

B
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The Factored  Op
Each variable in destination block formula
(factored) partition of source block:

A clustering of the intersection of these p
desired splitting of .

SPLIT

α Block
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(factored) partition of source block:

A clustering of the intersection of these p
desired splitting of .
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Algorithm Summa
Input:  A factored MDP.

Output:  An explicit MDP, possibly with m
state space.  Suitable for traditional MDP

Pseudocode: While some  remai
Select untried and b

Complexity: Polynomial number of
resulting MDP.  Block formulas may grow
entially—simplification is NP-hard. Findin
equivalent aggregate MDP is NP-hard.

a B C, ,
a

P SPLIT P B C, , ,(←

SPLI
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Extensions
• Relaxation of homogeneity requirem

approximate minimization

• Large factored action spaces can be
incorporated, forming a partition of S
[Dean, Givan, Kim AIPS-98]

• Yields an automatic detection of 
e.g. finds circular symmetry in di
philosophers [Ravindran&Barto, 
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Structured Dynamic Prog
Predates model minimization

Basic MDP review:

• Finite horizon value functions approx

• Approximation improves as horizon 

• Horizon n+1 values from horizon n b

Critical observations:

• Value functions can be kept as label

• Regression can be computed directl
using provided factored action repre
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Comparison to Model Min
Similarities

• Start with reward partition

• Split blocks using factored action
dynamics

Differences

• Value computations interleaved
with block splitting

• Splitting not “opportunistic” but follow

• Can reaggregate to exploit “coincide

• No reduced equivalent model forme
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Forward Search Meth

Nondeterministic BDD-based methods[Be

Sampling methods surveyed/evaluated i

• Unbiased sampling [Kearns

• Policy rollout [Bertsekas&Castano

• Parallel Policy Rollout [Givan et a

• Hindsight Optimization [Givan e
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Nondeterministic BDD-base
Nondeterministic domains

• [Cimatti, Roveri, Traverso, AAAI-98]1

• [Bertoli, Cimatti, Roveri, IJCAI-01] C

• [Bertoli et al., IJCAI-01] Pa

Basic idea:

• represent state sets as BDDs.

• heuristically expand a tree of reacha

• tree arcs correspond to actions

1. Proceeds backward from goal
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Relational Factorin
[Boutilier et al., IJCAI-01]

• State space is set of first-order mod

• Represent each deterministic realiza
action using the situation calculus

• downside: could be one per state

• SPLIT can be worked out using clas
regression

• Current implementation solves very 
relying on human hand simplification
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