
Model Reduction Techniques for Computing ApproximatelyOptimal Solutions for Markov Decision ProcessesThomas Dean and Robert Givan and Sonia LeachDepartment of Computer Science, Brown University[tld, rlg, sml]@cs.brown.eduhttp://www.cs.brown.edu/people/AbstractWe present a method for solving implicit(factored) Markov decision processes (MDPs)with very large state spaces. We intro-duce a property of state space partitionswhich we call �-homogeneity. Intuitively,an �-homogeneous partition groups togetherstates that behave approximately the sameunder all or some subset of policies. Borrow-ing from recent work on model minimizationin computer-aided software veri�cation, wepresent an algorithm that takes a factoredrepresentation of an MDP and an 0 � � � 1and computes a factored �-homogeneous par-tition of the state space.This partition de�nes a family of relatedMDPs|those MDP's with state space equalto the blocks of the partition, and transitionprobabilities \approximately" like those ofany (original MDP) state in the source block.To formally study such families of MDPs,we introduce the new notion of a \boundedparameter MDP" (BMDP), which is a fam-ily of (traditional) MDPs de�ned by speci-fying upper and lower bounds on the transi-tion probabilities and rewards. We describealgorithms that operate on BMDPs to �ndpolicies that are approximately optimal withrespect to the original MDP.In combination, our method for reducinga large implicit MDP to a possibly muchsmaller BMDP using an �-homogeneous par-tition, and our methods for selecting actionsin BMDP's constitute a new approach for an-alyzing large implicit MDP's. Among its ad-vantages, this new approach provides insightinto existing algorithms to solving implicitMDPs, provides useful connections to workin automata theory and model minimization,and suggests methods, which involve vary-ing �, to trade time and space (speci�cally interms of the size of the corresponding statespace) for solution quality.

1 IntroductionMarkov decision processes (MDP) provide a formal ba-sis for representing planning problems involving uncer-tainty [Boutilier et al., 1995a]. There exist algorithmsfor solving MDPs that are polynomial in the size ofthe state space [Puterman, 1994]. In this paper, weare interested in MDPs in which the states are spec-i�ed implicitly using a set of state variables. TheseMDPs have explicit state spaces which are exponentialin the number of state variables, and are typically notamenable to direct solution using traditional methodsdue to the size of the explicit state space.It is possible to represent some MDPs using spacepolylog in the size of the state space by factoring thestate-transition distribution and the reward functioninto sets of smaller functions. Unfortunately, this ef-�ciency in representation need not translate into ane�cient means of computing solutions. In some cases,however, dependency information implicit in the fac-tored representation can be used to speed computa-tion of an optimal policy [Boutilier and Dearden, 1994,Boutilier et al., 1995b, Lin and Dean, 1995].The resulting computational savings can be explainedin terms of �nding a homogeneous partition of the statespace|a partition such that states in the same blocktransition with the same probability to each of theother blocks. Such a partition induces a smaller, ex-plicit MDP whose states are the blocks of the partition;the smaller MDP, or reduced model is equivalent to theoriginal MDP in a well de�ned sense. It is possibleto take an MDP in factored form and �nd its small-est reduced model using a number of \partition split-ting" operations polynomial in the size of the resultingmodel; however, these splitting operations are in gen-eral propositional logic operations which are NP-hardand are thus only heuristically e�ective. The states ofthe reduced process correspond to groups of states (inthe original process) that behave the same under allpolicies. The original and reduced processes are equiv-alent in the sense that they yield the same solutions,i.e., the same optimal policies and state values.The basic idea of computing equivalent reduced pro-



cesses has its origins in automata theory [Hartmanisand Stearns, 1966] and stochastic processes [Kemenyand Snell, 1960] and has surfaced more recently in thework on model checking in computer-aided veri�ca-tion [Burch et al., 1994][Lee and Yannakakis, 1992].Building on the work of Lee and Yannakakis [1992],we have shown [Dean and Givan, 1997] that severalexisting algorithms are asymptotically equivalent to�rst constructing the minimal reduced MDP and thensolving this MDP using traditional methods that op-erate on the 
at (unfactored) representations.The minimal model may be exponentially larger thanthe original compact MDP. In response to this prob-lem, this paper introduces the concept of an �-homogeneous partition of the state space. This re-laxation of the concept of homogeneous partition al-lows states within the same block to transition withdi�erent probabilities to other blocks so long as thedi�erent probabilities are within �. For � > 0,there are generally �-homogeneous partitions whichare smaller and often much smaller than the small-est homogeneous partition. In this paper we discussapproximate model reduction|an algorithm for �nd-ing an �-homogeneous partition of a factored MDPwhich is generally smaller and always no larger thanthe smallest homogeneous partition.Any �-homogeneous partition induces a family of ex-plicit MDPs, each with state space equal to the blocksof the partition, and transition probabilities fromeach block nearly identical to those of the underlyingstates. To formalize and analyze such families we in-troduce the new concept of a bounded parameter MDP(BMDP)|an MDP in which the transition proba-bilites and rewards are given not as point values butas closed intervals. In Givan et al. [1997], we describealgorithms that operate on BMDPs to produce boundson value functions and thereby compute approximatelyoptimal policies|we summarize these methods here.The resulting bounds and policies apply to the origi-nal implicit MDP. Bounded parameter MDPs general-ize traditional (exact) MDPs and are related to con-structs found in work on aggregation methods for solv-ing MDPs [Schweitzer, 1984, Schweitzer et al., 1985,Bertsekas and Casta~non, 1989]. Although BMDPsare introduced here to represent approximate aggre-gations, they are interesting in their own right and arediscussed in more detail in [Givan et al., 1997], Themodel reduction algorithms and bounded parameterMDP solution methods can be combined to �nd ap-proximately optimal solutions to large factored MDPs,varying � to trade time and space for solution quality.The remainder of this paper is organized as follows. InSection 2, we give an overview of the algorithms andrepresentations in this paper and discuss how they �ttogether. Section 3 reviews traditional and factoredMDPs and describes the generalization to boundedparameter MDPs. Section 4 describes an algorithmfor �-reducing an MDP to a (possibly) smaller explicitBMDP (an MDP if � = 0). Section 5 summarizes

our methods for policy selection in BMDPs, and ad-dresses the applicability of the selected policies to anyMDP which �-reduces to the analyzed BMDP. The re-maining sections summarize preliminary experimentalresults and discuss related work.2 OverviewHere we survey and relate the basic mathematical ob-jects and operations de�ned later in this paper. Westart with a Markov decision process (MDP) M forwhich we would like to compute an optimal or nearoptimal policy. Figure 1.a depicts the MDP M as adirected graph corresponding to the state-transitiondiagram, and its optimal policy ��M as found by tradi-tional value iteration.We assume that the state space for M (and hence thestate-transition graph) is quite large. We thereforeassume that the states of M are encoded in terms ofstate variables which represent aspects of the state;an assignment of values to all of the state variablesconstitutes a complete description of a state. In thispaper, we assume that the factored representation is inthe form of a Bayesian network, such as that depictedin Figure 1.b with four state variables fA;B;C;Dg.We speak about operations involving M , but in prac-tice all operations will be performed symbolically us-ing the factored representation: we manipulate setsof states represented as formulas involving the statevariables.Figure 1.c and Figure 1.d depict the unique smallesthomogeneous partition of the state space of M , wherethe blocks are represented (respectively) implicitly andexplicitly. The process of �nding this partition is called(exact) model minimization. Factored model mini-mization involves manipulating boolean formulas andis NP-hard, but heuristic manipulation may rarelyachieve this worst case.The smallest homogeneous partition may be exponen-tially large, so we seek further reduction (at a costof only approximately optimal solutions) by �ndinga smaller �-homogeneous partition, depicted in Fig-ure 1.e and Figure 1.f where the blocks are again rep-resented (respectively) implicitly and explicitly.Any �-homogeneous partition can be used to create abounded parameter MDP, shown in Figure 1.g and no-tated as M |to do this, we treat the partition blocksas (aggregate) states and summarize everything thatwe know about transitions between blocks in terms ofclosed real intervals that describe the variation withina block of the transition probabilities to other blocks,i.e., for any action and pair of blocks, we record theupper and lower bounds on the probability of start-ing in a state in one block and ending up in the otherblock.11The BMDPM naturally represents a family of MDPs,
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Figure 1: The basic objects and operations described in this paper: (a) depicts the state-transition diagramfor an MDP M (only a single action is shown), (b) depicts a Bayesian network as an example of a symbolicrepresentation compactly encoding M , (c) and (d) depict the smallest homogeneous partition in (respectively) itsimplicit (symbolic) and explicit forms, similarly, (e) and (f) depict an �-homogeneous partition in its implicit andexplicit forms, (g) represents the bounded-parameter MDPM summarizing the variations in the �-homogeneouspartition, and, �nally, (h), (i), and (j) depict particular (exact) MDPs from the family of MDPs de�ned by M.



Our BMDP analysis algorithms extract particularMDPs from M that have intuitive characterizations.The pessimistic model Mpes is the MDP within Mwhich yields the lowest optimal value V �Mpes at everystate. It is a theorem that Mpes is well-de�ned, andthat V �Mpes at each state inM is a lower bound for fol-lowing the optimal policy ��Mpes in any MDP inM (aswell as in the original M from any state in the corre-sponding block). Similarly, the optimistic model Mopthas the best value function VMopt. VMopt gives upper-bounds for following any policy in M . In summary,V �Mpes and V �Mopt give us lower and upper bounds onthe optimal value function we are really interested in,V �M , and following ��Mpes inM is guaranteed to achieveat least the lower bound.Now, armed with this high-level overview to serve asa road map, we descend into the details.3 Markov Decision ProcessesExact Markov Decision Processes An (exact)Markov decision process M is a four tuple M =(Q;A; F;R) where Q is a set of states, A is a set ofactions, R is a reward function that maps each stateto a real value R(q);2 F assigns a probability to eachstate transition for each action, so that for � 2 A andp; q 2 Q,Fpq(�) = Pr(Xt+1 = qjXt = p; Ut = �)where Xt and Ut are random variables denoting, re-spectively, the state and action at time t.A policy is a mapping from states to actions, � : Q!A. The value function V�;M for a given policy mapsstates to their expected discounted cumulative rewardgiven that you start in that state and act accordingthe given policy:V�;M (p) = R(p) + 
Xq2Q fpq(�(p))V�;M (q)where 
 is the discount rate, 0 � 
 < 1. [Puterman,1994].Bounded Parameter MDPs A bounded parame-ter MDP (BMDP) is a four tuple M = (Q;A; F̂ ; R̂)where Q and A are as for MDPs, and F̂ and R̂ areanalogous to the MDP F and R but yield closed realintervals instead of real values. That is, for any action� and states p; q, R̂(p) and F̂p;q(�) are both closedreal intervals of the form [l; u] for l and u real numberswith 0 � l � u � 1. For convenience, we de�ne Fbut note that the original M is not generally in this family.Nevertheless, our BMDP algorithms compute policies andvalue bounds which can be soundly applied to the originalM .2The techniques and results in this paper easily gener-alize to more general reward functions. We adopt a lessgeneral formulation to simplify the presentation.

and F to be real valued functions which give the lowerand upper bounds of the intervals; likewise for R andR. 3 To ensure that F̂ admits well-formed transitionfunctions, we require that, for any action � and statep,Pq2Q Fp;q(�) � 1 �Pq2Q Fp;q(�).A BMDP M = (Q;A; F̂ ; R̂) de�nes a set of exactMDPs FM = fM jM j= Mg where M j= M i�M = (Q;A; F;R) and F and R satisfy the boundsprovided by F̂ and R̂ respectively. We will writeof bounding the (optimal or policy speci�c) value of astate in a BMDP|by this we mean providing an up-per or lower bound on the corresponding state valueover the entire family of MDPs FM. For a more thor-ough treatment of BMDPs, please see [Givan et al.,1997].Factored Representations In the remainder ofthis paper, we make use of Bayesian networks [Pearl,1988] to encode implicit (or factored) representa-tions; however, our methods apply to other factoredrepresentations such as probabilistic STRIPS opera-tors [Kushmerick et al., 1995]. Let X = fX1; : : : ; Xmgbe a set of state variables. We assume the vari-ables are boolean, and refer to them also as 
u-ents. We represent the state at time t as a vectorXt = hX1;t; : : : ; Xm;ti where Xi;t denotes the value ofthe ith state variable at time t.The state transition probabilities can be representedusing Bayes networks.A two-stage temporal Bayesian network (2TBN) is adirected acyclic graph consisting of two sets of vari-ables fXi;tg and fXi;t+1g in which directed arcs in-dicating dependence are allowed from the variables inthe �rst set to variables in the second set and betweenvariables in the second set.[Dean and Kanazawa, 1989]The state-transition probabilities are now factored asPr(Xt+1jXt; Ut) = mYi=1Pr(Xi;t+1jParents(Xi;t+1); Ut)where Parents(X) denotes the parents of X in the2TBN and each of the conditional probability distri-butions Pr(Xi;t+1jParents(Xi;t+1); Ut) can be repre-sented as a conditional probability table or as a de-cision tree|we choose the latter in this paper follow-ing [Boutilier et al., 1995b]. We enhance the 2TBNrepresentation to include actions and reward func-tions; the resulting graph is called an in
uence dia-gram [Howard and Matheson, 1984].Figure 2 illustrates a factored representation withthree state variables, X = fP;Q; Sg, and describes thetransition probabilities and rewards for a particular ac-tion. The factored form of the transition probabilities3To simplify the remainder of the paper, we assumethat the reward bounds are always tight, i.e., that R =R. The generalization to nontrivial bounds on rewards isstraightforward.
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(a) (b)Figure 3: Two �-homogeneous partitions for the MDPdescribed in Figure 2: (a) the smallest exact homoge-neous partition (� = 0) and (b) a smaller partition for� = 0:05.isPr(Xt+1jXt; Ut) = Pr(Pt+1jPt; Qt) �Pr(Qt+1) �Pr(St+1jSt; Qt)where in this case Xt = hPt; Qt; Sti.4 Model Reduction MethodsIn this section, we describe a family of algorithms thattake as input an MDP and a real value � between 0 and1 and compute a bounded parameter MDP where eachclosed real interval has extent less than or equal to �.The states in this BMDP correspond to the blocks of apartition of the state space in which states in the sameblock behave approximately the same with respect tothe other blocks. The upper and lower bounds in theBMDP correspond to bounds on the transition prob-abilities (to other blocks) for states that are groupedtogether.We �rst de�ne the property sought in the desired statespace partition. Let P = fB1; : : : ; Bng be a partitionof Q.De�nition 1 A partition P = fB1; : : : ; Bng of thestate space of an MDP M has the property of �-approximate stochastic bisimulation homogeneity withrespect to M for � such that 0 � � � 1 if and only if foreach Bi; Bj 2 P, for each � 2 A, for each p; q 2 Bi,jR(p)� R(q)j � �; and���Pr2Bj Fpr(�)�Pr2Bj Fqr(�)��� � �

For conciseness, we say P is �-homogeneous.4Figure 3 shows two �-homogeneous partitions for theMDP described in Figure 2.We now explain how we construct an �-homogeneouspartition. We �rst describe the relationship betweenevery �-homogeneous partition and a particular simplepartition based on immediate reward.De�nition 2 A partition P0 is a re�nement of a par-tition P if and only if each block of P0 is a subset ofsome block of P; in this case, we say that P is coarserthan P0, and is a clustering of P 0De�nition 3 The immediate reward partition is thepartition in which two states, p and q, are in the sameblock if and only if they have the same reward.De�nition 4 A partition P is �-uniform with respectto a function f : Q ! R if for every two states p andq in the same block of P, jf(p) � f(q)j � �.Every �-homogeneous partition is a re�nement of some�-uniform clustering (with respect to reward) of theimmediate reward partition. Our algorithm starts byconstructing an �-uniform reward clustering P0 of theimmediate reward partition.5 We then re�ne this ini-tial partition by splitting6 blocks repeatedly to achieve�-homogeneity. We can decide which blocks are can-didates for splitting using the following local propertyof the blocks of an �-homogenous partition:De�nition 5 We say that a block C of a partition Pis �-stable with respect to a block B i� for all actions� and all states p 2 C and q 2 C we have�����Xr2B Fpr(�) �Xr2B Fqr(�)����� � �We say that C is �-stable if C is �-stable with respectto every block of P and action in A.The de�nitions immediately imply that a partition is �-homogenous i� every block in the partition is �-stable.The model �-reduction algorithm simply checks eachblock for �-stability, splitting unstable blocks until qui-escence, i.e., until there are no unstable blocks left tosplit. Speci�cally, when a block C is found to be unsta-ble with respect to a block B, we replace C in the par-tition by a set7 of sub-blocks C1; : : : ; Ck such that each4For the case of � = 0, �-approximate stochastic bisim-ulation homogeneity is closely related to the substitutionproperty for �nite automata developed by Hartmanis andStearns [1966] and the notion of lumpability for Markovchains [Kemeny and Snell, 1960].5There may be many such clusterings, we currentlychoose a coarsest one arbitrarily.6The term splitting refers to the process whereby a blockof a partition is divided into two or more sub-blocks toobtain a re�nement of the original partition.7There may be more than one choice, as discussedbelow.
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the partition found for �2 < �1. However, it is a the-orem that the partition found will be no larger thanthe unique smallest 0-homogenous partition.Theorem 1 For � > 0, the partition found by model�-reduction using any clustering technique is coarserthan, and thus no larger than the minimal model.Theorem 2 For 0 < �2 < �1, the smallest �1-homogenous partition is no larger than the smallest�2-homogenous partition. The model �-reduction algo-rithm, augmented by an (impractical) search over allclustering decisions, will �nd these smallest partitions.Theorem 3 Given a bound and an MDP whosesmallest �-homogenous partition is polynomial in size,the problem of determining whether there exists an �-homogenous partition of size no more than the boundis NP-complete.These theorems imply that using an � > 0 can onlyhelp us, but that our methods may be sensitive to justwhich � we choose, and are necessarily heuristic.Currently our implementation uses a greedy cluster-ing algorithm; in the future we hope to incorporatemore sophisticated techniques from the learning andpattern recognition literature to �nd a smaller cluster-ing locally within each SPLIT operation (though thisdoes not guarantee a smaller �nal partition).Each �-homogenous partition P of an MDP M =(Q;A; F;R) induces a corresponding BMDP MP =(Q;A; F̂ ; R̂) in a straightforward manner. The statesofMP are just the blocks of P and the actions are thesame as those in M . The reward and transition func-tions are de�ned to give intervals bounding the pos-sible reward and block transition probabilities withineach block: for blocks B and C and action �,R̂(B) = [ minp2B R(p); maxp2B R(p) ]F̂B;C(�) = [ minp2BPq2C Fp;q(�);maxp2BPq2C Fp;q(�) ]We can then use the methods in the next section togive intervals bounding the optimal value of each stateinMP and select a policy which guarantees achievingat least the lower bound value at each state. The fol-lowing theorem then implies the value bounds applyto the states in M , and are achieved or exceeded byfollowing the corresponding policy in M .We �rst note that any function on the blocks of Pcan be extended to a function on the states of M : foreach state we return the value assigned to the block ofP in which it falls. In this manner, we can interpretthe value bounds and policies for MP as bounds andpolicies for M .Theorem 4 For any MDP M and �-homogenous par-tition P of the states of M , sound (optimal or policy



speci�c) value bounds for MP apply also to M (byextending the policy and value functions to the statespace of M according to P).5 Interval Value IterationWe have developed a variant of the value iteration al-gorithm for computing the optimal policy for exactMDPs[Bellman, 1957] that operates on bounded pa-rameter MDPs. A BMDP M represents a family ofMDPs FM, implying some degree of uncertainty as towhich MDP in the family actions will actually be takenin. As such, there is no speci�c value for following apolicy from a start state|rather, there is a window ofpossible values for following the policy in the di�erentMDPs of the family. Similarly, for each state there isa window of possible optimal values over the MDPs inthe family FM. Our algorithm can compute boundson policy speci�c value functions as well as bounds onthe optimal value function. We have also shown howto extract from these bounds a speci�c \optimal" pol-icy which is guaranteed to achieve at least the lowerbound value in any actual MDP from the family FMde�ned by the BMDP. We call this policy �pes, thepessimistic optimal policy.We call this algorithm, interval value iteration (IV Ifor optimal values, and IV I� for policy speci�c val-ues). The algorithm is based on the fact that, if weonly knew the rank ordering of the states' values, wewould easily be able to select an MDP from the fam-ily FM which minimized or maximized those values,and then compute the values using that MDP. Sincewe don't know the rank ordering of states' values, thealgorithm uses the ordering of the current estimates ofthe values to select a minimizing (maximizing) MDPfrom the family, and performs one iteration of stan-dard value iteration on that MDP to get new valueestimates. These new estimates can then be used toselect a new minimizing (maximizing) MDP for thenext iteration, and so forth.Bounded parameter MDPs are interesting objects andwe explore them at greater length in [Givan et al.,1997]. In that paper, we prove the following resultsabout IV I.Theorem 5 Given a BMDP M and a speci�c pol-icy �, IV I� converges at each state to lower and up-per bounds on the value of � at that state over all theMDPs in FM.Theorem 6 Given a BMDP M, IV I converges ateach state to lower and upper bounds on the optimalvalue of that state over all the MDPs in FM.Theorem 7 Given a BMDP M, the policy �pes ex-tracted by assuming that states actual values are theIV I-converged lower bounds has a policy speci�c lowerbound (from IV I�) in M equal to the (non policy spe-ci�c) IV I-converged lower bound. No other policy has

a higher policy speci�c lower bound.6 Related Work and DiscussionThis paper combines a number of techniques to addressthe problem of solving (factored) MDPs with verylarge states spaces. The de�nition of �-homogeneityand the model reduction algorithms for �nding �-homogeneous partitions are new, but draw on tech-niques from automata theory and symbolic modelchecking. Burch et al. [1994] is the standard refer-ence on symbolic model checking for computer-aideddesign. Our reduction algorithm and its analysis weremotivated by the work of Lee and Yannakakis [1992]and Bouajjani et al. [1992].The notion of bounded-parameter MDP is also new,but is related to aggregation techniques used to speedconvergence in iterative algorithms for solving exactMDPs. Bertsekas and Casta~non [1989] use the notionof aggregated Markov chains and consider groupingtogether states with approximately the same residuals(i.e., di�erence in the estimated value function fromone iteration to the next during value iteration).The methods for manipulating factored representa-tions of MDPs were largely borrowed from Boutilier etal. [1995b], which provides an iterative algorithm for�nding optimal solutions to factored MDPs. Deanand Givan [1997] describe a model-minimization algo-rithm for solving factored MDPs which is asymptot-ically equivalent to the algorithm in [Boutilier et al.,1995b].Boutilier and Dearden [?] extend the work in [Boutilieret al., 1995b] to compute approximate solutions to fac-tored MDPs by associating upper and lower boundswith symbolically represented blocks of states. Statesare aggregated if they have approximately the samevalue rather than if they behave approximately thesame behavior under all or some set of policies, thoughit often turns out that states with nearly the samevalue have nearly the same dynamics.There are two signi�cant di�erences between our ap-proximation techniques and those of Boutilier andDearden. First, we partition the state space andthen perform interval value iteration on the resultingbounded-parameter MDP, while Boutilier and Dear-den repeatedly partition the state space. Second, weuse a �xed � for computing a partition while Boutilierand Dearden, like Bertsekas and Casta~non, repartitionthe state space (if necessary) on each iteration on thebasis of the current residuals, and, hence, (e�ectively)they use di�erent �'s at di�erent times and on di�erentportions of the state space. Despite these di�erences,we conjecture that the two algorithms perform asymp-totically the same. Practically speaking, we expectthat in some cases, repeatedly and adaptively comput-ing partitions may provide better performance, whilein other cases, performing the partition once and forall may result in a computational advantage.



We have written a prototype implementation of themodel reduction algorithms described in this paper,along with the BMDP evaluation algorithms (IVI) re-ferred to. Using this implementationwe have been ableto demonstrate substantial reductions in model size,and increasing reductions with increasing �. However,the MDPs we have been reducing are still \toy" prob-lems and while they were not concocted expressly tomake the algorithm look good, these empirical resultsare still of questionable value. Further research is nec-essary before these techniques are adequate to handlea real-world large scale planning problem in order togive convincing empirical data.Finally, we believe that by formalizing the notionsof approximately similar behavior, approximatelyequivalent models, and families of closely relatedMDPs the mathematical entities corresponding to �-homogeneous partitions, �-reductions, and bounded-parameter MDPs provide valuable insight into fac-tored MDPs and the prospects for solving them ef-�ciently.References[Bellman, 1957] Bellman, Richard 1957. DynamicProgramming. Princeton University Press.[Bertsekas and Casta~non, 1989] Bertsekas, D. P. andCasta~non, D. A. 1989. Adaptive aggregation for in-�nite horizon dynamic programming. IEEE Trans-actions on Automatic Control 34(6):589{598.[Bouajjani et al., 1992] Bouajjani, A.; Fernandez, J.-C.; Halbwachs, N.; Raymond, P.; and Ratel, C.1992. Minimal state graph generation. Science ofComputer Programming 18:247{269.[Boutilier and Dearden, 1994] Boutilier, Craig andDearden, Richard 1994. Using abstractions for de-cision theoretic planning with time constraints. InProceedings AAAI-94. AAAI. 1016{1022.[Boutilier et al., 1995a]Boutilier, Craig; Dean, Thomas; and Hanks, Steve1995a. Planning under uncertainty: Structural as-sumptions and computational leverage. In Proceed-ings of the Third European Workshop on Planning.[Boutilier et al., 1995b] Boutilier, Craig; Dearden,Richard; and Goldszmidt, Moises 1995b. Exploit-ing structure in policy construction. In ProceedingsIJCAI 14. IJCAII. 1104{1111.[Burch et al., 1994] Burch, Jerry; Clarke, Ed-mund M.; Long, David; McMillan, Kenneth L.; andDill, David L. 1994. Symbolic model checking forsequential circuit veri�cation. IEEE Transactionson Computer Aided Design 13(4):401{424.[Dean and Givan, 1997] Dean, Thomas and Givan,Robert 1997. Model minimization in Markov de-cision processes. In Proceedings AAAI-97. AAAI.[Dean and Kanazawa, 1989] Dean,Thomas and Kanazawa, Keiji 1989. A model for
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