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Abstract

We extend the “policy rollout” sampling technique for Markov decision processes to Markov
games, and provide an approximation result guaranteeing that the resulting sampling-based
policy is closer to the Nash equilibrium than the underlying base policy. This improvement
is achieved with an amount of sampling that is independent of the state-space size. We
base our approximation result on a more general approximation theorem, proven here, that
can be used to analyze other sampling techniques to get similar guarantees. We exhibit this
generality by using the theorem to provide an alternate proof of the (already known) result
that the “sparse sampling” policy for Markov games approximates the Nash equilibrium.
Finally, we provide empirical results showing the utility of the policy rollout technique on
both a familiar “soccer game” and a difficult bandwidth-pricing domain. The latter gives
an example application of the technique when the assumptions of zero-sum rewards and
discounting are relaxed.

Keywords: zero-sum Markov games, sampling techniques, large state-spaces

1. Introduction

Markov Decision Processes (MDPs) (Bellman, 1957, Howard, 1960) provide a powerful
framework for modeling situations where a single controller needs to make decisions to
achieve a certain goal. Numerous algorithms, such as value iteration and policy iteration,
are available for finding (approximately) optimal policies for MDPs (Puterman, 1994, Bert-
sekas, 1995a, Mine and Osaki, 1970). Algorithms for MDPs have also been developed that
can run in times sub-linear in the state-space size, and so are suitable for “large state
spaces.” These include neuro-dynamic programming by Bertsekas and Tsitsiklis (1996),
policy rollout by Tesauro and Galperin (1996) (see also Bertsekas and Castanon, 1999),
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hindsight optimization by Chong et al. (2000) and Chang (2001), and sparse sampling by
Kearns et al. (1999), among many others less related to our work here (e.g, Boutilier et al.,
2000, 2001, Yoon et al., 2002, Givan et al., 2003, Fern et al., 2003).

Markov games (Shapley, 1953, Başar and Olsder, 1995) are a natural extension of MDPs
to the case where more than one controller is present. The controllers typically have different
(possibly conflicting) goals, and thus the usual notion of optimality cannot be extended to
Markov games. Instead, the notion of a Nash equilibrium , in which each player’s policy is
a “best response” to the other players’ policies, is a widely accepted notion of optimality
in such situations. Much work has been done on the existence and computation of Nash
equilibria for the classical finite and infinite games (Başar and Olsder, 1995). But these
methods do not generalize to Markov games in a straightforward fashion.

Game theorists have extended value iteration and policy iteration to Markov games
under various settings. For example, Patek and Bertsekas (1999) have established the
convergence of extensions of these algorithms for stochastic shortest-path games. These
offline algorithms typically require time at least polynomial in the state-space cardinality,
and are thus not practical for Markov games with large state spaces.

Online algorithms for finding Nash-optimal policies have been developed for some classes
of Markov games. Hu and Wellman (1998) have developed an algorithm called Nash-Q that
learns the Nash-optimal policy for a restricted class of Markov games. (The class is complex
and unnatural, and no membership test is provided.) Littman’s friend-or-foe Q-learning is
a related method that converges to an equilibrium when it is known that there is a coordi-
nation equilibrium or when it is known that there is an adversarial equilibrium (Littman,
2001), and guarantees convergence to a fixed policy in any case.1 Littman and Szepesvári
(1996) have also provided a more generalized framework for solving such problems. Bowl-
ing and Veloso (2002) have developed a variable-rate gradient-based learning algorithm for
two-player, two-action repeated matrix games. But none of these algorithms can be used
for Markov games with large state spaces.

Difficulties applying such algorithms in the case of large state spaces are not unique to
Markov games. Similar problems exist for MDPs as well. The algorithms that researchers
have developed to tackle such problems mainly fall in one of three categories—structure
exploitation, value-function approximation, and sampling.

In this paper, we focus on sampling algorithms. The sampling algorithms we consider
involve drawing random samples to estimate, for each possible initial action pair, the value
of taking that initial action pair, and then either acting optimally, or following some given
policy pair. We call this estimating the Q-function (for the policy pair, if any). The resulting
Q-function estimate defines a matrix game for the current state, and a current action is
then chosen (possibly stochastically) by finding a (possibly mixed) Nash equilibrium for
this game. Our aim is to evaluate policies that are formed using this “Nash look-ahead”
technique. In this evaluation, one needs to analyze how the error in the estimated Q-
function propagates to the value function of the resulting policy, as well as the significance
of the policy pair chosen, if any.

Kearns et al. (1999) have given a “sparse sampling” method for drawing the random
samples just described to estimate the optimal Q-function and produce a near-Nash stochas-

1. In a coordination equilibrium, all players attain their maximal value, and in an adversarial equilibrium,
each player benefits from any change by the other players.
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tic policy. Here, we focus instead on estimating the Q-function for particular policy pairs,
in order to find an “improved” policy for one player.2 This work is a generalization of
the “policy rollout” technique for MDPs to Markov games, and has not previously been
analyzed. The motive for considering policy rollout in place of directly approximating the
optimal Q-function is the exponential cost associated with the sparse sampling method
(relative to the desired bound on loss).

The resulting policy-rollout method for Markov games is an online version of policy
iteration for Markov games, much as policy rollout provides an online version of policy
iteration for MDPs. Here, we provide the details of this method and elucidate the conditions
under which policy improvement is guaranteed. We also show that the amount of sampling
required to guarantee policy improvement is independent of the size of the state space—this
result is new even for policy rollout in MDPs.

Along the way, we prove an approximation result for discounted zero-sum games that
provides bounds on the loss of the Nash look-ahead policy constructed using a sampled
Q-function estimation. This result naturally implies our desired approximation guarantees,
but is general enough to be useful in analyzing other sampling methods as well. As an
illustration, we provide a brief alternate proof of the (already known) near-Nash behavior
of sparse sampling for Markov games based on this theorem. Since MDPs are special cases
of Markov games, this result also easily implies the approximation guarantees previously
shown for both policy rollout and sparse sampling in MDPs.

Weaker, similar, related approximation results have been shown previously by Singh
and Yee (1994) for MDPs and by Lagoudakis and Parr (2002) for Markov games. We use
different techniques than those used to prove these results, and we discuss the ways in
which our approximation result extends these previous results in Section 3.2. In particular,
we consider approximation of the Q-functions of arbitrary base-policies, as in rollout, not
just the optimal Q function; we incorporate the uncertainty introduced by sampling; and
we provide bounds on the loss at individual states relative to their loss in the base policy
which can be tighter than the sup-norm bounds that apply to the entire policy—these are
of particular interest in analyzing rollout algorithms, where the base policy may vary in
quality across the state space.

Our analysis is similar to that establishing the convergence of policy iteration for Markov
games, by Patek and Bertsekas (1999)—this similarity results because of the close relation-
ship between policy rollout and policy iteration, in both MDPs and Markov games. However,
preserving that previous result under finite sampling and finite horizon length (to make the
algorithm implementable online) requires a non-trivial extension of that work. For this
extension, we develop and use the new approximation theorem mentioned above.

We also exhibit the performance of policy rollout empirically in two domains, showing
that policy improvement can be achieved with a practical amount of sampling in each. We
consider the zero-sum “soccer game” introduced by Littman (1994) and then the much
more complex, general-sum bandwidth-pricing domain of Savagaonkar (2002). Although
our theorem guarantees policy improvement only for zero-sum games, we show empirical
policy improvement even in the latter substantial general-sum game.

2. “Improved” here means closer to Nash-optimal.
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2. Definitions, Notation, and Technical Background

Throughout this paper, for any set S, we use Π(S) to denote the space of all the probability
measures over S. We use bold-face fonts to indicate random variables. Given two real-valued
functions f and g on the same domain D, we write f ≤ g to indicate that f(x) ≤ g(x) for
every x in D. We write |f |∞ for supx∈D |f(x)|.

A zero-sum, discounted Markov game between players A and B with a discount factor γ
is a six-tuple 〈X, A, B,T, R, x0〉, where X is the (countable) state space, A (B) is the action
space for player A (B), T : X×A×B → Π(X) is the transition function, R : X×A×B → R

is the reward function, and x0 ∈ X is the initial state. The aim of A is to maximize the
discounted reward (with discount factor γ) defined using R, and that of B is to minimize
the same. We assume that the action spaces A and B have finite cardinality. For notational
convenience, we will denote by f(x,a, b) a random state resulting from players A and B
taking actions chosen from a and b, respectively, in state x, as specified by T.

A policy πA for player A is a sequence of maps 〈µπA

0 , µπA

1 , · · · 〉, where each µπA

i : X →
Π(A) specifies the probability distribution with which actions are chosen by A in each of the

states at time i. If µπA

i = µπA

0 for all i, then the policy is said to be stationary. Similarly,

a policy πB for player B is a sequence of maps 〈µπB

0 , µπB

1 , · · · 〉, with each µπB

i : X → Π(B),

and again, if µπB

i = µπB

0 for all i, then the policy is said to be stationary. For notational
convenience, given a map µA : X → Π(A) and a state x ∈ X, we use the bold-face notation
µA(x) to denote a random variable that has distribution µA(x), and we similarly define
µB(x) for map µB : X → Π(B). We sometimes refer to policies for player A as A-policies
and those for B as B-policies.

Given a policy π for either player, we use the notation µπ
k to denote the k’th member

of the sequence π. When the policy π is stationary, we will omit the subscript k. Given a
pair of policies 〈πA, πB〉, we define the value of the game in state x as

VπA,πB(x) = E

[

∞
∑

k=0

γkR(xk,µ
πA

k (xk),µ
πB

k (xk))

]

, (1)

where x0 = x, and xk+1 = f(xk,µ
πA

k (xk),µ
πB

k (xk)). The function VπA,πB : X → R is called

the value function corresponding to the pair 〈πA, πB〉. Generally, we refer to any V : X → R

as a value function. The space of all value functions is denoted by V.

Given an A-policy πA, a corresponding best-response policy3 for B is defined as a B-
policy πB that minimizes the value VπA,πB(x) of the game in each state x, given that A

plays policy πA. There could be more than one best-response policy, but the value achieved
at each state does not vary among the best-response policies. We denote the set of all
the best-response policies for B by brB(πA). Similarly, we write brA(πB) for the set of
best-response policies for A to a given policy πB for B, each of which maximizes the value
of the game, given that B plays πB . A pair of policies 〈πA, πB〉 is said to constitute a Nash
equilibrium, if πB ∈ brB(πA) and πA ∈ brA(πB), in which case we call both policies Nash
policies for the respective players.

3. Given a fixed policy for A, the game reduces to an MDP from B’s perspective, and it follows from basic
MDP theory that a best-response policy exists.
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For any A-policy πA and B-policy πB , define the security levels V s
πA and V s

πB as

V s
πA(x)

△

= min
π̃B

VπA,π̃B (x) and V s
πB (x)

△

= max
π̃A

Vπ̃A,πB (x).

Note that if πB ∈ brB(πA), then V s
πA = VπA,πB , and if πA ∈ brA(πB) then V s

πB = VπA,πB .

The policy pair 〈πA, πB〉 is a Nash equilibrium when V s
πA = V s

πB . We denote this value
function by V ∗. In general, V s

πA ≤ V ∗ and V s
πB ≥ V ∗. At any state x, we say the A-policy

πA incurs a loss of |V ∗(x) − V s
πA(x)|, and likewise for B-policies πB .

The notion of security level allows a natural way of comparing two policies. For MDPs,
ordering the policies is relatively easy, as we can compare the value functions directly. But
for Markov games, existence of the opponent complicates the situation, as no assumption
can be made about the opponent policy. But the security level of a policy is the worst-
case performance of that policy, and thus is independent of the opponent. Hence, a partial
ordering on policies can be introduced using security levels. Given x ∈ X, we say that
A-policy π̃A is better than A-policy πA in state x, if V s

π̃A(x) ≥ V s
πA(x). If this holds in

every state, then we say that π̃A is state-wise better πA. In policy improvement algorithms,
state-wise improvement is desirable, but is not always easy to obtain. Hence, we use a
weaker notion of policy improvement.

Definition 1 We say that policy π̃A is better than policy πA in the sup norm if
∣

∣V ∗ − V s
π̃A

∣

∣

∞
≤
∣

∣V ∗ − V s
πA

∣

∣

∞
.

Let V : X → R be a value function. Define the operator T as

(TV )(x) = max
z∈Π(A)

min
b∈B

E [R(x,z, b) + γV (f(x,z, b))] . (2)

Then (T kV )(x) is the k-stage optimal discounted reward for player A, with starting state
of x and terminal reward of V . Also for pair of policies 〈πA, πB〉, define

(T
µπA

k
,µπB

k

V )(x) = E
[

R(x,µπA

k (x),µπB

k (x)) + γV (f(x,µπA

k (x),µπB

k (x)))
]

. (3)

We abuse notation by using T k
πA,πB to denote something other than k iterative applications

of an operator, as follows:

(T 0
πA,πBV )(x) = V (x),

(T k
πA,πBV )(x) = (T k−1

πA,πB (T
µπA

k
,µπB

k

V ))(x).

Unless πA and πB are stationary, the operator being applied at each iteration changes.
(T k

πA,πBV )(x) is the k-stage discounted reward for player A when the players use the policy

pair 〈πA, πB〉 and the terminal reward is V . For a stationary policy pair 〈πA, πB〉, we will

use the short-hand notation TπA,πB
△

= T 1
πA,πB .

The Q-function QπAπB : X × A × B → R for stationary 〈πA, πB〉, is defined as

QπA,πB (x, a, b) = E
[

R(x, a, b) + γVπA,πB (f(x, a, b))
]

.
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In general, we will call any function Q : X × A × B → R a Q-function. We write Q for
the space of all the Q-functions. Also, if 〈πA, πB〉 constitute a Nash equilibrium, then we
write Q∗(·, ·, ·) for QπA,πB(·, ·, ·). Note that given a state x ∈ X and a function Q ∈ Q,
Q(x, ·, ·) is a matrix of dimension |A| × |B|. We are interested in estimating Q-functions
stochastically, so we consider random variables that take values in Q. We call such random
variables stochastic Q-functions. Here, the distribution for a stochastic Q-function will
often be specified by a sampling algorithm, and may not be described in a closed form. The
algorithm itself represents the distribution implicitly.

Let Nash(M(·, ·)) be an operator that for any matrix M(·, ·) ∈ R|A|×|B| computes a
probability distribution pair 〈µA, µB〉 that achieves a Nash equilibrium for the zero-sum
matrix game4 described by M(·, ·). Here, µA ∈ arg maxz∈Π(A) minb∈B E [M(z, b)], and

µB ∈ arg minz∈Π(B) maxa∈A E [M(a,z)]. Our results are independent of which such op-
erator is selected here (i.e., which Nash equilibrium is returned for each matrix). The op-
erator NashVal(M(·, ·)) returns the value maxz∈Π(A) minb∈B E [M(z, b)] of the matrix game
M(·, ·) when the Nash(M(·, ·)) distributions are used by the players. Note that the operator
Nash(M(·, ·)) can be implemented as a linear program (Başar and Olsder, 1995, Bertsekas,
1995b) and the operator NashVal(M(·, ·)) can be implemented as simple matrix multipli-
cation (Başar and Olsder, 1995), in addition to the same linear program. For notational
convenience, we also define the operators NashA(M) and NashB(M) to return the player A
and player B components of Nash(M), respectively.

Because of our interest in sampling, the matrix M describing the matrix game to be
solved will often be itself a random variable M . In this case, NashVal(M ) is a function of
this random variable. Standard probability theory implies that NashVal(M ) can be written
then as maxz∈Π(A) minb∈B E [M (z, b)|M ].

Throughout this paper, we assume that the reward function is bounded, i.e., |R(x, a, b)| ≤
Rmax for some Rmax ∈ R and all x ∈ X, a ∈ A, and b ∈ B. This immediately implies that
the value function for any policy pair 〈πA, πB〉 satisfies, |VπA,πB(x)| ≤ Vmax for all x ∈ X,

where Vmax is defined as Vmax
△

= Rmax/(1−γ). We also use the special symbol e to represent
a value function e : X → R such that e(x) = 1 at every state x ∈ X.

The following technical background propositions, simply extending results for MDPs
presented by Bertsekas (1995a) and (for the last proposition) Alon et al. (1992), are proven
in Appendix A, for completeness. Here, let V (·) and V ′(·) be value functions, and 〈πA, πB〉
be a policy pair.

Proposition 2 Suppose V (x) ≤ V ′(x), for all x ∈ X. Then, for all x ∈ X,

(T kV )(x) ≤ (T kV ′)(x), and

(T k
πA,πBV )(x) ≤ (T k

πA,πBV ′)(x).

Proposition 3 For any r ∈ R, and e the unit value function,

(TK(V + re))(x) = (TKV )(x) + γKr, and

(TK
πA,πB(V + re))(x) = (TK

πA,πBV )(x) + γKr.

4. Matrix games are well-described elsewhere, e.g., by Başar and Olsder (1995). A matrix game can be
viewed as a Markov game with one state and reward function given by the matrix.
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Proposition 4 supπA infπB (TK
πA,πBV )(x) = (TKV )(x).

Proposition 5 (Value iteration converges) limN→∞(TNV )(x0) = V ∗(x0).

Proposition 6 limN→∞(TN
πA,πBV )(x0) = VπA,πB(x0).

Proposition 7 For stationary πA and πB, VπA,πB = TπA,πBVπA,πB .

Proposition 8 The Nash value satisfies Bellman’s equation, V ∗ = TV ∗.

Proposition 9 Suppose V and V ′ are bounded. For all k ∈ N, we have

max
x∈X

∣

∣

∣
(T kV )(x) − (T kV ′)(x)

∣

∣

∣
≤ γk max

x∈X

∣

∣V (x) − V ′(x)
∣

∣ .

Proposition 10 Let Y 1, . . . ,Y N be i.i.d. random variables satisfying |Y i| ≤ Ymax w.p.1

and EY i = µ. Then, P
[∣

∣

∣

1
N

∑N
i=1 Y i − µ

∣

∣

∣ ≤ λ
]

≥ 1 − 4e−λ2N/(8Y 2
max

).

3. An Approximation Result for Markov Games

3.1 The Concept of Look-ahead

Policy selection in MDP problems often involves a one-step look-ahead relative to a given
value function, selecting an action that will maximize the value if the future value is given
by the specified value function. The corresponding process in Markov games is more com-
plicated.

One step look-ahead can convert a given value function into a Q-function; however,
maximization is insufficient for action selection, as the opponent action is unknown. Our
approach to analyzing Markov games leverages the idea that the Q function defines a matrix
game in the current state. This matrix game can be solved to get a “Nash-equilibrium ac-
tion distribution”, analogous to the best action in the MDP case. This idea appears in work
on policy iteration for Markov games by Patek and Bertsekas (1999) and underlies our ap-
proach. Here, we must be concerned with the effect of sampling error on the resulting policy
improvement—because of sampling, we do not have a Q-function, but rather a stochastic
Q-function. Analysis of the effects of sampling is critical for large state-space games, where
exact methods are not practical. Below, our look-ahead function converts a given distri-
bution F over Q-functions (typically, from a sampling algorithm) into a distribution over
actions.

Definition 11 Given a distribution F over Q, the one-step look-ahead policy lookaheadA(F )
for A chooses an action in state x according to the probability distribution E NashA(Q(x, ·, ·)),
where Q is a random variable with distribution F .

The expectation in Definition 11 is an expectation in the space of probability distribu-
tions, computing an expected “Nash-equilibrium” action distribution. The stochastically
described matrix Q(x, ·, ·) can be viewed as a matrix-game encapsulation of the expected
future following each available action pair, and the lookaheadA(F ) policy chooses its actions
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by solving this game. Now suppose that we have a (sampling?) algorithm that takes as
an input the current state x, and outputs a random matrix M ∈ R|A|×|B| distributed as
specified by F in state x. Then the policy lookaheadA(F ) can be generated as follows.
At every decision epoch, observe the current state x and generate a random matrix M

using the given algorithm, and compute the distribution NashA(M), and choose an action
a according this distribution. The sampling algorithms we consider use this technique for
generating policies.

3.2 The Look-ahead Approximation Theorem

Our main theorem provides bounds on the state-wise and sup-norm loss resulting when
following a policy selected by Nash look-ahead using sampled Q-functions. We use this
theorem in Sections 4 and 5 to provide bounds on the sampling error (i.e., ǫ and δ) to
ensure policy improvement for two different sampling algorithms. The theorem requires
that the sampled Q-function approximates QπA,πB for some policy pair 〈πA, πB〉, where πB

is a best-response to πA. (When 〈πA, πB〉 is a Nash equilibrium, the bounds then limit the
loss relative to V ∗.) Intuitively, the resulting look-ahead policy will have a security level
that is (approximately) no worse at any state than that of πA and, with enough sampling,
that is better at the state furthest from its Nash value, contracting to the Nash-equilibrium
value with a rate at least equal to the discount factor. We compare our result to related
previous results after the proof below.

Theorem 12 Let πA be a stationary policy for A, and let πB be a best-response policy for
πA. Let F be a Q-function distribution such that Q distributed according to F satisfies
∣

∣QπA,πB (x, ·, ·) − Q(x, ·, ·)
∣

∣

∞
< ǫ, for any x ∈ X, with probability at least 1 − δ and is a.s.

bounded by Vmax, i.e., P [|Q|∞ ≤ Vmax] = 1. Let π̃A = lookaheadA(F ). Then, we have

V s
πA(x) < V s

π̃A(x) +
2(ǫ + 2δVmax)

(1 − γ)
,

for all x ∈ X. Moreover, for small enough ǫ and δ, there is contraction towards the equilib-
rium value:

|V ∗ − V s
π̃A |∞ < γ |V ∗ − V s

πA |∞ +
2(ǫ + 2δVmax)

(1 − γ)
.

Proof. Let π̃B ∈ brB(π̃A) be a stationary best-response policy to π̃A. Let Q be the
stochastic Q-function having distribution F . We wish to compare the security level of πA,
i.e., VπA,πB , with the security level achieved by π̃A, i.e., Vπ̃A,π̃B , and show that the latter
approximately dominates the former. To do so, we define an “approximately” increasing
sequence of “approximately” intermediate value functions, starting with the expected value
of the “look-ahead game” described by the Q(x, ·, ·) matrix, and ending at the security level
of π̃A, as follows:

V1(x) = E NashVal(Q(x, ·, ·)) and VK+1 = Tπ̃A,π̃BVK .

This sequence necessarily converges to the security level of π̃A—it remains to show that the
sequence is approximately increasing, and that V1 approximately dominates the security

8



Sampling Techniques for Markov Games

level of πA, analyzing how the approximation bounds sum over the sequence. We turn to
the latter first.

For notational conciseness, let us denote the event |Q(x, ·, ·) − QπA,πB (x, ·, ·)|∞ < ǫ by
Ex. Then, by our choice of F , we have P [Ex] > 1 − δ. Also, we denote the complement of
this event by Ec

x. Thus, P [Ec
x] < δ. Now,

V1(x) = E NashVal(Q(x, ·, ·)) = E

[

max
µA∈Π(A)

min
b∈B

E
[

Q(x,µA, b)
∣

∣Q
]

]

≥ E

[

min
b∈B

E
[

Q(x,µπA

(x), b)
∣

∣Q
] ∣

∣

∣
Ex

]

P [Ex]

+ E

[

min
b∈B

E
[

Q(x,µπA

(x), b)
∣

∣Q
] ∣

∣

∣E
c
x

]

P [Ec
x]

≥ E

[

min
b∈B

E
[

Q(x,µπA

(x), b)
∣

∣Q
] ∣

∣

∣
Ex

]

(1 − P [Ec
x]) − P [Ec

x] Vmax

> E

[

min
b∈B

E
[

QπA,πB(x,µπA

(x), b) − ǫ
]

]

− 2δVmax

= V s
πA(x) − ǫ − 2δVmax.

We now show that the sequence of value functions is approximately increasing, starting
with the preliminary observation that, when |Q(x, ·, ·)−QπA ,πB(x, ·, ·)|∞ < ǫ (i.e., the event
Ex occurs), we have, for any x ∈ X, a ∈ A, and b ∈ B,

E [R(x, a, b) + γV1(f(x, a, b))] > E
[

R(x, a, b) + γV s
πA(f(x, a, b)) − γ(ǫ + 2δVmax)

]

= QπA,πB (x, a, b) − γ(ǫ + 2δVmax)

> Q(x, a, b) − ǫ − γ(ǫ + 2δVmax).

Now, writing ν(Q, x) for NashA(Q(x, ·, ·)), and exploiting the definition of µπ̃A
(x) as

E NashA(Q(x, ·, ·)),

9
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V2(x) = (Tπ̃A,π̃BV1)(x)

= E
[

R(x,µπ̃A

(x),µπ̃B

(x)) + γV1(f(x,µπ̃A

(x),µπ̃B

(x)))
]

= E
[

E
[

R(x,ν(Q, x),µπ̃B

(x)) + γV1(f(x,ν(Q, x),µπ̃B

(x)))
∣

∣Q
]]

= E
[

E
[

R(x,ν(Q, x),µπ̃B

(x)) + γV1(f(x,ν(Q, x),µπ̃B

(x)))
∣

∣Q
] ∣

∣

∣Ex

]

P [Ex]

+ E
[

E
[

R(x,ν(Q, x),µπ̃B

(x)) + γV1(f(x,ν(Q, x),µπ̃B

(x)))
∣

∣Q
] ∣

∣

∣E
c
x

]

P [Ec
x]

≥ E
[

E
[

R(x,ν(Q, x),µπ̃B

(x)) + γV1(f(x,ν(Q, x),µπ̃B

(x)))
∣

∣Q
] ∣

∣

∣
Ex

]

P [Ex]

− P [Ec
x]Vmax

> E
[

E
[

Q(x,ν(Q, x),µπ̃B

(x))
∣

∣Q
] ∣

∣

∣
Ex

]

P [Ex] − ǫ − γ(ǫ + 2δVmax)

− P [Ec
x]Vmax

= E
[

E
[

Q(x,ν(Q, x),µπ̃B

(x))
∣

∣Q
] ∣

∣

∣
Ex

]

P [Ex]

+ (1 − 1)E
[

E
[

Q(x,ν(Q, x),µπ̃B

(x))
∣

∣Q
] ∣

∣

∣
E

c
x

]

P [Ec
x]

− ǫ − γ(ǫ + 2δVmax) − P [Ec
x]Vmax

≥ E
[

E
[

Q(x,ν(Q, x),µπ̃B

(x))
∣

∣Q
]]

− P [Ec
x]Vmax − ǫ − γ(ǫ + 2δVmax)

− P [Ec
x]Vmax

≥ E

[

min
µB

E
[

Q(x,ν(Q, x),µB(x))
∣

∣Q
]

]

− ǫ − γ(ǫ + 2δVmax) − 2δVmax

= V1(x) − (1 + γ)(ǫ + 2δVmax), by the definitions of ν() and V1.

Using this fact, Propositions 2 and 3 imply that for all K ≥ 1, VK+1(x) ≥ VK(x)−γk−1(1+
γ)(ǫ + 2δVmax). Also, as shown above, V1(x) > V s

πA − ǫ − 2δVmax. Then, by Proposition 6,
we have

V s
π̃A(x) = lim

K→∞
VK(x) ≥ V1(x) −

(

∞
∑

k=0

γk(1 + γ)(ǫ + 2δVmax)

)

= V1(x) − (1 + γ)(ǫ + 2δVmax)/(1 − γ)

> V s
πA(x) − (ǫ + 2δVmax) − (1 + γ)(ǫ + 2δVmax)/(1 − γ)

= V s
πA(x) − 2(ǫ + 2δVmax)/(1 − γ).

We have now shown the first claim in the theorem, and turn to bounding the loss in the sup
norm, using the tools just developed. Let us define a new value function V ′

1 = TV s
πA . Then,

for each state x, we have V ′
1(x) = NashVal(QπA,πB(x, ·, ·)). Now, when we have |Q(x, ·, ·)−

QπA,πB(x, ·, ·)|∞ < ǫ (i.e., the event Ex occurs), we must also have |NashVal(Q(x, ·, ·)) −

10
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NashVal(QπA,πB(x, ·, ·))| < ǫ. Thus,

|V1(x) − V ′
1(x)| = |E NashVal(Q(x, ·, ·)) − NashVal(QπA,πB(x, ·, ·))|

≤ E|NashVal(Q(x, ·, ·)) − NashVal(QπA,πB(x, ·, ·))|

= E
[

|NashVal(Q(x, ·, ·)) − NashVal(QπA,πB(x, ·, ·))|
∣

∣Ex

]

P [Ex]

+ E
[

|NashVal(Q(x, ·, ·)) − NashVal(QπA,πB(x, ·, ·))|
∣

∣E
c
x

]

P [Ec
x]

< ǫ + 2δVmax.

But then, using the lower bound shown for V s
π̃A on page 10,

V ∗(x) ≥ V s
π̃A(x) ≥ V1(x) −

(1 + γ)(ǫ + 2δVmax)

1 − γ
> V ′

1(x) −
2(ǫ + 2δVmax)

1 − γ
.

This when combined with Proposition 9 and the definition of V ′
1 as TV s

πA gives

|V ∗ − V s
π̃A |∞ < |V ∗ − V ′

1 |∞ +
2(ǫ + 2δVmax)

(1 − γ)
≤ γ |V ∗ − V s

πA |∞ +
2(ǫ + 2δVmax)

(1 − γ)
.

This result is for discounted Markov games, and is more general5 than that proven by
Singh and Yee (1994) in the following four respects.

1. We extend the MDP result to Markov games.

2. We relax the finite–state-space restriction to allow countable state-spaces.6

3. The previous result is stated only for the case where the value function (Q-function)
being approximated is the optimal value function (optimal Q-function) for the prob-
lem. Our result applies to approximation of security level (or Q-function) for an
arbitrary “base policy”. This generality is of particular interest in analyzing rollout.

4. We bound both the sup-norm loss for the look-ahead policy and the loss suffered by
each state relative to the loss for that state in the base policy. This extension is of
particular interest in analyzing rollout, where the base policy may be quite good in
some states, so that the sup-norm bound (which derives from the performance at the
worst state) is very loose at those states.

Because of items 3 and 4 in this list, we used a different proof method from Singh
and Yee. Here, we non-trivially extended the techniques of Patek and Bertsekas (1999) to
include bounds on the effects of Q-function approximation.

Another result of interest is that by Lagoudakis and Parr (2002), providing bounds on
the performance of a policy obtained by using an approximation of the optimal Q-function
for look-ahead. Our bounds are more general than this previous work in the following ways.

5. Results proven for Markov games immediately imply those for MDPs, as an MDP can be looked at as a
Markov game, where the opponent’s action space has only one element

6. We believe that, with suitable regularity assumptions, this result extends immediately to continuous
state spaces, but we do not explore that claim further here.

11
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1. The previous result is stated only for approximations of the optimal Q-functions. Our
result applies to approximations of Q-functions of general policies.

2. The previous analysis does not incorporate the uncertainty introduced by sampling.

3. The previous analysis places bounds on the sup norm of the loss resulting from the
approximation. Our result, in addition to bounding the sup-norm loss, also bounds
the loss at individual states, relative to that suffered by the base policy—this bound
can be tighter than the sup-norm bound for states where the base policy performs
well.

4. The previous bounds are stated in terms of the residual7 of the approximate value. It is
not clear how to compute the residual of a sampled value function without performing
the max/min operation across the state space, which is expensive here. Bounding the
residual of V loosely with (V −V ∗)/(1−γ) and using the previous result gives a looser
guarantee than that provided by our Theorem 12. Our bound, in contrast, is based on
ǫ-δ probabilistic guarantees on the accuracy of V that can be guaranteed by sufficient
sampling.

4. Policy Rollout for Markov Games

4.1 The Algorithm

Policy rollout is a recently developed technique used for policy improvement in MDPs
(Tesauro and Galperin, 1996, Bertsekas and Castanon, 1999). The technique starts with
a base policy, and uses sampling to determine the Q-function of that policy. It then uses
this Q-function for one-step look-ahead to choose optimal actions. Such a policy is shown
by Bertsekas and Castanon (1999) to be no worse than the base policy for a wide class of
MDPs.

Here, we extend the policy rollout technique to zero-sum, discounted Markov games
with bounded rewards. We use two base policies, one for each player, and a model for
the Markov game, to estimate the Q-function for the pair of policies. We then use this
Q-function for one-step look-ahead, solving the matrix game defined by the Q-function in
the current state. Figure 1 displays the pseudo-code for the rollout algorithm for Markov
games. In this figure, the function nextState(x, a, b) returns a random state as specified by
the transition law of the Markov game, when action a is used by A and action b is used by
B in state x. The stochastic algorithm takes two policies 〈πA, πB〉, an integer N specifying
the number of sample paths to be used, a finite horizon H, and the current state x as inputs,
and outputs an action a ∈ A for player A. The algorithm generates a mixed policy πro for
A. As we will prove shortly, under certain conditions, the policy πro is better (in security
level) than the policy πA. All the results in this section are stated and proven, without loss
of generality, for player A.

In the main result of this section, we bound the state-wise loss in performance due to
rollout, and establish overall improvement in the sup norm due to rollout with appropriate
choice of πB, N , and H.

7. The residual of a value function is the sup-norm distance by which the value function shifts when we
apply the min-max operator to the value function once.

12
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Function: rollout(πA, πB , N,H, x)
input: policy πA for A, policy πB for B, number of samples N , horizon H, state x
output: action a ∈ A

1. For each pair 〈a, b〉, a ∈ A, b ∈ B, and i = 1 . . . , N , let
qi(a, b) = R(x, a, b) + γ estVal(πA, πB ,H,nextState(x, a, b))

2. Let q(a, b) = 1
N

∑

i=1 qi(a, b)

3. Return a random action a ∈ A according to distribution NashA(q(·, ·))

Function: estVal(πA, πB ,H, x)
input: policy πA for A, policy πB for B, horizon H, state x
output: a sampled estimate of VπA,πB(x)

1. If H = 0, return 0

2. Choose a according to µπA

(x), and b according to µπB

(x)

3. Return R(x, a, b) + γ estVal(πA, πB ,H−1,nextState(x, a, b))

Figure 1: The rollout algorithm

4.2 A Policy-improvement Result

In this section we prove that, when called with appropriate parameters, the policy obtained
using the rollout pseudo-code shown in Figure 1 is an improvement over the base policy.
Note that the rollout algorithm uses sampling to generate a stochastic estimate q(·, ·) of
QπA,πB(x, ·, ·)—denote this estimate qx(·, ·). In step 2 of the rollout algorithm, by averaging
the N independent estimates qx(·, ·), for each state x, we get a random Q-function Qro. Let
Fro be the distribution for Qro. Then, the policy πro generated by the rollout algorithm is
lookaheadA(Fro). Our analysis in this section relies on examining the properties exhibited
by Qro and its distribution Fro.

Theorem 12 implies that if Fro is a sufficiently accurate approximation of
QπA,πB(·, ·, ·), for πB ∈ brB(πA), then πro is no worse than πA in the sup norm. This can
be seen by choosing ǫ to be (1−γ)2

∣

∣V ∗−V s
πA |∞/4 and δ to be (1−γ)2

∣

∣V ∗−V s
πA |∞/(8Vmax)

in Theorem 12, to get

|V ∗ − V s
πro

|∞ < γ |V ∗ − V s
πA |∞ + 2(ǫ + 2δVmax)/(1 − γ) ≤ |V ∗ − V s

πA |∞.

This inequality is strict, giving a strict contraction, whenever πA is not already a Nash
policy, so that |V ∗ − V s

πA |∞ is non-zero.8

We now turn to giving sufficient conditions on the sampling horizon H and the number
of samples N to achieve the ǫ and δ values just given, so that policy improvement is

8. In addition to this guarantee on the change in the sup-norm, Theorem 12 also provides a bound on the
state-wise loss for any choice of ǫ and δ.
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guaranteed. Let πA be a non-Nash policy for A (so that
∣

∣V ∗ − V s
πA

∣

∣

∞
> 0). Let πB be

a corresponding best-response policy. Let πro be the mixed policy resulting from using
rollout(πA, πB , N,H, x), at every state x, for some integers N and H. Let ǫ and δ be chosen
as above. Now, for any input state x, and for each qi(·, ·) defined in Step 1 of the rollout
algorithm (see Figure 1), we have

∣

∣QπA,πB(x, ·, ·)−Eqi(·, ·)
∣

∣

∞
≤ γH+1Vmax < γHVmax. Also,

from Proposition 10, it follows that for the stochastic estimate qx(·, ·) defined above, we
have

∣

∣qx − Eqi

∣

∣

∞
< ǫ/2, for any i, with probability at least 1 − e−ǫ2N/32V 2

max .

We now choose H so that
∣

∣QπA,πB(x, ·, ·) − Eqi(·, ·)
∣

∣

∞
< γHVmax ≤ ǫ/2, and N so that

∣

∣qx − Eqi

∣

∣

∞
< ǫ/2, with probability at least 1 − δ, by ensuring that e−ǫ2N/32V 2

max < δ.
With H > log(ǫ/2Vmax)/(log γ) and N > −32V 2

max(log δ)/ǫ2, we then have |QπA,πB(x, ·, ·)−
qx(·, ·)|∞ < ǫ with probability at least 1 − δ. This holds for every state x ∈ X. As
the random Q-function Qro is defined by qx at each state x, independently, Qro satisfies
|QπA,πB (x, ·, ·) − Qro(x, ·, ·)|∞ < ǫ with probability at least 1 − δ.

Theorem 12 then implies that πro (i.e., lookaheadA(Fro)) is better than πA in the sup
norm, when ǫ, δ, N , and H are chosen to satisfy the following (summarizing the constraints
above):

ǫ = (1 − γ)2
∣

∣V ∗ − V s
πA |∞/4, (4)

δ = (1 − γ)2
∣

∣V ∗ − V s
πA |∞/(8Vmax)

H > log(ǫ/2Vmax)/(log γ)

N > −32V 2
max(log δ)/ǫ2.

We have now proven the following theorem.

Theorem 13 Let πA be any non-Nash policy for A, and πB be a corresponding best-
response policy. The mixed policy resulting from the rollout algorithm using any values
of N and H satisfying the equations in (4) is better than πA in the sup norm. Such values
of the parameters N and H exist and are independent of the size of the state space, |X|.

In addition to this guarantee of improvement in the sup norm, our main theorem (Theo-

rem 12) guarantees that the rollout policy will have a security level no more than 2(ǫ+2δVmax)
(1−γ)

worse that that of the base policy, for any state. This “statewise bound” can be a stronger
guarantee than that provided by the sup-norm contraction, and ensures that any part of
the state space where the base policy performs well will also be well handled by the rollout
policy. Since this term can be made arbitrarily small by choosing large enough sampling
width and horizon, we can say that the rollout policy approximately dominates the base
policy, at every state, strictly improving at the worst state.

4.3 Discussion

The rollout algorithm presented in this section can be used to improve non-Nash policies. It
may appear that, to do so, one requires access to the best-response policy of the opponent,
which in general may not be available or effectively computable. However, our theorems
do not require an explicit best response policy, but only a distribution approximating the
Q-function achieved by it.
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If we fix player A’s policy, then the Markov game reduces to an MDP, for which the
sparse sampling algorithm developed by Kearns et al. (1999) for MDPs can find the best-
response Q-values approximately. Our rollout method can use these Q-values to obtain
policy improvement, independent of state-space size (noting that the Kearns et al. technique
requires exponential effort). The amount of sampling required by the rollout algorithm
(number of traces times horizon length) is independent of the state-space size. Hence this
algorithm is of particular interest for Markov games with huge state spaces. We believe
that, with suitable regularity assumptions, this result extends immediately to continuous
state spaces, but we do not explore that claim further here.

It is worth noting that non-Nash policies that are very close to Nash will require large
values of N and H to satisfy the equations in (4), and thus will be difficult to improve.
Moreover, in practice, it is often difficult to know how far from Nash a given base policy is.
Nonetheless, by choosing appropriate values of N and H, we can ensure that we improve the
base policy if it is not already within some desired sup-norm distance from Nash-optimal.
Our experiments in Section 6 indeed show such improvements in situations where we do
not know how far from Nash our base policy is.

5. Sparse Sampling for Markov Games

5.1 The Sparse-sampling Algorithm

Kearns et al. give a sparse-sampling technique for Markov games and prove that the tech-
nique computes a near-optimal policy using an amount of sampling independent of the
state-space size.9 But the amount of sampling required is exponential in the desired “ac-
curacy”, and hence the policy rollout technique of the previous section is practically more
useful. Here, we show that their result is also a direct consequence of our main theorem
(Theorem 12), providing a distinct proof. We start by presenting the algorithm carefully,
for completeness.

The sparse-sampling algorithm for Markov games, as shown in Figure 2, is straightfor-
ward. Again the function nextState(x, a, b) is used to sample a next state when action a is
used by A and action b is used by B in state x. Given the sampling width N (the number
of samples at each level), sampling depth H, and the current state x, the algorithm builds
a sampling tree (the call tree for estQ*) to estimate Q∗(x, ·, ·), the optimal Q-function in
the current state, and then solves the resulting matrix game to generate a random action
to be taken in state x. Let Qss be a random Q-function constructed by combining such
independent estimates of Q∗(x, ·, ·) in all states x (such estimates are obtained by calling
the function estQ* in each state), and let Fss denote its distribution. Then the policy gen-
erated by selectAction can be written as πss = lookaheadA(Fss). We will show that N and
H can be chosen so that the stochastic Q-function Qss approximates Q∗ with any desired
precision. Then, the near-optimality of πss (the policy generated by the algorithm) follows
immediately from Theorem 12.

9. Their algorithm and result is slightly different from ours in that they state and prove their result for
general-sum, finite-horizon Markov games, whereas we state and prove our results for zero-sum, dis-
counted Markov games.
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Function: selectAction(N,H, x)
input: sampling width N , sampling depth H, current state x
output: action a0

1. Return a random action a ∈ A according to NashA(estQ*(H,N, x))

Function: estQ*(H,N, x)
input: depth H, width N , state x
output: estimated Q-function matrix Q̂(x, ·, ·) for state x

1. If H = 0, return zero matrix

2. For each pair 〈a, b〉, a ∈ A, b ∈ B, let Sa,b(x) be a multiset of N next-state samples
drawn using nextState(x, a, b)

3. For each pair 〈a, b〉, a ∈ A, b ∈ B, let
Q̂(x, a, b) = R(x, a, b) + γ(

∑

x′∈Sa,b(x) NashVal(estQ*(H−1, N, x′)))/N

4. return Q̂(x, ·, ·)

Figure 2: The sparse-sampling algorithm for Markov games

5.2 Proof of Near-optimality

Now we will prove that algorithm presented in Figure 2 indeed computes a near-Nash policy.
While our development is similar to that of Kearns et al. (1999) for MDPs, we deviate from
that line of argument by using Theorem 12 (Section 3)—we were unable to use the MDP
techniques of Kearns et al. (1999) to prove our result for Markov games here.

Referring to Figure 2, define Qh(x, ·, ·) = estQ*(h,N, x). Then, for all h > 0, a ∈ A, and
b ∈ B, Q0(x, a, b) = 0 and Qh(x, a, b) = R(x, a, b)+γ(

∑

x′∈Sa,b(x) NashVal(Qh−1(x′, ·, ·)))/N.

Following Kearns et al. (1999), given some λ > 0, define α0 = Vmax and αh recursively
as αh+1 = γ(λ + αh). Then we can bound αH with

αH =

(

H
∑

i=1

γiλ

)

+ γHVmax ≤ λ/(1 − γ) + γHVmax. (5)

Analogous to Lemma 4 in Kearns et al. (1999), we have the following result. We replicate
and adapt their proof, for completeness. To maintain the flow, the proof is postponed to
the appendix.

Lemma 14 With probability at least 1−4(|A||B|N+1)he−λ2N/(8V 2
max) we have that |Q∗(x, a, b)−

Qh(x, a, b)| ≤ αh.

We now use Lemma 14 and Theorem 12 to give bounds, independent of the state-
space size, on the amount of sampling work needed to give a policy πss with security level
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V s
πss

(x) within ǫ0 of V ∗(x), at each state x for any ǫ0. We start by choosing values for
the parameters ǫ, δ, N , H, and λ of the algorithm, Lemma, and Theorem, in terms of the
desired approximation quality, ǫ0, to meet the following constraints:

ǫ = (1 − γ)ǫ0/4 (6)

δ = (1 − γ)ǫ0/(8Vmax) (7)

H > log(ǫ/2Vmax)/ log γ (8)

0 < λ < (1 − γ)ǫ/2 (9)

N >
8V 2

max log 4(|A||B|N+1)H

δ

λ2
. (10)

Such values exist and are independent of the state-space size.10 These constraints can be
derived by working backwards from the desired policy-quality guarantee through the cited
Theorem and Lemma. We now work forwards, using these constraints with the Theorem
and Lemma to derive the guarantee. In what follows, we assume that πss is run using N
and H satisfying these constraints.

First, Lemma 14 ensures that we have |Q∗(x, ·, ·) − Qss(x, ·, ·)|∞ ≤ αH with probability
at least 1−4(|A||B|N +1)He−λ2N/(8V 2

max
). Algebraic manipulation of Equation 10 can derive

that this probability is greater than 1 − δ. We can also derive

αH ≤ λ/(1 − γ) + γHVmax ≤ ǫ/2 + γHVmax ≤ ǫ/2 + ǫ/2 = ǫ,

using first Equation 5 from page 16, then Equation 9, and then Equation 8. We thus have
|Q∗(x, ·, ·)−Qss(x, ·, ·)|∞ ≤ ǫ with probability at least 1−δ. We can then apply the sup-norm
bound from Theorem 12, choosing πA to be any Nash equilibrium policy, to derive

V ∗(x) ≤ V s
πss

(x) + 2(ǫ + 2δVmax)/(1 − γ) = V s
πss

(x) + ǫ0,

as desired,where the last equation follows using Equations 6 and 7. We have proven the
following theorem.

Theorem 15 For any ǫ0 > 0, the policy πss generated by selectAction(N,H, ·) satisfies
|V ∗ − V s

πss
|∞ < ǫ0 whenever N and H satisfy Equations 6 through 10 for some values of ǫ,

δ, and λ. Moreover, such values of N and H exist and do not depend on the size of the
state space, |X|.

5.3 Discussion

The sparse-sampling algorithm analyzed above computes a near-Nash policy, when sufficient
sampling is performed. Unfortunately, even for a discount factor not very close to 1, the
sampling required for finding a policy with desirable accuracy could be prohibitively huge.
Nevertheless, the amount of sampling needed is independent of the state space size, and
hence this technique is of theoretical interest. Moreover, the result presented here just gives
a sufficient condition for the policy to be near-Nash. In practice, significantly less sampling,
combined with tree-pruning techniques, could result in a useful algorithm (though see Chang
(2001) for some network-control applications where this did not prove to be the case). The
algorithm is also easily parallelizable.

10. The variable N occurs on both sides of the last inequation, but, for large enough N , the left side grows
faster than the right side, guaranteeing that some N satisfying the inequation exists.
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6. Empirical Evaluation of Policy Rollout for Markov Games

6.1 Scope of the Simulation Results

The main purpose of the simulation results presented in this section is to demonstrate
that the policy-rollout algorithm presented in this paper indeed generates a policy that
outperforms the base policy in the sup norm. Even though we provided a theoretical proof
of this result, simulation studies are still important for at least the following reasons.

1. We demonstrate that useful improvement can be achieved with a practical amount of
sampling, noting that the amount of sampling needed to guarantee improvement is
difficult to determine, as we might not know how far we are from the Nash equilibrium,
and that that the required sampling, when it can be determined, may be impractical
to carry out.

2. We demonstrate that useful improvement can be achieved even without access to a
best-response policy for the base policy.

3. We demonstrate that useful improvement can be achieved for other settings, such as
Markov games with average-reward criteria or general-sum Markov games.

Clearly, we are interested in policy improvement even when the assumptions of various
theorems presented in this paper do not hold true. But as we show using simulation results,
performance improvement is still possible in different practical settings. We present two
sets of simulation results. First we present the simulation results for a zero-sum, discounted
Markov game first introduced by Littman (1994) (the soccer game) and show that using
a practically manageable amount of sampling, one can achieve policy improvement in the
sup norm in this domain. Next, we apply the policy rollout technique to a bandwidth-
market resource-allocation problem presented Savagaonkar (2002) and summarized below.
This problem is an interesting test problem in many ways. First, it is a general-sum game,
rather than a zero-sum game. Second, the reward criterion is the steady-state reward, rather
than discounted reward. We show that, in this case as well, we get policy improvement using
practically manageable sampling.

6.2 Soccer

Fig. 3 shows a pictorial view of a soccer-game setting similar11 to the one presented by
Littman (1994). The game is played on a 4 × 6 grid. The two players, A and B, occupy
distinct squares of the grid and can choose one of five actions on each turn: north (N), east
(E), south (S), west (W), and stand (X). Once both players have selected their actions, the
two moves are executed in random order.

The circle represents the “ball”. When the player with the ball steps into the appro-
priate goal (left for A, right for B), that player scores a point and the board is reset to
the configuration shown in Fig. 3, with possession of the ball given to one of the players
randomly. When a player attempts to move to the square occupied by the other player,
possession of the ball goes to the stationary player and the move does not take place. Goals
are worth one point each, and the discount factor is 0.9.

11. The only difference between his game and the game presented here is that his game is played on a grid
with five columns, while ours is played on a grid with six columns.
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B

A

Figure 3: Soccer game similar to the one presented by Littman.

In this setting, we start with a base policy that chooses each of the five possible actions
(N, E, S, W, X) with equal probability in each state. We find a best-response policy
corresponding to this policy using the value-iteration algorithm for discounted MDPs (once
the policy of one player is fixed, the game reduces to an MDP from the other player’s
perspective). Then, using this policy pair, we invoke the rollout algorithm with N (the
number of samples) being 1000 and H (horizon) being 135, starting from every state—this
gives us an estimate of the rollout policy (estimating the probability distributions with
which actions are chosen for each state). To compute the security level of this policy, we
find a best-response policy corresponding to this policy using value iteration—the values
computed by value iteration during this process give the security level of the rollout policy.

Fig. 4(a) compares the state-wise loss in the security level for the base policy and the
rollout policy12. It can be seen that the sup norm of the loss in the security level of the
base policy dominates that of the rollout policy by a considerable margin. Fig. 4(b) shows
the ratio of the loss in the security level of the rollout policy and that of the base policy,
for every state. This ratio is always no larger than 0.81, and generally less than 0.5. Thus,
here, the rollout algorithm significantly improves the security level for every state. (Our
bound on the state-wise performance only limits how much worse the security level can get,
and does not promise an improvement such as we obtain here.)

6.3 Bandwidth Market

6.3.1 Background

In this section, we focus on a problem of more practical interest—the bandwidth-market
problem. This problem was first introduced by Savagaonkar et al. (2002) for bandwidth
markets with a single vendor, and later extended to bandwidth markets with multiple
vendors (see Savagaonkar, 2002). Below, we briefly describe the “rules” of this bandwidth-
market game. The Markov-game formulation of this problem is relatively straight-forward,
and is discussed elsewhere (Savagaonkar, 2002).

6.3.2 Dynamics of Bandwidth-market Setting

We consider a dynamic market in which two vendors (players) wish to sell bandwidth on
two different links, each owned by one vendor. We denote the vendors by A and B. The
total amount of bandwidth owned by A is denoted by BA, and that owned by B is denoted

12. For readability, states are sorted by loss of the base policy in both graphs.
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Figure 4: (a) Security-level loss of the rollout policy and the base policy. (b) Ratio of the
security-level losses of the rollout policy and the base policy.
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Figure 5: Performance of the base policy when the opponent uses the various corner policies
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by BB . We assume that each unit of bandwidth owned by A is equivalent to one unit owned
by B. This characterizes our assumption that arriving users do not have any preference of
vendor.

We consider a traffic model in which the user arrivals and departures are driven by a
discrete-time Markov process S(·) called the traffic-state process. We denote the transition-
probability matrix of this process by P (·, ·), where P (s, s′) is the probability that the traffic-
state process makes a transition from traffic state s to traffic-state s′. The finite state space,
S of this process is made up of elements called traffic states. Each of the users arriving into
the system belongs to one of a finitely many classes. We denote the set of all classes by
C. We assume that for each state s ∈ S, the number of calls of class c ∈ C arriving in any
epoch is a Poisson random variable with mean λs,c. We also assume that for each call of
class c ∈ C arriving in state s ∈ S, the call-holding time is a geometric random variable
with mean αs,c. The call-holding time of a call is declared as soon as the call arrives.

We characterize a call i, i ∈ Z+, by a triple of random variables, 〈ai,di, ci〉, where ai

represents the (integral) time of arrival of call i, di represents the (integral) duration of call
i, and ci represents the class of call i.

At each time epoch, bandwidth allocation is performed as follows. Each vendor ob-
serves the current system state,13 and declares a price per unit time, per unit of bandwidth
it owns. All users belonging to class c are assumed to purchase bandwidth according to a
class-specific demand function Dc(·) describing the amount of bandwidth desired at each
price. We assume that the demand functions are strictly decreasing, strictly concave, and
compactly supported (see Savagaonkar, 2002, for related assumptions and justifications).
When the vendors declare their prices, the newly arriving users approach the vendor selling
the bandwidth at a cheaper price, and declare their demands at this price. If that vendor
can provide the requested amount of bandwidth to every user, the users just purchase the
bandwidth from this vendor, and do not purchase any bandwidth from the other vendor.
However, the cheaper vendor may not have the requested amount of bandwidth available.
In that case, the vendor chooses which users to satisfy fully and/or partially, as described
below. The unsatisfied users approach the other vendor and request the amount of band-
width dictated by their demand function at the other vendor’s price, less any bandwidth
they have already purchased from the cheaper vendor. If we denote by pl, l ∈ {A,B}, the
price charged by vendor l at the current decision epoch, then the users request bandwidth
according to the following algorithm.

1. Let i = arg minl∈{A,B} pl and j = arg maxl∈{A,B} pl.

2. Users in each class c request bandwidth Dc(pi) from vendor i.

3. Vendor i uses the knowledge of all the requests in the current decision epoch and that
of the available bandwidth, and allocates bandwidth bi

c to users of class c, for each
class c (algorithm to be described next). As we will describe shortly, bi

c is always less
than or equal to Dc(pi).

4. Users in each class c request bandwidth max(0,Dc(pj) − bi
c) from vendor j.

13. The system state is defined formally by Savagaonkar (2002) and is part of the Markov-game formulation
of this problem.
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5. Vendor j uses the knowledge of all the requests in the current decision epoch and that
of the available bandwidth, and allocates bandwidth bj

c to users of class c, for each
class c (algorithm to be described next). As we will describe shortly, bj

c is always less
than or equal to Dc(pj) − bi

c.

When all the users have posted their requests to vendor l ∈ {A,B}, the vendor allocates
the resource as follows. Let I denote the set of all the newly arrived users. Let B̃l denote
the bandwidth available to vendor l. Also, for notational convenience, for each i in I, let Rl

i

denote the bandwidth requested by user i to vendor l (algorithm described above). Then
the vendor l allocates the bandwidth using the following algorithm.

1. Let k = arg mini∈I Rl
i. Break ties using some pre-determined fixed order on classes,

selecting within classes arbitrarily.

2. Let b = min{Rl
k, B̃/|I|}. Allocate bandwidth b to call k.

3. Let B̃l = B̃l − b, and I = I\k.

4. If I is not empty, go to step 1.

Each vendor charges each user for the bandwidth it has allocated to that particular user.
Bandwidth once sold to a user cannot be reclaimed before the user leaves the system, and
the initial allocation to a new user is consumed at every time epoch by that user for the
duration of the call. We assume that a user willing to purchase a given bandwidth at a
given unit price is also willing to purchase any smaller amount at the same unit price—there
is no minimum-bandwidth requirement in our model.

Given the resource-allocation mechanism as described above, the aim of vendor l, l ∈
{A,B}, is to set the link prices pl(·) (a function of discrete time) so that its steady-state
revenue is maximized. The revenue obtained by each of the vendors depends, in part, on the
actions (prices) chosen by the other vendor. Moreover, it is not always possible to maximize
both vendors’ revenues simultaneously. Thus, this setting defines a competitive dynamic
game.

More precisely, this problem is a general-sum, two-player Markov game, and elsewhere
we have developed heuristic pricing schemes and evaluated them on this game (see Sava-
gaonkar, 2002). Below we describe one heuristic pricing scheme–the flat-pricing scheme–
briefly, and evaluate the performance of this scheme as well as the pricing scheme obtained
by rolling out this scheme.

6.3.3 The Flat-pricing Scheme

Any policy for a vendor specifies a distribution over prices for each state of the game. Now,
the assumption of finitely-many classes, when coupled with the assumption of compactly
supported demand functions, implies that there exists a price pmax, such that every user
demands zero resource for any price higher than pmax. Thus, a price higher than pmax is
not practical for a vendor in any time-epoch. We discretize the range of practical prices
(i.e., [0, pmax]) into N discrete prices and consider probability distributions over this set of
N discrete prices. In this discretized setting, a policy for a vendor specifies a distribution
over the finite set of N prices for each possible system state.
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State 3

State 1 State 2

State 4

Figure 7: State diagram for the traffic-state process

In the flat-pricing scheme, a vendor fixes a state-independent probability distribution
over the above set of prices, and chooses a price according to this same distribution at
every epoch. Thus, the flat pricing policy is a parameterized policy in which the probability
distribution being used is the parameter—the set of all the flat-pricing policies forms a
simplex in an N -dimensional space. The reader is referred to (Savagaonkar, 2002) for a
discussion of heuristically finding a locally optimal value of this parameter.14

A policy, by which a vendor fixes one of the N discrete prices at every system state,
forms a corner of this simplex. We call these policies “corner policies.” Below, we measure
the performance of any particular pricing scheme based on how it performs when played
against each of these N corners, as there is no practical way of finding a best-response policy
for an arbitrary pricing policy.

6.3.4 Simulation Results

We assume that the maximum bandwidth available to both the vendors–A and B–is 1. We
present the simulation results for a single-class case only, i.e., we assume that all the users
arriving into the system have the same demand function–− log(p/6)/6. With this choice of
demand function, the value of pmax is 6.

We evaluate the performance of the base policy and the rollout policy for four similar
user-arrival models–model 1 through model 4. Each of these four models generates a Markov
modulated Poison process (MMPP) with the underlying traffic-state process having four
traffic states. Fig. 7 shows the state-transition diagram for the underlying traffic-state
process. Table 1 lists the state-transition parameters (the entry in the ith row, jth column
indicates the probability of transition from state i to state j) for model 1, and Table 2 lists
the traffic parameters describing the traffic statistics for model 1. Models 2 through 4 are
derived from model 1 by modifying the ratio of load factors in States 1 and 2.

Formally, we define the load factor in traffic state s as the mean call holding time αs

multiplied by the average number of arrivals λs in that state (we drop the subscript c
representing the class, as we are considering the single-class case). We vary the ratio of the
load factors in States 1 and 2 (by varying the load factor in State 2). This change in load
factor has an unwanted side effect, described next.

14. Savagaonkar (2002) heuristically uses the algorithm described by Marbach and Tsitsiklis (2001) alter-
nately to find equilibrium price distributions for the two vendors.

24



Sampling Techniques for Markov Games

Table 1: State-transition probabilities for the traffic-state process

State 1 State 2 state 3 State 4

State 1 0.95 0.025 0.0125 0.0125

State 2 0.00625 0.9875 0.003125 0.003125

State 3 0.025 0.025 0.55 0.4

State 4 0.025 0.025 0.4 0.55

Table 2: Arrival and holding-time parameters for the traffic-state process

State 1 State 2 State 3 State 4

λs 8 0.25 2 0.25

αs 0.875 0.875 0.75 0.5

To create other models, we vary the load factor in State 2 in order to explore more and
less bursty traffic. To avoid also varying State 2’s contribution to the total volume of calls
generated, we inversely vary the state holding time in State 2 by varying the self transition
probability for State 2.

As mentioned earlier, our price range is [0, 6]. For the simulations here, we take N to be
ten. We use the heuristic algorithm described by Savagaonkar (2002) to compute a locally
optimal flat-pricing policy and a heuristic opponent policy for each of the traffic models,
and use those policies as the base policies for the corresponding traffic models. We compute
the rollout policy from this policy pair using a rollout horizon of 50, and a sample width of
32. We evaluate both the policies–base and rollout–by measuring their performance against
each of the N deterministic flat-pricing opponents (the corner policies as described above),
as we have no practical means to find a best reponse policy to either of these policies.

Fig. 5 shows the revenue accrued by each player when the base policy plays each corner
policy. Fig. 6 shows the revenue accrued by each player when the rollout policy plays the
corner policies. Table 3 summarizes these results in the form of the revenue earned by a
each policy (base or rollout) when its opponent chooses a corner policy that maximizes its
revenue (a rough analog to security levels of the base and rollout policies, for the general-
sum context). It can clearly be seen that, in this respect, the rollout policy outperforms
the base policy by a significant margin.

Another way of comparing the two policies is to compare the revenue earned by these
policies when they are used to play against the opponent’s base policy. Table 4 shows this
comparison. It can clearly be seen that for all the four traffic models, the rollout policy
outperforms the base policy in this metric as well.
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Table 3: Performance of the two policies when the opponent chooses the best corner policy

Base policy Rollout policy

Traffic Model 1 0.30 0.59
Traffic Model 2 0.72 1.41
Traffic Model 3 1.73 2.22
Traffic Model 4 2.46 2.61

Table 4: Performance of the two policies when the opponent uses the base policy
Base policy Rollout policy

Traffic Model 1 0.30 0.47
Traffic Model 2 0.84 1.09
Traffic Model 3 1.71 2.11
Traffic Model 4 2.49 2.57

7. Conclusions

We presented an approximation result for discounted Markov games with bounded rewards.
This result establishes a bound on the state-wise loss incurred from using approximate Q-
functions for look-ahead. Our result is significantly more general than similar pre-existing
results, which cannot be used in the ways we use our result in this paper, and cannot
clearly be extended to be so used. Using this result, we discussed two sampling techniques
for Markov games. The first technique—policy rollout—is our extension of the policy rollout
technique for MDPs to Markov games. We proved that, under appropriate conditions, the
policy generated by this technique is closer to the Nash equilibrium than the base policy
in the sup norm. We also bound the state-wise loss incurred because of using a (sam-
pled) approximate Q-function during rollout. The second technique is the sparse sampling
technique presented by Kearns et al. (2000). We demonstrated the generality of our the-
orem by providing an alternate proof of Kearns’ theorem stating that, with appropriate
parameters, this technique produces a policy that is close to the Nash equilibrium with
any desired accuracy. For either technique, the amount of sampling required to guarantee
the results is independent of the state-space size. Our simulation results indicate that our
policy-rollout technique for Markov games indeed provides policy improvement under two
interesting settings.
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Appendix A. Proofs of Basic Propositions

All our results are proven in the main text, except for these basic proposition, for which
proofs (following standard theory) are provided here for completeness. In the following
propositions, let V (·) and V ′(·) be arbitrary value functions, and 〈πA, πB〉 be an arbitrary
policy pair.

Proposition 2. Suppose V (x) ≤ V ′(x) for all x ∈ X. We then have (T kV )(x) ≤
(T kV ′)(x) for all x ∈ X. Also, we have (T k

πA,πBV )(x) ≤ (T k
πA,πBV ′)(x), for all x ∈ X.

Proof. The proposition follows from the monotonicity of the sum, product, expectation,
and maxmin operators.

Recall that we write e for the constant unit value function.
Proposition 3. For any r ∈ R,

(TK(V + re))(x) = (TKV )(x) + γKr, and

(TK
πA,πB (V + re))(x) = (TK

πA,πBV )(x) + γKr.

Proof. The case K = 0 is obvious. Then, the proof follows by mathematical induction,
noting that the indices achieving the maximum (likewise, minimum) value over an indexed
set are not affected by adding a constant term to every member of the set.

Proposition 4.
max
πA

min
πB

(TK
πA,πBV )(x) = (TKV )(x).

Proof. The result is obvious for K = 0 (both sides are equal to V ). Let us assume that
the result is true for K = N − 1. Then, proving the result for K = N would imply that the
result is true for all K.

For K = N , the conjecture can be re-written as

max
µA

1
···µA

N−1

max
µA

N

min
µB

1
···µB

N−1

min
µB

N

(TN−1
πA,πB(TN

µA
N

,µB
N

V ))(x) = (TN−1(TV ))(x). (11)

Now, the operator TN−1
πA,πB : V → V is completely determined by the maps µA

1 · · ·µA
N−1

and µB
1 · · ·µB

N−1, and thus is independent of µA
N , µA

N . This implies that the effect of µA
N , µB

N
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on the left-hand side of (11) is reflected only through the term TN
µA

N
,µB

N

V . This observation,

when combined with the monotonicity of TN−1
πA,πB enables us to write

max
µA

1
···µA

N−1

max
µA

N

min
µB

1
···µB

N−1

min
µB

N

(TN−1
πA,πB(TN

µA
N

,µB
N

V ))(x)

= max
µA

1
···µA

N−1

max
µA

N

min
µB

1
···µB

N−1

(TN−1
πA,πB MINµB

N
(TN

µA
N

,µB
N

V ))(x)

= max
µA

1
···µA

N−1

min
µB

1
···µB

N−1

(TN−1
πA,πB MAXµA

N
MINµB

N
(TN

µA
N

,µB
N

V ))(x),

where the operators MAX and MIN maximize and minimize each component of a value
function simultaneously. Note that, as the maps µA

N and µB
N can assign different probability

distributions to each state, independently, these operators are well-defined. Also, because
of this same reason, the interchanging of the max and min operators in the last step is
justified, as a single map µA

N can maximize the objective for all values of µB
1 , · · · , µB

N−1.

But then, by applying the definition of the operator T , we have that
MAXµA

N
MINµB

N
(TN

µA
N

,µB
N

V ) = TV . Then, using the notation TV = V ′, the conjecture

can be re-written as,

max
µA

1
···µA

N−1

min
µB

1
···µB

N−1

(TN−1
πA,πBV ′)(x) = (TN−1V ′)(x),

which is true by the induction hypothesis. This establishes the result.

Proposition 5. The optimal value function V ∗ is well-defined. Moreover,

lim
N→∞

(TNV )(x) = V ∗(x).

Proof. Recall that the security levels for an A-policy πA and a B-policy πB are defined
as

V s
πA(x) = min

π̃B
VπA,π̃B(x), and

V s
πB (x) = max

π̃A
Vπ̃A,πB(x).

For every state x ∈ X, define the optimal security levels

V
∗
(x) = max

πA
V s

πA(x), and

V ∗(x) = min
πB

V s
πB (x). (12)

As the reward function is bounded, these optimal security levels are well-defined. To show
that V ∗ is well-defined, we need to show that for every state x ∈ X, we have V

∗
(x) = V ∗(x).

30



Sampling Techniques for Markov Games

Now, given an A-policy πA, and any B-policy π̃B , we have

V s
πA ≤ lim

N→∞
E

{

N−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

= E

{

K−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

+ lim
N→∞

E

{

N−1
∑

k=K

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

≤ E

{

γKV (xk) +

K−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

+
γKRmax

1 − γ
+ γK |V |∞

= (TK
πA,π̃BV )(x) +

γKRmax

1 − γ
+ γK |V |∞.

Taking first minπ̃B and then taking maxπA , and then using Proposition 4, this yields

V
∗
(x) ≤ (TKV )(x) +

γKRmax

1 − γ
+ γK |V |∞. (13)

On the other hand, if π̃B is a best-response policy for πA, then we can write,

V s
πA = lim

N→∞
E

{

N−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

= E

{

K−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

+ lim
N→∞

E

{

N−1
∑

k=K

γkR(xk,µ
πA

k (xk),µ
π̃B

k (xk))

}

≥ (TK
πA,π̃BV )(x) −

γKRmax

1 − γ
− γK |V |∞.

Now, taking minπ̃B and then taking maxπA , and then using Proposition 4, this gives

V
∗
(x) ≥ (TKV )(x) +

γKRmax

1 − γ
+ γK |V |∞. (14)

But this is true for all ǫ > 0, and hence is also true with ǫ = 0. Now (13) and (14) together
imply

lim
K→∞

(TKV )(x) = V
∗
(x). (15)

Similarly, it can be shown that

lim
K→∞

(TKV )(x) = V ∗(x). (16)
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Equations (15) and (16) together imply that the two optimal security levels are in fact
equal, and hence V ∗(x) is well-defined for all x ∈ X. Also, the convergence of (TKV )(x) to
V ∗(x) immediately follows from these equations.

Proposition 6.
lim

N→∞
(TN

πA,πBV )(x) = VπA,πB (x).

Proof. From the definition of VπA,πB , we have

VπA,πB(x) = lim
N→∞

E

{

N−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
πB

k (xk))

}

= E

{

K−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
πB

k (xk))

}

+ lim
N→∞

E

{

N−1
∑

k=K

γkR(xk,µ
πA

k (xk),µ
πB

k (xk))

}

.

Now as R ≤ Rmax, this implies,

VπA,πB(x) −
γKRmax

1 − γ
− γK |V |∞

≤ E

{

γKV (xk) +

K−1
∑

k=0

γkR(xk,µ
πA

k (xk),µ
πB

k (xk))

}

= (TK
πA,πBV )(x) (17)

≤ VπA,πB(x) +
γKRmax

1 − γ
+ γK |V |∞, (18)

which, on taking limit as K goes to infinity yields the result.
Proposition 7. Suppose πA and πB are stationary. Then the value of the game under

this policy pair satisfies VπA,πB = TπA,πBVπA,πB .
Proof. From the proof of Proposition 5 (Equation (18)), we have

VπA,πB(x) −
γKRmax

1 − γ
− γK |V |∞

≤ (TK
πA,πBVπA,πB)(x)

≤ VπA,πB(x) +
γKRmax

1 − γ
+ γK |V |∞.

Applying the operator TπA,πB , and using Propositions 2 and 3, we get

(TπA,πBVπA,πB )(x) −
γK+1Rmax

1 − γ
− γK+1|V |∞

≤ (TK+1
πA,πBVπA,πB)(x)

≤ (TπA,πBVπA,πB)(x) +
γK+1Rmax

1 − γ
+ γK+1|V |∞.
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Which, on taking the limit as K goes to infinity yields the result, using Proposition 7.

Proposition 8. The Nash value satisfies Bellman’s equation, V ∗ = TV ∗.
Proof. The proof of this proposition is exactly same as that of Proposition 7, except for

that we use (13) and (14) instead of (18) and note that V
∗

= V ∗ = V ∗.

Proposition 9. Suppose V and V ′ are bounded. For all k ∈ N, we have

max
x∈X

∣

∣

∣
(T kV )(x) − (T kV ′)(x)

∣

∣

∣
≤ γk max

x∈X

∣

∣V (x) − V ′(x)
∣

∣ .

Proof. Let
c =

∣

∣V − V ′
∣

∣

∞
.

Then we have
V (x) − c ≤ V ′(x) ≤ V (x) + c.

From Proposition 2 and Proposition 3, we have,

(T kV )(x) − γkc ≤ (T kV ′)(x) ≤ (T kV )(x) + γkc, ∀x ∈ X,

from which the result follows.
Proposition 10. Let Y 1, . . . ,Y N be i.i.d. random variables satisfying |Y i| ≤ Ymax w.p.1

and EY i = µ. Then,

P

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

Y i − µ

∣

∣

∣

∣

∣

≤ λ

]

≥ 1 − 4e−λ2N/8Y 2
max .

Proof. Our proof follows that by Alon et al. (1992) with small variations. Define a new
set of random variables X1, . . . ,XN as X i = (Y i−µ)/Ymax. Then, X i are i.i.d., EX i = 0,
and |Xi| ≤ 1. Let

X =
1

N

N
∑

i=1

Xi.

For all s > 0, we have
es + e−s

2
≤ es2/2.

This implies,
es ≤ 2es2/2.

Now, as |Xi| ≤ 1 w.p.1, we have for all s > 0,

E
[

esXi/N
]

≤ es/N ≤ 2es2/2N2

.

But then,

E
[

esX
]

=
(

E
[

esXi/N
])N

≤ 2es2/2N .
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Then, using Chernoff bound, we have

P [X > λ] = P
[

esX > esλ
]

≤ 2es2/2N−sλ.

Substituting s = λN , we have

P [X > λ] ≤ 2e−λ2N/2. (19)

Using similar argument, we can also prove that

P [−X > λ] ≤ 2e−λ2N/2. (20)

Combining (19) and (20), and re-normalizing we get the result.
Lemma 14. With probability at least 1 − 4(|A||B|N + 1)he−λ2N/(8V 2

max) we have that
|Q∗(x, a, b) − Qh(x, a, b)| ≤ αh.

Proof. The proof is by induction on h, with the base case h = 0 being trivially true.
Assume for induction that the lemma holds for h − 1. Recall that f(x, a, b) is a random
variable denoting the next state when action pair 〈a, b〉 is taken in state x. Observe that

|Q∗(x, a, b) − Qh(x, a, b)|

= γ





∣

∣

∣E(V ∗(f(x, a, b))) −
1

N

∑

x′∈Sa,b(x)

NashVal(Qh−1(x′, ·, ·))
∣

∣

∣





≤ γ

(

∣

∣

∣
E(V ∗(f(x, a, b))) −

1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣

+
∣

∣

∣

1

N

∑

x′∈Sa,b(x)

V ∗(x′) −
1

N

∑

x′∈Sa,b(x)

NashVal(Qh−1(x′, ·, ·))
∣

∣

∣

)

≤ γ

(

∣

∣

∣
E(V ∗(f(x, a, b))) −

1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣

+
1

N

∑

x′∈Sa,b(x)

∣

∣

∣NashVal(Q∗(x′, ·, ·)) − NashVal(Qh−1(x′, ·, ·))
∣

∣

∣

)

≤ γ

(

∣

∣

∣E(V ∗(f(x, a, b))) −
1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣

+
1

N

∑

x′∈Sa,b(x)

∣

∣

∣
Q∗(x′, ·, ·) − Qh−1(x′, ·, ·)

∣

∣

∣

∞

)

.

We now probabilistically bound both terms in the right-hand side of this chain of
(in)equations, showing, for β = (|A||B|N + 1)h−14e−λ2N/(8V 2

max
), that both

P





∣

∣

∣
E(V ∗(f(x, a, b))) −

1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣
> λ



 < β (21)

P
(

∃x′ ∈ Sa,b(x)
∣

∣

∣Q∗(x′, ·, ·) − Qh−1(x′, ·, ·)
∣

∣

∣

∞
> αh−1

)

< |A||B|Nβ. (22)
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The probability that at least one of the events in Equations 21 and 22 occurs cannot
exceed the sum of the individual event probabilites, or (|A||B|N + 1)β, which on expanding
β is (|A||B|N + 1)h4e−λ2N/(8V 2

max
). But then, the chance that both events do not occur is at

least 1 − (|A||B|N + 1)4e−λ2N/(8V 2
max

). Then, the above equations guarantee that, with at
least this same probability,

|Q∗(x, a, b) − Qh(x, a, b)| ≤ γ

(

∣

∣

∣E(V ∗(f(x, a, b))) −
1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣

+
1

N

∑

x′∈Sa,b(x)

∣

∣

∣Q∗(x′, ·, ·) − Qh−1(x′, ·, ·)
∣

∣

∣

∞

)

≤ γ(λ + αh−1) = αh

This is our desired result, so it only remains to show Equations 21 and 22.
Equation 21 derives from Proposition 10, which gives

∣

∣

∣
E(V ∗(f(x, a, b))) −

1

N

∑

x′∈Sa,b(x)

V ∗(x′)
∣

∣

∣
> λ

with probability at most 4e−λ2N/(8V 2
max), and thus at most (|A||B|N + 1)h−14e−λ2N/(8V 2

max).
Equation 22 follows from the induction hypothesis: we have, for each of |A||B|N sam-
pled states x′ ∈ Sa,b(x), |Q∗(x′, ·, ·) − Qh−1(x′, ·, ·)|∞ > αh−1 with probability at most

4(|A||B|N + 1)h−1e−λ2N/(8V 2
max

).
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