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1 Introduction

Automated reasoning is one of the central problems of artificial intelligence
and computer science. Effective automated reasoning systems, if they could
ever be constructed, would have a wide range of applications including the
verification and synthesis of computer programs, question answering based on
declarative knowledge bases, the mechanical verification of new mathematical
results, the verification of student arguments in computer aided instruction
systems, and probably other unforeseen applications. Unfortunately, many
potential applications of automated reasoning have suffered from its apparent
computational intractability.

The most successful automated reasoning systems have been based on
man-machine interaction. Following [5], we formalize man-machine interac-
tive systems as Socratic proof systems. A formal Socratic proof is a series of
steps, analogous to the questions used in the Socratic method of teaching,
but where a mechanical procedure is used to determine the “acceptability”
of individual steps. In this paper we discuss a general framework for the
construction of such systems and define a particular formal Socratic proof
system based on a new procedure for determining the acceptability of steps.
Our objective is to make Socratic proofs as concise and as natural as pos-
sible while ensuring that acceptability can still be quickly determined. To
make Socratic proofs concise, the step-checking procedure must provide some
amount of automated reasoning. To make step-checking fast, however, this
automated reasoning must be limited. We achieve natural, concise, and
quickly-checkable Socratic proofs by basing our system on a non-standard
syntax for first order logic. We formally specify the acceptability of indi-
vidual Socratic steps in terms of a computationally tractable, and hence
semantically incomplete, set of inference rules for this non-standard syntax.
The tractable inference rules underlying our Socratic system appear not to
have any natural expression in the classical syntax of first order logic.

Many researchers have discussed and built systems that can be viewed
as Socratic proof systems. One way of constructing a Socratic system is to
simply place a limit on the amount of time allotted for theorem proving in
checking individual steps. This has been done for systems based on resolution
theorem proving [2]. However, many researchers are uncomfortable with the



lack of any natural characterization of exactly when an individual step in
these Socratic proofs is acceptable.

Term rewriting systems form another class of Socratic systems with a
more natural definition of an acceptable proof step. There currently exists a
variety of man-machine interactive systems that use term rewriting combined
with various methods of performing mathematical induction [3], [10], [11].
The theorem proving mechanisms employed in these systems are incomplete
and often terminate with failure. If a desired theorem cannot be proven in
a fully automated way, it can often be broken down into a series of lemmas
where each lemma can be proven by the automated procedure and, given
these lemmas, the automated procedure can also prove the desired result.
This series of lemmas can be viewed as a series of steps in a Socratic proof.
Unfortunately, there is usually no guarantee that rewriting terminates in
polynomial time, and long computation times can be a problem in practice.

Another approach to the construction of Socratic systems uses some form
of decision procedure to verify individual steps of Socratic proofs. Some au-
thors have proposed decision procedures that require more than polynomial
time, such as the decision procedure for propositional dynamic logic, or the
decision procedure for ground predicate calculus [20], [6]. Others have em-
phasized polynomial time procedures [17]. Polynomial time procedures are
clearly desirable if one wants the acceptability of Socratic proofs to be quickly

checkable.

Some research on polynomial time inference procedures has emphasized
computationally tractable fragments of first order logic. For example, it is
not difficult to give a linear time procedure for determining the satisfiability
of a set of propositional Horn clauses [9]. A more complex example involves
deciding the satisfiability of a set of ground literals in first order logic with
equality. The difficult part of this satisfiability problem is computing all sub-
stitutional consequences of equality. A polynomial time decision procedure
based on congruence closure was first given by Kozen [13]. Kozen’s con-
gruence closure procedure was followed by a series of applications and more
efficient implementations [17] [8]. It is also possible to combine the decision
procedure for Horn clauses with the decision procedure for ground literals
resulting in an efficient procedure for deciding the satisfiability of a set of



ground Horn clauses in first order logic with equality.

Polynomial time inference procedures have also been studied within the
knowledge representation subfield of artificial intelligence. Knowledge rep-
resentation languages are sometimes criticized as being merely “pretty ver-
sions” of ordinary first order logic. There are two responses to such criticism.
First, some of the constructs of knowledge representation languages cannot
be easily translated into first order logic.! Second, even for languages that
can be faithfully translated to first order logic, the non-standard syntax of a
knowledge representation language often allows the identification of compu-
tationally tractable fragments of the logic which have no natural character-
ization in classical syntax. Non-standard tractable fragments of logic have
been identified in the context of a certain family of knowledge representation
languages called frame description languages, or FDLs [4] [16].

Although an FDL is a nonstandard syntax, one can still identify atomic
formulas, literals, Boolean combinations and quantified formulas. FEarlier
work on FDLs has focused primarily on the problem of determining the va-
lidity of individual atomic formulas. Because atomic formulas can be more
expressive in a nonstandard syntax than in classical syntax, determining the
validity of an atomic formula can be nontrivial.? In this paper we focus on the
problem of determining the satisfiability of a set of ground literals in an ex-
pressive nonstandard syntax. For a given syntax, the problem of determining
the satisfiability of a set of literals is at least as hard as, and usually much
harder than, the problem of determining the validity of individual atomic
formulas. Previous work on FDLs is discussed in more detail in Section 3.

The existence of tractable fragments of first order logic has lead some
researchers to adopt a two-language approach to knowledge representation
— the knowledge base of facts is separated into those facts expressible in
a fixed tractable language and those facts not expressible in that language

!There are (at least) three features occurring in various knowledge representation lan-
guages that are difficult, if not impossible, to translate into first order logic. The first
involves heuristic or probabilistic knowledge, also known as defaults and nonmonotonicity
[19]. The second is “intensional” propositions such as the proposition P in the sentence
“John believes that P” [12]. A third is recursive definitions. Recursive definitions are
perhaps best modeled using the p-calculus [18].

?In classical syntax, the only valid atomic formulas are equations of the form ¢ = ¢.



[4]. If a given query is expressed as a formula in the tractable fragment of
logic, then a polynomial decision procedure can be used to determine if the
query formula follows from the tractable component of the data base. More
expressive tractable fragments of logic allow more facts to be included in the
tractable component of the data base and make the polynomial time inference
procedure more useful. However, since the decision procedure is only applied
to formulas in the tractable fragment of the language, the decision procedure
can only be applied to a subset of the possible queries. Furthermore, even
when the decision procedure can be applied, it can only use as premises those
facts in the knowledge base that are also expressed in the tractable language.

In this paper we propose a one-language architecture for knowledge rep-
resentation. In our one-language architecture we characterize the underlying
inference procedure by a set of inference rules. Although the rules are not
complete for the full language, the rules can be usefully applied to arbitrary
sets of formulas. Furthermore, the rules are designed so that one can deter-
mine, in polynomial time, whether or not a given query can be proven from
a data base using the given rules. This eliminates the need to separate the
data base into two fragments. In a corresponding two-language system, the
inference procedure would only be applied to that subset of the data that
could be expressed in the decidable sublanguage, i.e., in the subset of the
language for which the rules are complete. However, the inference rules can
be used to draw conclusions from information not expressible in the decidable
sublanguage. The one-language architecture is able to draw more conclusions
than the corresponding two-language system.

Polynomial time inference procedures have also been studied in the con-
text of unification theory. Most relevant to the present paper is the study
of many sorted unification [22]. Certain first order axioms about taxonomic
relationships can be incorporated into the sort structure of many sorted logic
and then handled in the unification step of a resolution theorem prover. This
allows many inference problems to be represented with fewer clauses and re-
duces the space of possible proofs that the theorem prover must search. For
simple sort systems it is possible to construct efficient sorted unification al-
gorithms. There are two principle differences between the use of sorts in
unification and the use of taxonomic formulas described here. First, the
sort structures that have been built into unification procedures are simpler



than the taxonomic formulas studied here. For example, in the unification
algorithms presented in [22] the sorts are represented by symbols under a
fixed partial order and complex class expressions are not considered. Sec-
ond, like earlier work on FDLs, sorted unification also takes a two-language
approach to the use of decision procedures. The sort structure is expressed
in a separate language from that used to express more complex formulas.

Our one-language architecture for knowledge representation is formalized
as a Socratic proof system. Although there may be consequences of a knowl-
edge base that are not “obvious” to the knowledge representation system,
the system can always be “convinced” of the fact by presenting it with an
appropriate Socratic proof. A Socratic proof is a sequence of steps where a
polynomial time decision procedure is used to test the acceptability of in-
dividual steps. More powertul decision procedures lead to shorter Socratic
proofs. For the Socratic proof described here there is no need for a distinction
between a tractable and an intractable language.

The Socratic proof system defined in this paper is similar to the one used
in the Ontic system [15]. Ontic provides Socratic completeness relative to
Zermelo-Fraenkel set theory, i.e., any formula provable in set theory can be
given a Socratic proof in that system. Ontic has been used to verify the Stone
Representation Theorem of lattice theory starting with only the axioms of
set theory. The use of a powerful inference procedure in verifying individual
steps of a Socratic proof greatly reduces the textual length of such proofs.
The introduction of our non-standard syntax allows the inference procedure
defined here for step-verification to be stronger than the one used in Ontic.

2 Taxonomic Syntax for First Order Logic

The construction of a non-standard syntax for first order logic is motivated
by a desire for powerful yet computationally tractable inference rules. By
“computationally tractable inference rules” we mean a set of inference rules
such that there exists a polynomial time procedure for determining whether
or not an arbitrary formula can be derived from arbitrary premises, i.e., the
inference relation generated by the rules is polynomial time decidable. Of



course, no computationally tractable set of inference rules can be complete
for full first order logic. However, there are useful tractable rule sets and the
power of tractable rule sets appears to be sensitive to the syntax used for
expressing formulas.

In our taxonomic syntax, as in classical syntax, a first order language
is defined by a set of constant, function, and predicate symbols where each
function and predicate symbol is associated with a specified arity (number of
arguments). The models that define the semantics of our taxonomic expres-
sions are identical to the models that define the semantics of classical first
order expressions. A model consists of a set D), called the semantic domain
of the model, together with an interpretation of every constant, function and
predicate symbol. We will use D™ to denote the set of all n-tuples of elements
of D. A first order model with semantic domain D interprets each constant
symbol as an element of D, each n-ary function symbol as a function from
D" to D and each n-ary predicate symbol as a subset of D".

Our taxonomic syntax for first order logic is organized around class ex-
pressions and taxonomic relationships between class expressions. Class ex-
pressions are analogous to classical first order terms except that class expres-
sions denote sets rather than individuals. Class expressions are constructed
from variables, constants, function symbols and predicate symbols in much
the same way that terms are constructed from variables, constants, and func-
tion symbols. For example, if A-MAN is a monadic predicate symbol then
A-MAN is, all in itself, a class expression. Intuitively, the class expression
A-MAN denotes the set of all men. If PARENT-OF is a binary relation
symbol then PARENT-OF(A-MAN) is a class expression. Intuitively, this
class expressions denotes the set of people who are the parent of some man.
Formally, class expressions can be defined syntactically as follows.

Definition: A class expression is either

e a variable,
e a constant symbol,
e a monadic predicate symbol,

e an application f(Cy,---,C,) of an n-ary function symbol f
to n class expressions Cy,- -, C,,



e or an application R(Cy,---,C,_1) of an n-ary relation sym-
bol R (with n > 1) to n — 1 class expressions Cy, -+, C,_1.

Intuitively, the semantics of class expressions corresponds to simply read-
ing class expressions as if they were English noun phrases. For example, if
FATHER-OF is a monadic function symbol, and A-MAN is a monadic
predicate symbol, then the class expression FATHER-OF(A-MAN) de-
notes the set of individuals that are the father of some man. More formally,
this class expression denotes the image of the set denoted by A-MAN un-
der the function denoted by FATHER-OF. A rigorous treatment of the
semantics of class expressions is given below.

The formulas of taxonomic syntax include atomic statements about the
taxonomic relationships between class expressions. More specifically, we
write Is(C, W) to say that the set denoted by C is a subset of the set denoted
by W. We also write Ex(C') to say that the set denoted by C' is non-empty
and we write Det(C') to say that there is at most one element of the set
denoted by C. Finally, we write Int(C, W) to say that the set denoted
by C' has a non-empty intersection with the set denoted by W. Taxonomic
formulas are defined syntactically as follows.

A taxonomic formula is either

e a classification formula, Is(C, W), where C' and W are class
expressions,

e an existence formula, Ex(C'), where C' is a class expression,

e a determination formula, Det(C'), where (' is a class expres-
sion,

e an intersection formula, Int(C, W), where C' and W are
class expressions,

e a Boolean combination of taxonomic formulas,

e or a quantified formula of the form Va®(x) or 2P (x) where
¢ (x) is a taxonomic formula.



As in the case of class expressions, the semantics of taxonomic formulas
roughly corresponds to simply reading these formulas as if they were English
sentences. For example, the formula Is(x, A-PERSON) is true just in case
the value of the variable x is an element of the set denoted by the class expres-
sion A-PERSON. The formula Is(y, A-CHILD-OF (x)) is true just in case
the pair <z, y> is contained in the relation denoted by A-CHILD-OF. The
formula Is(z, A-CHILD-OF (A-CHILD-OF (x))) is true just in case there ex-
ists some member y of the class A-CHILD-OF (z) such that z is a member
of the class A-CHILD-OF (y). The formula Is(x, TIMES (2 A-NUMBER))
is true just in case x can be written as the product of 2 and some number,
i.e., just in case x is an even number.

We now give a rigorous definition of the semantics of taxonomic formu-
las and class expressions. Note that a first order model does not provide
an interpretation of variables; as in classical syntax the semantic value of
an expression containing free variables is determined by a variable interpre-
tation, i.e., a mapping from variables to elements of the semantic domain.
The semantics of class expressions and taxonomic formulas can be rigorously
defined as follows.

Definition: Let M be a first order model with semantic domain
D and let p be a mapping from variables to elements of D. For
any class expression C' we define the semantic interpretation of C,

denoted M(C, p), to be a subset of D determined by the following
conditions.

e If v is a variable then M (v, p) is the singleton set containing
p(o).

e If ¢ is a constant then M(c, p) is the singleton set containing
the element of D that M assigns to c.

e If P is a monadic predicate symbol then M(P, p) equals the
subset of D that M assigns to the predicate P.

o If f is an n-ary function symbol, and Cy,---,C,, are class
expressions, then M(f(Cq,---,C,), p) is the set of all y such
that there exist elementsxy ..., a, in M(Cy,p), -, M(Cy, p)
respectively such that y is the value of the function that M
assigns to f when applied to the tuple <zq,---,2,>.



o If R is an n-ary relation symbol for n > 1, and Cy,---,C,_1
are class expressions, then M(R(Cy,---,C,_1), p) is the set
of all y such that there exist elements @1, ..., 2,-1 in M(Cy, p),
-+, M(C,_1, p) respectively such that the tuple <aq,---, 2,1, y>
is a member of the relation that M assigns to the symbol

R.

For any taxonomic formula ® we define the semantic interpreta-
tion of ®, denoted M(®, p), to be either T or F as determined
by the following conditions.

o M(Is(Cy, Cy),p)is T if and only if M(CY, p) is a subset of
M(027p)

o M(Ex(C),p)is T if and only if M(C, p) is non-empty.
o M(Det(C),p)is T if and only if M(C, p) has at most one

member, i.e., is either empty or a singleton.

o M(Int(Cy, C3),p)is T if and only if the set M(C1, p) has
a non-empty intersection with the set M(Cs, p).

e Boolean combinations and quantified formulas have their
standard interpretation.

Much of the standard terminology of classical syntax can be carried over
to our taxonomic syntax. Any formula other than a Boolean combination
or quantified formula will be called an atomic formula, i.e., atomic formulas
are taken to be classification formulas, existence formulas, determination
formulas, and intersection-formulas. A literalis defined to be either an atomic
formula or the negation of an atomic formula. A ground expression is a
formula or class expression that does not contain any variables (either free
or bound). A formula is called satisfiable if there exists a first order model
and a variable interpretation under which that formula is true. A formula
that is true under all first order models and all variable interpretations will
be called valid. A formula is valid if and only if its negation is not satisfiable.
We say that a pair <M, p> satisfies a set of formulas ¥ if M(W, p) is T for
every element W of ¥. If there exists a pair <M, p> that satisfies ¥ then X
is called satisfiable. We write X = @ if ® is true under all interpretations of
Y, i, if M(®,p) equals T for any pair <M, p> that satisfies X.
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Note that classical terms are a subset of class expressions — class ex-
pressions that do not contain predicate or relation symbols, i.e., classes built
purely from constants and function symbols, will be called terms. Note that
under the semantics of taxonomic syntax, terms always denote singleton sets.
So if s and t are terms then the formulas Is(s, ¢) and Is(t, s) are both equiv-
alent to the classical equation s = ¢.

Every atomic formula of classical syntax can be translated directly into
a classification formula of taxonomic syntax. As just noted, a classical equa-
tion s =t is equivalent to Is(s, ¢). If R is an n-ary predicate symbol then
the classical atomic formula R(sq,---,s,_1,w) is equivalent to the taxono-
mic atomic formula Is(w, R(s1, -+, s,-1)). Although every classical atomic
formula is equivalent to a taxonomic classification formula, there is no cor-
responding inverse translation from taxonomic atomic formulas to classical
atomic formulas. Consider the taxonomic formula Is(P, ()) where P and
() are monadic predicate symbols. It is possible to show that any classical
formula equivalent to Is(P, @) must involve quantifiers — if ® is a quantifier-
free classical formula there exists a model and a variable interpretation in
which @ is true but Is(P, Q) is false. Intuitively, classical quantifier-free
formulas can only mention a finite subset of the semantic domain while the
atomic formula Is(P, @) places a constraint on all domain elements. These
observations imply that taxonomic ground literals are strictly more expres-
sive than classical ground literals. However, taxonomic atomic formulas can
be translated into (quantified) classical formulas. When the full quantified
language is considered, our taxonomic syntax is expressively equivalent to
classical syntax.

3 Frame Description Languages

Of course there other ways of defining a non-standard syntax for first order
logic. Our taxonomic syntax for first order logic is related to a large family
of knowledge representation languages known as frame description languages

(FDLs) [4], [16], [21], [7]. Each FDL is similar to our taxonomic syntax in
that it provides a simple recursive definition of a particular set of class expres-
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sions built from constant, function, predicate, and relation symbols.® The
class expressions of a particular FDL can be considerably different from the
class expressions of our taxonomic syntax. For example, all FDLs discussed
in the knowledge representation literature include intersection operations on
class expressions — given any two class expressions Cy and C; the class ex-
pression AND(C}, C3) denotes the intersection of the sets denoted by C
and (5. Various other ways of constructing class expressions are allowed de-
pending on the particular FDL in question. There is no simple relationship
between the expressive power of quantifier-free taxonomic syntax as defined
here and the FDLs that have been discussed in the literature. For exam-
ple, the class expression VR.C' as defined in [7] cannot be expressed in the
quantifier-free fragment of our taxonomic syntax. Conversely, the class ex-
pression R(C' W) of our taxonomic syntax cannot be expressed in any of the
languages discussed in [7].

For a given FDL one can define at least three decision problems of in-
creasing difficulty which we will call the atomic formula validity problem,
the atomic formula entailment problem, and the literal conjunction satisfi-
ability problem. The atomic formula validity problem is just the problem
of determining if a single ground classification formula is valid. The atomic
formula entailment problem is the problem of determining if a given ground
classification formula follows from a finite data base containing ground classi-
fication formulas, i.e., does a given classification formula follow from a finite
conjunction of other classification formulas. Finally, the literal conjunction
satisfiability problem is the problem of determining if a finite conjunction
of ground classification formulas and negations of ground classification for-
mulas is satisfiable. For a fixed FDL these three problems are of increasing
difficulty — the atomic formula validity problem is just a special case of the
atomic formula entailment problem, which is itself essentially a special case
of the literal conjunction satisfiability problem.

The knowledge representation literature has focused almost exclusively
on the atomic formula validity problem. The atomic formula validity prob-

3Within the knowledge representation literature an FDL is not viewed as an alternative
syntax for full first order logic. Rather, the formulas of an FDL are restricted to include
only classification formulas between ground class expressions. Under this restriction, these
languages are far less expressive than full first order logic.
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lem for classification formulas is equivalent to the problem of determining
whether one class expression necessarily denotes a subset of the set denoted
by a second class expression. This particular problem is known in the knowl-
edge representation literature as the subsumption problem — the problem of
determining whether one class subsumes another class. Several FDLs have
been found in which the atomic formula validity problem (the subsumption
problem) is non-trivial yet polynomial time decidable [16]. However, we do
not know of any published polynomial decision procedures for the atomic
formula entailment problem of an FDL. The literal conjunction satisfiability
problem has been similarly ignored. In practice one must draw conclusions
from a data base of given facts, so a solution to the atomic formula en-
tailment problem is more directly applicable than a solution to the atomic
formula validity problem.

The ground classification formulas of the taxonomic syntax defined in this
paper constitute a particular FDL. The atomic formula validity problem of
this FDL is trivial — a ground classification formula is valid if and only if
the two class expressions involved are identical. Despite the trivial nature of
the atomic formula validity problem, it is quite difficult to construct decision
procedures for the atomic formula entailment problem and literal conjunction
satisfiability problem. We show in this paper that, for our taxonomic syntax,
the literal conjunction satisfiability problem, and hence the atomic formula
entailment problem, is polynomial time decidable.

Given the difficulty we have encountered in constructing a polynomial
time decision procedure for the literal conjunction satisfiability problem of
our taxonomic syntax, we feel that our syntax represents a distinguished com-
promise between tractability and expressive power. Our taxonomic syntax
is also distinguished by its close relationship to classical syntax — the class
expressions of our syntax are constructed from constants, functions, pred-
icates and relations using application as the only method for constructing
new classes.

4 Literal Conjunction Satisfiability
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(1) Is(C, O)

2)  Is(C, W), Is(W, Z)

Is(C, 7)

(3) Ex(C), Is(C, t)

(13)  Det(W), Is(C, W)

Is(t, C)
Det(C)
(4) IS(Cl, Wl),"',IS(Cn, Wn)

(14)  Det(Cy), -, Det(C,)
IS(R(Cl, ey Cn), R(Wl, ey Wn))

Det(f(Cl, crcy Cn))

(15)  Ex(C)

Int(C, C)

(16)  Int(C, W), Is(C, 7)

Int(Z, W)
Ex(W)
(17) Int(C’l, Wl),~~~,Int(C'n, Wn)
(8)  Ex(Ch)
Int(f(C’l,,C'n), f(Wl,,Wn))
Ex(Cy)

(18)  Int(C, W)

Ex(f(Cy,---,Cn))
Int(W, C)
(9) Ex(R(s1,...,5n))

(19) Int(C, W), Det(C)
Ex(s;)

Is(C, W)
(10) —Det(C)

Ex(C)
Figure 1: The inference rules for taxonomic literals. In these rules C'; W, and
7 range over arbitrary class expressions, ¢ ranges over terms (class expres-
sions built purely from constants and function symbols), R ranges over both
function symbols and relation symbols, and f ranges over function symbols.
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It is a well known that the satisfiability of a finite set of classical ground
literals is polynomial time decidable. In this section we show that this result
can be extended to our taxonomic syntax. The significance of this extension
lies in the significantly greater expressive power of taxonomic ground literals.

The decision procedure for the classical ground literal satisfiability prob-
lem is based on congruence closure for reasoning about equality [13], [8], [17].
Our decision procedure for taxonomic syntax can be viewed as a (non-trivial)
adaptation of congruence closure. The congruence closure procedure can be
viewed as an implementation of the four basic inference rules for equality
— reflexivity, transitivity, symmetry, and substitutivity (congruence). These
four basic inference rules are semantically complete for deriving ground equa-
tions from ground equations. An analogous set of inference rules for taxo-
nomic literals is given in figure 1. In the transition to taxonomic syntax,
the four simple rules for equality have been replaced by 19 rules! Given the
simplicity of our taxonomic class expressions, and the clear analogy between
classification formulas and classical equalities, it is surprising that so many
inference rules are needed. Before presenting the polynomial time decision
procedure based on these rules we will present a series of examples of satis-
fiability problems in an attempt to provide an intuitive justification for the
large number of inference rules.

To gain better insight into the need for a large rule set, we will investigate
some ways one might attempt to reduce the number of rules required. The
most obvious way of reducing the number of rules is to simplify the language
by eliminating existence, determined, and intersection formulas. All literals
involving atomic formulas other than classification formulas can be replaced
by classification formula literals. For example, Det(P) can be replaced by
Is(P, ¢) where ¢ is a new constant symbol. The most difficult literal to
replace is —~Int( P, () which can be replaced by Is(f(P), a), Is(f(Q), b) and
—Is(a, b) where f is a new function symbol and a and b are new constant
symbols.

Definition: A finite set X of taxonomic ground literals will be
called a clean premise set if ¥ consists only of classification for-
mulas and negations of classification formulas.

Lemma: If ¥ is a finite set of taxonomic ground literals then

15



one can compute, in linear time in the size of ¥, a clean premise
set ¥’ such that ¥’ is satisfiable if and only if ¥ is satisfiable.

The classification formulas of taxonomic syntax are analogous to the
equalities of classical syntax. In fact, the first four inference rules in fig-
ure 1 correspond to the four basic rules of equality — rules 1 through 4 are
identical to the rules for equality except that the taxonomic symmetry rule
(rule 3) can only be applied to a formula Is(C, t) when C is known to be
non-empty and ¢ is a term.* This restriction guarantees that the symmetry
rule is only applied when the two class expressions involved both denote sin-
gleton sets. By restricting the symmetry rule to apply only when both class
expressions are terms, one can give a version of rules 1 through 4 that only
involves classification formulas. One might hope, by analogy with equality,
that this version of rules 1 through 4 would be complete for clean premise
sets. Unfortunately, there appears not to be any complete version of rules 1
through 4. To appreciate the difficulties involved, consider the following set
of three classification formulas.

Ts(a, R(P)), Is(P, b), Is(P, ¢)

In these literals a, b, and ¢ are constant symbols, P is a monadic predicate
symbol, and R is a binary relation symbol. These literals together imply
Is(b, ¢). To see this note that the first literal implies that R(P) denotes a
non-empty set. The semantics of class expressions is such that this can only
happen when P denotes a non-empty set. But the second two literals imply
that if P is non-empty then it must contain a single element which is the
value assigned to both b and ¢ so we must have Is(b, ¢). We have not found
any version of rules 1 through 4 that can, in themselves, derive Is(b, ¢) from
the above three literals. However, rules 1 through 9 are sufficient to derive
Is(b, ¢). Given the first literal above, inference rules 5 and 7 can be used to
derive Ex(R(P)). Inference rule 9 can then be used to derive Ex(P). Given
the literal Is(P, b), the symmetry rule (rule 3) can now be used to derive
Is(b, P). Finally, given Is(P, ¢), transitivity (rule 2) can be used to derive
Is(b, ¢). Note the importance of inference rule 9 in this derivation. Infer-
ence rule 9 is a source of complexity for the literal conjunction satisfiability

*Recall that terms are class expressions constructed entirely from constants and func-
tion symbols.
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problem. Rule 9 provides a way of proving formulas of the form Ex(C') even
when there is no term ¢ such that one can derive Is(¢, C).

Although existence formulas appear to be essential in any complete infer-
ence process, determined and intersection formulas are not. It turns out that
inference rules 1 through 9 are complete for determining the satisfiability of
clean premise sets. Note that rules 1 through 9 are self-contained in the sense
that they only involve classification formulas and existence-formulas. Rules
5 and 6 introduce existence formulas, rules 7 through 9 propagate existence
formulas, and rule 3 uses existence formulas in deriving new classification
formulas.

Intractable Completeness Theorem: If ¥ is a clean premise
set then Y is unsatisfiable if and only if ¥ contains a formula

of the form —Is(C, W) such that the formula Is(C, W) can be

derived from X using inference rules 1 through 9.

For reasons explained below, we do not give a direct proof of this com-
pleteness theorem. Rather, we prove that inference rules 10 through 19 are
redundant in the sense that any classification formula provable using the en-
tire rule set is provable from rules 1 through 9 alone. A completeness proof
for the entire rule set will then establish completeness for rules 1 through
9. The completeness proof for the entire rule set is not any simpler than a
direct proof of the completeness of rules 1 through 9. However, a direct proof
of completeness for rules 1 through 9 alone would not provide a polynomial
time decision procedure (hence the name intractable completeness theorem).
Rules 10 through 19 play an essential role in the polynomial time decision
procedure discussed below.

It should be pointed out that, although inference rules 1 through 9 are
complete for determining satisfiability, they are not complete in the normal
sense. Suppose we are trying to determine if Is(P, @) follows from a clean
premise set ¥. It is possible that Is(P, @) follows but cannot be derived
using the above rules. However, if we add —Is(P, Q) to ¥ then rule 6 can
be used to derive Ex(P), a formula not necessarily derivable from . The
additional formula Ex(P) may lead to a derivation of Is(P, @) showing that
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Is(P, Q) does indeed follow from ¥. The construction of a concrete example
of this phenomenon is left as an exercise for the reader.

We now show that inference rules 10 through 19 are redundant (for clean
premise sets) relative to rules 1 through 9. If ¥ is a clean premise set then
one can prove the following facts by simultaneous induction on the length of
derivations from ¥ using the full rule set.

e If Det(C) is derivable from ¥ using the full rule set then there exists
some term ¢ such that the formula Is(C, t) is derivable from ¥ using
rules 1 through 9.

o IfInt(C, W) is derivable from ¥ using the full rule set then there exists
some class expression Z such that Ex(7), Is(Z, C) and Is(Z, W) are
all derivable from X using rules 1 through 9.

o If Is(C, W) is derivable from ¥ using the full rule set then Is(C, W)

is derivable from X using rules 1 through 9.

o If Ex(C) is derivable from ¥ using the full rule set then Ex(C) is
derivable from X using rules 1 through 9.

As mentioned above, inference rules 10 through 19 play an important
role in the polynomial time decision procedure for determining satisfiability.
The need for inference rules 10 through 19 is best demonstrated through an
example. Consider the following set of literals.

e Is(a, P), Is(¢®(P), P)

o Is(g(a), Q), Is(9"(Q), Q)

o Is(f(P), b), Is(f(Q), ¢), ~Is(b, ¢)

In these literals a, b and ¢ denote constant symbols, f and ¢ denote
monadic function symbols, P and () denote monadic predicate symbols, and

¢"(a) is an abbreviation for g(g(---g(a))) with n applications of g. It turns
out that this set of seven literals is unsatisfiable. More specifically, inference
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rules 1 through 5 can be used to derive Is(b, ¢), contradicting the last lit-
eral above. We will refer to rule 1 as reflexivity, rule 2 as transitivity, rule
3 as symmetry and rule 4 as monotonicity. To derive Is(b, ¢) first consider
the pair of literals Is(a, P) and Is(¢®(P), P). From the literal Is(a, P),
repeated use of monotonicity allows us to derive Is(¢%(a), ¢°(P)). From the
literal Is(¢g®(P), P), transitivity now allows us to derive Is(¢°(a), P). In
general, given the literal Is(¢°(P), P), and any literal of the form Is(W, P),
monotonicity and transitivity allow us to derive Is(¢°(W), P). So from
Is(¢%(a), P)we can deriveIs(¢°(¢°(a)), P). And more generally, for any nat-
ural number rn, monotonicity and transitivity allow us to derive Is(¢®"(a), P).
Similarly, from the literals Is(g(a), Q) and Is(¢"(Q), Q) monotonicity and
transitivity allow us to derive Is(¢""**(a), Q) for any natural number m. 36
is the first natural number that can be written both as 6n and as 7m + 1.
Monotonicity and transitivity allow us to derive both Is(¢*°(a), P) and
Is(¢°%(a), Q). Now monotonicity also allows us to derive Is(f(¢*°(a)), f(P))
and Is(f(¢°°(a)), f(Q)). Given the literals Is(f(P), b) and Is( (@), ¢
transitivity now allows us to derive Is(f(¢*®(a)), b) and Is(f(g” ( )), c).
Symmetry, together with rule 5, now allows us to derive Is(b, f(¢g*°(a))).
Finally, transitivity can be used to derive Is(b, ¢).

Y

The derivation of Is(b, ¢) from the above literals using rules 1 through
9 requires the construction of a large class expression, ¢*®(a). This class
expression is much larger than any class expression appearing in the given
literals. This shows a fundamental difference between rules 1 through 9
for taxonomic formulas and the four basic rules for equalities underlying
congruence closure. The four rules underlying congruence closure are “local”.
More precisely, a derivation from a set of equalities ¥ will be called local if
every formula in the derivation is an equality between terms appearing as a
subexpression of equations in Y. If X is an unsatisfiable set of equalities and
negations of equalities (analogous to a clean premise set) then there exists a
local derivation of inconsistency. The locality of the equality rules allows for
the construction of a polynomial time decision procedure. Inference rules 1
through 9 for taxonomic syntax are not local in this sense. However, the full
set of inference rules is local in the same sense that the four basic equality
rules are local — derivations can be restricted to the class expressions that
actually appear in the given set of literals. In the following definitions we
avoid using the standard symbol = which we reserve as notation for the full
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first order inference relation discussed in a later section.

Definition: We write ¥ Fo W if U can be derived from ¥ using
the inference rules of figure 1. We write ¥ Fo F if ¥ contains a

formula of the form =W such that ¥ Fo W.

Definition: We write ¥ H W if U can be derived from ¥ using
the inference rules of figure 1 such that every class expression
appearing in the derivation of ¥ also appears as a subexpression
of some formula in . We write ¥ H F if ¥ contains a formula

of the form =V such that ¥ H W.

Now let ¥ be any finite set of taxonomic ground literals (clean or unclean).
The following three statements are the main results of this section.

Tractability Lemma: One can determine whether or not ¥ H F
is time polynomial in the size of X.

Tractable Completeness Theorem: ¥ H F if and only if ¥
is unsatisfiable.

Locality Corollary: ¥ H F if and only if ¥ o F.

The tractability lemma follows directly from the definition of H. If there
are n class expressions appearing in ¥ then there are only order n? literals
that can be constructed from these class expressions. Since the relation H
restricts all derivations to these order n? literals, the inference relation H is
polynomial time decidable.

The locality corollary follows directly from the completeness theorem. To
see this note that, because H is simply a restriction of Fo, if ¥ H F then
Y to F. Conversely, if ¥ t#/ F then, by the completeness theorem, ¥ must
be satisfiable. The soundness of Fo then implies that ¥ 0 F.

Before considering a proof of the completeness theorem we return to a
discussion of the following set of literals.

20



e Is(a, P), Is(¢®(P), P)
o Is(g(a), @), Is(4"(Q), Q)
o Is(f(P), ), Is(f(Q), c), ~1Is(b, c)

The last three literals imply that P and ) do not intersect. Using only
rules 1 through 9 it is possible to prove Is(¢*°(a), P) and Is(¢*%(a), Q). But
g*%(a) is a large class expression that does not appear in the above literals.
Rules 1 through 9 are not, in themselves, local. Under the full rule set,
however, if one can prove Int(P, () then one can derive a contradiction from
the last three literals. Furthermore, under the full rule set one can derive
Int(g(P), Q). Starting with this intersection statement, repeated use of rules
17 and 16 allows one to derive all formulas of the form Int(¢"(P), ¢"(Q))
where 0 < n < 6 and 0 < m < 7. This includes the formula Int(P, Q).
All class expressions in these derivations appear in the above literals so the
derivation is local. The general proof of the tractable completeness theorem
is quite difficult and is given in appendix A.

Note that the locality corollary is a purely syntactic statement — it ex-
presses the equivalence of two syntactic relations. We have found a purely
syntactic proof of this purely syntactic statement. Although we do not give
our syntactic proof, a syntactic proof of a similar theorem is given in sec-
tion 7. Given a syntactic proof of locality it would suffice to prove semantic
completeness for Fo rather than H. Unfortunately, it does not appear that a
semantic proof of completeness for Fo would be much simpler than the proof
of completeness for H.

5 Socratic Proofs

Although the inference rules given in the previous section are complete for
determining the satisfiability of a finite conjunction of ground literals, they
do not provide any method of reasoning about Boolean or quantified formulas
and are not complete for first order inference. Any knowledge representation
system that is able to store arbitrary first order facts must provide additional
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inference mechanisms if some form of first order completeness is desired. In
this section we show how the polynomial time decision procedure discussed
in the previous section can be incorporated into a Socratic proof system that
is complete for first order inference.

Intuitively, a Socratic proof is a series of statements, each of which obvi-
ously follows from the earlier statements in the proof, and the last of which
is a desired fact or theorem. Formally, we define the notion of an “obvious
statement” by a set of inference rules called rules of obviousness. A state-
ment is obvious if it can be derived from previous statements in the Socratic
proof using the rules of obviousness. The rules of obviousness are selected so
that one can determine, in polynomial time, whether or not a given state-
ment is obvious. The formal definition of an obvious statement provides a
formal definition of correctness for Socratic proofs — a Socratic proof is cor-
rect if every step is obvious in this technical sense. The polynomial time
decision procedure for obviousness provides a polynomial time procedure for
determining the correctness of Socratic proofs.

This simple notion of a Socratic proof raises a technical difficulty. Con-
sider a Socratic proof, a series of formulas, ®1,®,, -, ®,, where each ®; is
obvious provided that one has established the preceeding formulas ®4,---, ®,_4.
The problem is that we have defined obviousness in terms of inference rules
— a formula is obvious if it can be derived using the rule of obviousness. This
implies that ®; can be derived using the rules of obviousness and that ®,
can be derived from ®;. But this implies that ®, can itself be derived using
the given rules. In fact, each ®; can be derived directly. So for any correct
Socratic proof of the form &y, ®,,--- @, the final formula ®, must itself be
obvious (derivable from the rules of obviousness). Our simple specification
of a Socratic proof is degenerate.

To prevent this degeneracy we specify that the individual statements of
a Socratic proof be sequents of the form ¥ F & rather than formulas — our
Socratic proof system is a kind of natural deduction system. A sequent of
the form ¥ F & is obvious if ® can be derived from the premise set ¥ using
the rules of obviousness. In addition to the rules of obviousness, there are
Socratic proof rules that allow for the derivation of non-obvious sequents. For

example, if the sequents SU{V} = & and XU {-¥} & are both obvious,
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then one can derive ¥ F W, even if this last sequent is not obvious. The
inference rules that allow for the derivation of non-obvious sequents will be
called Socratic inference rules. The overall Socratic proof system is defined
by two sets of inference rules — the rules of obviousness and the Socratic
rules for deriving non-obvious sequents.

The length of Socratic proofs can be reduced by giving powerful rules
of obviousness and thus increasing the set of obvious sequents. The rules
of obviousness, however, are constrained by the requirement that they be
computationally tractable — they must define a polynomial time decidable
inference relation. Although the rules of obviousness must be tractable, they
need not be complete in any semantic sense. Completeness is reserved for
the Socratic proof system as a whole. Although the inference rules given
in the previous section are adequate for determining satisfiability of finite
conjunctions of taxonomic ground literals, a more powerful set of rules is used
to define obviousness in our Socratic proof system. The inference relation
defined by this more powerful set of rules appears not to have any natural
semantic characterization — there appears not to be any natural semantics
under which the more powerful rules are sound and complete.

The additional rules of obviousness are given in figure 2. These rules
allow for inference involving both Boolean and quantified formulas. First
consider just the Boolean rules, rules 20 through 30. Rules 20 through 30
only involve disjunction and negation — all other Boolean operations can be
viewed as abbreviations for expressions involving disjunction and negation.
Rule 29 allows the distinguished formula F to be derived whenever one can
derive both ® and —=®. Rule 30 allows any formula to be derived from F. In
practice the inference process can be terminated whenever one can derive F.
Rules 20 through 30 are incomplete for Boolean inference. Rules 20 through
29 characterize a limited form of Boolean inference known as Boolean con-
straint propagation [15]. These rules can also be viewed as a characterization
of propositional unit resolution. Intuitively, each rule expresses a local rela-
tionship between a Boolean formula and its immediate subformulas.

The incompleteness of rules 20 through 30 for Boolean inference results
from an inability to perform case analysis. For the standard representation
of P — @) in terms of disjunction and negation, the rules allow one to derive
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Figure 2: Additional Rules of Obviousness. In the universal instantiation
rule (rule 31), t must be the specified focus term.
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Q) from P and P — (). However, the rules do not allow one to derive ()
from P — @ and =P — @ (unless one can derive either P or =P). This
incompleteness can be overcome with the single Socratic rule of case analysis
which states that if one can derive XU {U¥} F & and ¥ U {-V} F & then

one can derive ¥ + .

Now consider the rule of universal instantiation (rule 31). First note
that in taxonomic syntax universal formulas can only be instantiated with
terms. Instantiating a universal formula with a class expression can result
in unsound inference. For example, the formula YaDet(x) is semantically
valid, but instantiating this formula with a monadic predicate P results in
Det(P), which is not valid. Although the restriction to terms guarantees
soundness, it does not guarantee tractability. Without additional restrictions
the addition of the universal instantiation inference rule causes the rules
of obviousness to become intractable.® To avoid intractability the rule of
universal instantiation is restricted using the notion of a focus term. A focus
term is a term that is explicitly specified in a step of a Socratic proof. If
the sequent ¥ F @ is introduced as an obvious sequent in a Socratic proof
then this step of the Socratic proof must be accompanied by an explicit
specification of a focus object f. The sequent ¥ F & is acceptable as an
obvious sequent if ® can be derived from ¥ using the rules of obviousness
where the universal instantiation rule (rule 31) is restricted to the specified
focus object.

The rule of universal instantiation could have been incorporated into the
Socratic proof rules for deriving non-obvious sequents rather than the rules of
obviousness. There are two reasons for incorporating universal instantiation
into the rules of obviousness. First, even this restricted version of universal
instantiation significantly increases the power of the rules of obviousness. In
practice, a data base of facts can be implicitly present in the antecedent
of every sequent of a Socratic proof. So, in practice, the antecedent set
Y of a sequent ¥ F @ can contain a very large number of general facts.
Many of the these general facts will be universally quantified formulas of

>The rules of obviousness given in the previous section subsume the classical rules for
equality on terms. Adding an unrestricted rule of universal instantiation results in a set of
rules that is complete for equational reasoning. It is well known that semantic entailment
between universally quantified equations is undecidable.
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the form Va®(x). By including the rule of universal instantiation in the
rules of obviousness, all facts of the form Va®(x) can be applied to the given
focus term in determining the obviousness of an individual sequent ¥ F .6
If the universal instantiation rule was relegated to the Socratic proof rules
then each application of a lemma of the form Ya®(x) would have to be
done explicitly as a separate step in the Socratic proof. The second reason
for including universal instantiation in the rules of obviousness is simply to
demonstrate that it is possible to include rules for quantifiers in the rules of
obviousness while preserving tractability. The proof that rules 1 through 31
are computationally tractable is given in a later section.

Figure 3 contains the Socratic proof rules used in our Socratic proof
system. A Socratic proof is a series of lines where each line contains a sequent
of the form ¥ = ®. The sequents of a Socratic proof are divided into two
kinds: obvious sequents and non-obvious sequents. Each obvious sequent
must be explicitly associated with a focus term — an obvious sequent ¥ + &
is acceptable if the formula ® is derivable from ¥ using inference rules 1
through 31 where universal instantiation (rule 31) is restricted to the specified
focus term. A non-obvious sequent must be derived from earlier sequents
using one of the Socratic proof rules shown in figure 3.

The first Socratic inference rule (rule S1) will be called Socratic case
analysis. Socratic case analysis, together with the rules of obviousness 20
through 31, provides complete Boolean inference. The second Socratic rule
(rule S2) will be called Socratic transitivity. Socratic transitivity is needed
to combine obvious sequents. Suppose ¥ F @ is obvious under focus term
t; and that ¥ U {®} F WU is obvious under focus term t;. Because these
two obvious sequents involve different focus terms, there may not exist any
single focus term under which ¥ = W is obvious. The Socratic transitivity
rule, however, allows one to derive the non-obvious sequent ¥ F W from

61t is possible to allow for more than one focus term. Universal instantiation is then
allowed on any of the given focus terms. The use of a set of focus terms greatly increases the
power of the rules of obviousness at some cost in computational tractability. In the presence
of more than one focus object the cost of determining the obviousness i1s exponential in the
level of quantifier nesting in the given sequent. In practice the level of quantifier nesting
remains small. For a fixed level of quantifer nesting the cost remains polynomial in the
number of focus objects — the order of the polynomial being determined by the level of
quantifier nesting. A more detailed discussion of sets of focus terms can be found in [15].
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Y F-Ex(C)

Y UA{Is(z1, C),Is(za, C)} FIs(z1, x2)

S F {Det(C)}
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Figure 3: The Socratic Proof Rules. In these rules C', C4,---,C, and W

are class expressions, ¢ is a term, R is a predicate or function symbol, and

x7$17..

t.

-, x, are variables that do not appear free in ¥, C', Cy,---,C,, W or
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the obvious sequents ¥ F & and ¥ U {®} + W. The remaining Socratic
rules, rules S3 through S8, are forms of universal generalization. The need
for universal generalization rules in the Socratic proof system is discussed
below.

It is worth noting that from Socratic case analysis (S1), Socratic transi-
tivity (52), and rule 31 of the rules of obviousness, one can derive a Socratic
refutation rule — if there exists a derivation of the sequent ¥ U {-~®} + F
then there exists a derivation of the sequent ¥ = ®. To see this, suppose we
are given the (possibly non-obvious) sequent ¥ U {=®} F F. By the second
rule for contradictions (rule 31), the sequent ¥ U {=®,F} F & is obvious.
The Socratic transitivity rule (rule S2) can be applied to these two sequents
to give XU {—®} F ®. The sequent YU {®} + & is obvious. These last two

sequents can be combined using Socratic case analysis to give ¥ = ©.

The completeness of the Socratic proot system can be proven by a stan-
dard Herbrand construction. We will say that a set of formulas ¥ is consistent
if there is no derivation of the sequent ¥ F F. The Herbrand construction
is used to prove refutation completeness — if ¥ is consistent then ¥ is satis-
fiable, or equivalently, if ¥ is not satisfiable then there exists a derivation of
Y F F. Given the derived refutation rule, refutation completeness implies
completeness in the normal sense — if ¥ |= ® then ¥ U {-®} is unsatisfiable
so there must exist a derivation of ¥ U {-®} F F and therefore a derivation
of ¥ F ®&. The proof of refutation completeness is given in appendix B.

The Socratic rules of universal generalization (rules S3 through S8) play
an important role in the construction of the Herbrand model given in ap-
pendix B. In the proof of refutation completeness we are given a consistent
set of formulas ¥ and we construct a Herbrand model of ¥. Suppose that X
contains Ex(C'). A Herbrand model of ¥ must contain a witness for Ex(C'),
i.e., a term ¢ such that the model satisfies Is(#, C'). Let & be a variable that
does not appear free in X. If ¥ is consistent then there must not exist a
derivation of the sequent ¥ F —Is(x, ('), otherwise rule S4 would ensure
that there exists a derivation of ¥ F =Ex(C') and ¥ would be inconsistent.
But if there is no derivation of ¥ F =Is(x, (') then there cannot be any
derivation of ¥ U {Is(x, C')} F F (otherwise the refutation rule would give
Y —Is(x, C)). So XU {Is(z, C)} must be consistent. In summary, if ¥ is
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consistent and contains Ex(C') then rule 54 ensures that ¥ UIs(z, ') is also
consistent for any variable = that does not appear free in ¥. In this way a
consistent set of formulas can be extended in a way that provides witnesses
(such as the variable ) for existential statements (such as Ex(C')). The rules
of universal generalization (S3 through S8) justify a consistency-preserving
extension process that provides witnesses for existential statements.

6 Accessing a Large Knowledge Base

Suppose that one is trying to verify a new fact using a large library of def-
initions and previously verified lemmas. How can a verification system au-
tomatically identify those lemmas in the lemma library that are relevant to
this new verification? Automtically identifying relevant lemmas is one of
the classical problems of automated reasoning. We propose sidesteping this
problem by finding a way of efficiently applying all the lemmas in a large
lemma library. If the decision procedure for the tractable rule set is suffi-
ciently efficient in practice, then it can be practical to determine whether or
not a sequent ¥ F & is obvious (under a given focus object) even if ¥ is
quite large — even if ¥ contains a large lemma library.

Of course we do not want to write Socratic proofs in which, at each step
of the proof, we have to explicitly write all the lemmas in some large lemma
library. It is much more convenient to write proofs in the presence of “implicit
premises” which are automatically added to the premise set of each sequent
in the proof. Whether or not a sequent typed by a system user is obvious
depends on the particular lemmas automatically added to the premise set of
the sequent. We say that the obviousness of a typed sequent is relative to
the knowledge base — more knowledge means that more user input sequents
will be obvious. As a simple example, consider a knowledge base (a set of
formulas) that contains the lemmas

VaIs(ADAM, AN-ANCESTOR-OF(z))
and

VzTs(AN-ANCESTOR-OF(AN-ANCESTOR-OF(x)), AN-ANCESTOR-0F(z)).
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Now consider the sequent
Is(GOD, AN-ANCESTOR-OF(ADAM)) + Is(GOD, AN-ANCESTOR-OF(JOHN)).

This sequent is not obvious (and not valid). However if a knowledge base
including the above axioms is added to the premise set the sequent becomes
obvious under the focus object JOHN.

Consider a sequent of the form ¥ F & as typed by a user in some ver-
ification system. In addition to extending ¥ to include all lemmas from a
lemma library, it is possible to extend ¥ to include all formulas ¥ such that
there is some earlier line in the proof of the form ¥’ = W where Y’ is a subset
of Y. This allows for proofs of the form

Line Number Sequent Justification
1. Y O Focus t;
2 Y D, Focus t,
n. YF o, Focus ¢,

where each ®; for ¢ < j is added as an implicit premise in line j.

The Socratic proof system described here is similar to the one used in
the Ontic system described in [15]. The Ontic system provides Socratic com-
pleteness relative to Zermelo-Fraenkel set theory, i.e., any formula provable
in set theory can (in principle) be given a Socratic proof in the Ontic sys-
tem. The Ontic system has been used to verify the Stone Representation
Theorem of lattice theory starting with only the axioms of set theory. In
the verification of this proof, a lemma library with hundreds of lemmas was
automatically added to the premise set of each sequent. The decision pro-
cedure for determining the obviousness of individual sequents was found to
be efficient enough to make the verification of obviousness relative to a large
lemma library possible.
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7 A Decision Procedure for Obviousness

We now show that the rules of obviousness (rules 1 through 31) are tractable.
The decision procedure given here is similar to the decision procedure dis-
cussed in Section 4. The basic idea is to run the inference rules on a restricted
set of “local” formulas. Provided that there is only a small (polynomial) num-
ber of local formulas, this inference process can be run to completion in a
small (polynomial) amount of time. After defining a polynomial time infer-
ence procedure of this form, we prove that the restricted inference process
underlying the procedure is complete relative to the rules of obviousness — if
the restricted inference procedure fails to find a proof then there is no proof.

We start by defining the notion of a local expression. In the following
definitions ¥ is a finite set of formulas, ¢ is a term, and ® is a formula. We
are interested in determining whether or not the sequent ¥ F & is obvious
under the focus term ¢.

Definition: A set T of formulas and class expressions will be
called downward closed under focus term ¢ provided it satisfies
the following conditions.

o [V, vU,cT then Uy €T and ¥y, € T.
o [f VT thenWUcT.
If Va®(x) € T then ®(t) € T.

Any class expression appearing as a subexpression of an

atomic formulain T is alsoin Y.

Definition: A formula or class expression will be called local
relative to X, t and @ if it is a member of the least set of formulas
and class expressions that contains ® and all members of ¥ and
that is downward closed relative to .

Lemma: The number of expressions local to X, t and ® is linear
in the total written length of ¥, ¢ and ®.
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The conditions in the definition of downward closed correspond to the
ways in which the inference rules can derive information from the truth or
falsity of a formula. A truth value for a disjunction can be relevant to deter-
mining truth values of the two disjuncts. A universal formula can be used
to derive the instantiation of that formula with the given focus object. It is
important to note, however, that the conditions in the definition of down-
ward closed are not themselves inference rules — these rules are used only
in determining the set of local expressions.

Definition: We write ¥,¢ Fo W if U can be derived from ¥ using
rules 1 through 31 under focus term t.

Definition: We write ¥,¢ H @ if ¥.¢ Fo ® and every formula in
the derivation of ® from ¥ is either a local formula, the negation
of a local formula, or an atomic formula involving only local class
expressions.

The definition of ¥,# H & is similar to the definition of ¥ H & given
in section 4. The definitions differ in two ways. First, the set of local class
expressions is defined slightly differently to take into account quantified for-
mulas and the focus term ¢. Second, in the definition of ¥ H ® given earlier,
proofs are allowed to contain any formulas as long as all class expressions
appearing in those formulas are local. In fact, for the earlier definition, the
inference rules can only derive atomic formulas. So the earlier definition is
equivalent to the statement that ¥ H @ just in case there exists a derivation
of ® from ¥ such that every derived formula is an atomic formula involving
only local class expressions. The introduction of inference rules for formulas
other than atomic formulas forces the introduction of local formulas as well
as local class expressions. The above definition of ¥,¢ H & takes into account
the local formulas as well as the local class expressions.

The following statements are analogous to those in section 4.

Obviousness Tractability Lemma: One can determine whether
or not ¥,¢ H @ is polynomial time in the total written size of X,

t, and .
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Obviousness Locality Theorem: X.¢{ H & if and only if
Y.t o @,

As in section 4, the tractability lemma follows directly from the definition
of H. There is a linear number of local formulas and class expressions. An
atomic formula can involve at most two class expressions. Therefore, there
is only a quadratic number of formulas that can appear in local derivations.
The proof of the locality theorem is more difficult. In section 4 the locality
of the inference rules was proven as a corollary of the semantic completeness
theorem for local inference. Unfortunately, we do not know of any semantics
under which rules 1 through 31 are complete. In this section we sketch a
purely syntactic proof of the above locality theorem for rules 1 through 31.

To prove the above locality theorem it suffices to show that if ¥, ¢ t#
then ¥t b6 ®. Given X,t A ® we show that it is possible to incrementally
“erow” the set of local expressions in such a way that any given expression
is eventually considered to be local and so that ® never becomes provable. If
Y,t o @ then there must exist some finite proof of ® and our growth process
would eventually include all the formulas in that proof. If the growth process
preserves the invariant that ® is not provable, then we must have ¥,¢ 6 ®.

Definition: A locality set for X, ¢t and ® is any set of formulas
and class expressions that contains ®, every member of ¥, and is
downward closed relative to ¢.

Definition: A label formula of a set Y is either a member of T,
the negation of a member of T, or an atomic formula constructed
purely from class expressions that are members of T.

Definition: If T is a locality set for X, ¢ and ®, then for any
formula ¥ we write ¥,¢ Hy W if ¥,¢ Fo U and every formula in
the derivation of W is a label formula of T.

Given X,t H ®, we immediately have ¥, ¢ tA. ® where T is the least
locality set for X, ¢, and ®. To grow T while preserving the non-derivability
of ® we define the notion of a one step extension of T.
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Definition: A one step extension of a set T relative to a focus

term t is an expression « that is either

a constant symbol,

a variable,

a monadic predicate symbol,

an application R(C4,...,C,) where R is either a relation or

function symbol and each C; is a class expression in T,

an atomic formula such that every class expression in « is a
member of T,

the negation of a formula in T,
a disjunction of two formulas in Y,

a formula of the form Va®(x) where ®(¢) is a member of T.

Lemma: If T is a locality set for X, ¢, and ®, and « is a one

step extension of T relative to ¢, then T U {a} is also a locality
set for X, ¢t and .

Lemma: For any expression # and any locality set T for X, ¢

and ® there exists a finite series ay, ag, -+, «a, such that each
a; is a one step extension of T U {ay, -+, a;_1} and the set T U
{a1, -+, a,} contains 3.

Extension Theorem: If T is a locality set for ¥, ¢ and ®
such that ¥,¢ H @, and « is a one step extension of T, then

N Moy @

The above three results imply the obviousness locality theorem. The proof
of the extension theorem is long but not conceptually deep (the completeness
theorem in appendix A is shorter but conceptually deeper). To prove the
extension theorem we define a new label formula to be a label formula of
TU{a} that is not a label formula of Y. We define a newly derivable formula
to be a formula ¥ such that ¥,7 Feyr,y W but X,2 Hy W, It suffices to show

that every newly derivable formula is a new label formula, and hence no old

label formula is newly derivable.
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The proof that every newly derivable formula is a new label formula is
discussed in appendix C. The proof involves precisely characterizing all the
newly derivable formulas. Proving that this characterization is complete,
i.e., that the inference rules only generate new formulas of the given types,
requires a large case analysis that examines the interaction of each inference
rule with each type of newly derivable formula. Appendix C contains the
characterization of the newly derivable label formulas. However, the long
case analysis required to show that this characterization is complete is not
given here.

It is possible to construct a general theory of local inference relations, i.e.,
inference relations that can be proven to be tractable using a generalization
of the technique described above. In research reported elsewhere we have
constructed an automated procedure for verifying the tractability of a large
class of rule sets [14]. The large case analysis necessary to establish the
tractability of rules 1 through 31 has been machine verified.

& Conclusion

Automated reasoning is a classical problem of artificial intelligence. Many
potential applications, such as software verification, automatic programming,
and intelligent data bases have suffered from the apparent computational
intractability of automated reasoning. Polynomial time inference procedures
provide one approach to improving the efficiency of inference systems.

We have presented an example of a general approach to the construction
and use of polynomial time inference procedures. A polynomial time infer-
ence procedure can be specified by a set of inference rules that generates
a polynomial time decidable inference relation. It seems that the construc-
tion of a powerful natural tractable rule set requires the introduction of a
non-standard syntax for first order logic. We have shown how a polynomial
time inference procedure can be incorporated into a Socratic proof system
that is complete for first order inference. The length of proofs in such a
Socratic proof system is sensitive to the power of the underlying polynomial
time inference procedure. More powerful tractable rule sets should reduce
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the length of Socratic proofs. Other non-standard syntactic variants of first
order logic are possible and such syntactic variants may result in yet more
powerful tractable rule sets.
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Appendix A: Proof of the Tractable Completeness Theorem

In this appendix we prove the tractable completeness theorem of sec-
tion 4. The theorem states that the restricted inference relation H for rules
1 through 19 is complete for determining the satisfiability of a set of ground
literals in taxonomic syntax. The first step in understanding the proof of
the completeness theorem is to become familiar with the rule set. Each rule
fits into an overall pattern based on rules 1 through 4. The overall pattern
is based on the fact that determined, existence and intersection formulas
can all be associated with a notion of “witness”. A witness for an existence
formula Ex(C') is a term ¢ such that one can derive Is(¢, C'). Recall that
terms always denote singleton sets, so that if one can derive Is(¢, C') then C
must be non-empty. A witness for a determined formula Det(C') is a term
t such that one can derive Is(C, t). Finally, a witness for an intersection
formula Int(C, W) is a class expression Z such that one can derive Ex(7),
Is(Z, C') and Is(Z, W). It was noted in section 4 that, for clean premise
sets, derivable determined formulas and derivable intersection formulas al-
ways have witnesses. If, in addition, every existence formula had a witness,
then the four basic inference rules would suffice provided the symmetry rule
was restricted to pairs of terms. Unfortunately, inference rules 6 and 9 can
introduce existence formulas that do not have witnesses.

The first four inference rules are called reflexivity, transitivity, symmetry,
and monotonicity respectively. Rules five and six are called the first and sec-
ond existence introduction rules. Rule 7 is called the existence transitivity
rule and rule 8 is called the existence monotonicity rule. If every existence
formula had a witness, then rules 7 and 8 would correspond to transitivity and
monotonicity respectively. Rule 9 will be called the painful rule for reasons
discussed below. Rules 10 and 11 are called the first and second extrane-
ous existence introduction rules. Rules 10 and 11 are not needed for clean
premise sets — they are used to introduce existence formulas from negative
determined literals and negative intersection literals in unclean premise sets.
Rule 12 is called the determined introduction rule. Rules 13 and 14 are called
the determined transitivity and determined monotonicity rules respectively.
Rule 15 is called the intersection introduction rule. Rules 16 and 17 are called
the intersection transitivity and intersection monotonicity rules respectively.
Rule 18 is called the intersection symmetry rule — it compensates for the

37



lack of symmetry in the intersection transitivity rule. Rule 19 is called the
feedback rule. Rule 19 allows formulas other than classification formulas to
derive new classification formulas. If all determined and intersection formu-
las had witnesses, then rule 19 would be derivable from the symmetry rule

(rule 3).

Unfortunately, the completeness proof is quite difficult. To see why, con-
sider a set ¥ of taxonomic ground literals (clean or unclean) such that ¥ K F.
We must show that ¥ is satisfiable. Asin almost all completeness proofs, this
is done by constructing a model M of ¥. In most completeness proofs, the
semantic domain of M consists of a “Herbrand universe” — a set of equiv-
alence classes of terms. If every existential formula Ex(C') had a witness,
i.e., a term t such that one could derive Is(¢, ('), then one might be able
to construct a model for ¥ whose domain was equivalence classes of terms.
But the painful inference rule (rule 9) introduces existential statements that
have no witnesses. One might expect that this problem could be overcome
by using equivalence classes of provably non-empty class expressions rather
than equivalence classes of terms. But this approach does not work either.
The problem is again rule 9. Consider the pair of literals Is(P, f(P)) and
=Is(f(P), P) where P is a monadic predicate symbol and f is a monadic
function symbol. These literals state that P is a proper subset of f(P).
These literals are satisfiable. For example, P can be interpreted as the pos-
itive integers and [ as the function that subtracts one. Since these literals
are satisfiable, any general completeness proof must provide a way of con-
structing a model that satisfies them. The second literal implies Ex(f(P))
and rule 9 then implies Ex(P). Consider an element xg of the set denoted
by P in any model of these literals. Since the model satisfies Is(P, f(P)),
the element xy must be a member of the class denoted by f(P). But this
implies that there a “predecessor” x; in P such that xo equals f(z1). By a
similar argument x; must have a predecessor x5 and so on. One can show
that, in any model of these two literals, P must denote an infinite set. But no
simple Herbrand construction yields a model in which P denotes an infinite
set. OQur completeness proof is not based on a Herbrand construction.

Before defining the (non-Herbrand) model construction used in our proof,
it is useful to enumerate some of the properties that we would like the model
to have. The inference rules are based on the derivation of atomic formulas
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— there are no inference rules for deriving negative literals. To prove com-
pleteness of a rule set of this form, the model should exhibit certain “default
properties”. Intuitively, any atomic formula not derivable from the inference
rules should be false in the model. Consider the proof of completeness for the
four basic inference rules for classical equality. In the standard proof of com-
pleteness of equational reasoning, any equation not provable from the premise
set is false in the constructed model. We might say that equations default
to false. Under our taxonomic model construction process, existence, deter-
mined, and intersection formulas default to false — any such atomic formula
that is not provably true is false in the constructed model. Unfortunately, the
fact that existence formulas default to false does not permit arbitrary classi-
fication formulas to default to false. Consider a class expression (' such that
one cannot derive Ex(C'). If we cannot derive Ex(C') then Ex(C') defaults to
false. This means that classification formulas cannot always default to false.
Suppose that we ca not derive either Ex(C') or Is(C, W). In this case Ex(C)
defaults to false, which forces Is(C, W) to be true. So Is(C, W) does not
default to false. However, our model construction process is designed so that
if one can derive Ex(C'), then classification formulas of the form Is(C, W)
default to false just like all the other atomic formulas. We have not been
successful at basing a completeness theorem on any other form of default
conditions — attempts to have all classification formulas default to false and
to have existence formulas default to true have not been successful.

The partial default properties of classification formulas are not a serious
problem regarding completeness for determining satisfiability. Suppose X
contains a negative literal of the form —Is(C, W). In this case we want
the formula Is(C, W) to default to false — if ¥ contains —Is(C, W) then
Is(C, W) had better be false in the constructed model. We have assumed
that ¥ K F. Since ¥ contains =Is(C, W), we must have that ¥ / Is(C, W).
Since ¥ contains —Is(C, W), the second existence introduction rule (rule 6)
ensures that one can derive Ex((C'). But our model construction process will
ensure that if one can derive Ex(C') then the formula Is(C, W) defaults to
false. Given that ¥ Hf Is(C, W) we will have that Is(C, W) is false in the

constructed model.

Although the partial default properties of classification formulas are not
a problem in determining the consistency of a set of ground literals, they
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are a problem for the classical notion of completeness. A failure to derive
Is(C, W) does not imply that there exists a model of ¥ in which Is(C, W)

is false. In fact, rules 1 through 19 are not complete in this traditional sense.

Our model is constructed from the atomic formulas (positive literals)
derivable from Y and observes the default properties for non-derivable for-
mulas discussed above. We do not construct a Herbrand model. The problem
with Herbrand constructions involves formulas of the form Is(W, f(Cy,---,C,)).
If we can derive this formula then, for every element x in the set denoted by
W there must be elements yy, - - -, y, in the sets denoted by Cy, -, C,, respec-
tively such that f(yi,---,¥y,) equals .7 The existence of appropriate “prede-
cessor” domain elements for each element of the set denoted by W cannot be
guaranteed in any natural Herbrand universe. Our model construction must
include a predecessor construction process for handling provable formulas of
the form Is(W, f(Cy,---,C,)). This predecessor construction process can
itself generate an infinite domain. For example, if we can prove Is(P, f(P))
then every element of P must have a predecessor in P and our predecessor
construction process will construct an infinite number of elements of P.

The predecessor construction process is only needed for function symbols.
Consider a derivable formula of the form Is(W, R(Cy,---,C,)) and consider
an element z in the set denoted by W. As in the case of function symbols,
must have predecessors yq,---,¥, in the sets denoted by Cy,---, (), respec-
tively such that x is an element of R(y1,---,y,). However, if R is a relation
symbol then R(yi,---,y,) is a set and can include the entire set denoted
by W. This allows all elements of W to have the same predecessor tuple.
In our model construction process any single tuple of “generic” elements of

Cq,---,C, serves as a single predecessor tuple for all elements of the class
R(Cy,---,C,). The existence of a single predecessor tuple for all elements
of the class R(C4,---,C,) eliminates the need for a predecessor construction

process for relation symbols.

“If y1,- -, y, are elements of the semantic domain of a model M, and f is an n-ary
function symbol, then by abuse of notation we use the expression f(y1,---,yn) to denote
the element of the semantic domain of M that results from applying the function denoted
by f to the domain elements y1, -, y,. A similar convention is used for an (n + 1)-
ary relation symbol R and the expressions of the form R(y1,---,yn) — the expression
R(y1,- -, yn) denotes the set of all domain elements x such that <y1,- -, y,, 2> is in the
relation denoted by R.

40



Our semantic domain is the result of a predecessor construction process.
Before discussing this process we consider a way of classifying domain ele-
ments into types. Consider an arbitrary model M. The type of a domain
element = in M is defined to be the set of class expressions such that z is
an element of the set denoted by the class expression. Intuitively, the type
of an element is the set of class expressions that contain it. In general, a
type is defined to be any set of class expressions. A type 7 will be said to be
inhabited in the model M if there exists a domain element = such that 7 is
precisely the type of z, i.e., 7 is the set of all class expressions C' such that =
is an element of the class denoted by C'. Not all types need be inhabited in
M. For example, suppose that ' and W are class expressions that denote
disjoint sets in M. In this case no domain element will have a type that

includes both €' and W.

So far we have ignored the fact that we are trying to prove completeness
for a restricted inference process. The fact that ¥ t/ F implies that there is
no local derivation of an inconsistency. Local derivations are restricted to for-
mulas containing class expressions that actually appear as subexpressions of
formulas in ¥. These class expressions will be called local. Our classification
of domain elements into types will be based only on local class expressions
— types will be subsets of the local class expressions. The desired default
properties of the model dictate which subsets of the local class expressions

should be allowed to be inhabited.

Definition: A class expression will be called local if it appears
in ¥ (either as a member or as a subexpression of a member).

Definition: A Y-inhabitable type is a set 7 of local class expres-
sions satisfying the following properties.

o If Cisin7and ¥ H Is(C, W) then W isin 7.
e ¥ HEx(C) for every C in 7.
e For all C and Win 7, ¥ H Int(C, W).

The first property must be satisfied by any inhabited type in any model
of Y. The second property is forced by the desire for existence formulas to
default to false — if we cannot derive Ex(C') then C should be empty and
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so C' should not be a member of any inhabited type. The third property is
dictated by the desire for intersection formulas to default to false — if we
cannot derive Int(C, W) then no inhabited type should contain both ' and
W.

Roughly speaking, the semantic domain of our model will correspond to
the ¥-inhabitable types — each Y-inhabitable type will be inhabited by at
least one domain element. At an intuitive level, the Y-inhabitable types
correspond to the term equivalence classes of a Herbrand model — each -
inhabitable type specifies a kind of domain element. Note that the empty
set is Y-inhabitable. Our semantic domain will include elements that are not
members of any set denoted by a local class expression.

Definition: If ¥ H Ex(C') then we define C* to be the set of all
local class expressions W such that ¥ H Is(C, W).

Lemma: If ¥ H Ex(C) then C' is an element of C* and C* is a
Y-inhabitable type.

Proof: If ¥ H Ex(C) then €' must be a local class expression.
The reflexivity rule (rule 1) guarantees that C' is an element of
C”*. The transitivity rule guarantees that C'* satisfies the first
condition on Y-inhabitable types. The existence transitivity rule,
and the fact that ¥ H Ex(C), guarantees the second condition.
Given Ex(C), Is(C, W), and Is(C, Z) one can derive Int(W, 7).
This guarantees the third condition and so C* is a ¥-inhabitable
type.

Lemma: If ¥ H Ex(C) then C* is the least ¥-inhabitable type
that contains C.

Proof: The first condition on the definition of Y-inhabitable
types, and the definition of C*, guarantee that any »-inhabitable
type that contains ' must also contain C™*.

In general, there can be many Y-inhabitable types that contain C other
than the type C*. For example, if ¥ H Int(C, W) then C*U W~ is also a
Y-inhabitable type that contains C'. In certain cases, however, C* is the only
such Y-inhabitable type.
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Definition: A local class expression C' will be called singular if

Y HEx(C) and ¥ H Det(C).

Lemma: If ' is singular then C* is the only ¥-inhabitable type
that contains C.

Proof: Consider a Y-inhabitable type 7 that contains C'. The
type C* is the least type containing C' so C* must be a subset of 7.
To show that 7 is a subset of C*, consider a class expression W in
7. The definition of ¥-inhabitable ensures that ¥ H Int(C, W).
But since ¥ H Det(C), the feedback rule (rule 19) ensures that
Y HIs(C, W). So W is a member of C*.

Each domain element is to inhabit a particular ¥-inhabitable type and
each Y-inhabitable type is to be inhabited by at least one domain element.
If the above lemma about singular classes had failed, our model construction
would not work. If there is to be at least one domain element inhabiting
every X-inhabitable type, and the set denoted by C' is to contain exactly one
element, then there must be exactly one type that contains ', the type C*.

Definition: A Y-inhabitable type 7 will be called singular if it
contains a singular class expression.

Lemma: If ¥ H Ex(C) then C' is singular if and only if C* is

singular.

Proof: If ' is singular, then since ' is a member of C*, C* is
singular. Conversely, if C* is singular, then there exists some W

such that o H Is(C, W) and ¥ H Det(W). But in this case the
determined transitivity rule (rule 13) ensures that ¥ H Det(C)
so (' is singular.

We now turn to the actual construction of a semantic domain. The seman-
tic domain elements are pairs of the form <7, o> where 7 is the Y-inhabitable
type to be inhabited by this domain element. Each type 7 will have a dis-
tinguished “generic inhabitant” which is the pair <7,0>. If 7 is a singular
type, then the generic inhabitant of 7 is the only inhabitant of 7. If 7 is not
singular then in order to guarantee that determined formulas default to false
we add a second inhabitant of the type 7 which is the pair <7,1>. Other
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domain elements are constructed by a predecessor generation process. Sup-
pose that 7 contains a class expression of the form f(Cy,...,C,). If the pair
<7, > is to inhabit the type 7, then the pair <7, a> must be a member of
the class f(Cy,---,Cy). This means that the domain element <7, a> must
have predecessor elements in the classes denoted by Cy,---,C),. If the type
7 is singular then generic inhabitants of C7, .-, C* serve as the predecessor
tuple to the single inhabitant of 7. It is possible to show that if each C; is
a singular class expression, and the type 7 contains f(Cy,---,C,) then 7 is
a singular type. Thus if 7 is not singular, then some C} is not singular. Let
C; be the first such non-singular class. If 7 is not singular, and contains the
class expression f(Cq,---,C,), then the predecessor tuple of <7, a> is

<CT,0>,-,<C7,0>, <CF f(CF, -+, Ch) = <Tya>>, <CFy,0>,---,<C, 0>,

Note that the information about where f should map this predecessor tuple
is contained in the i’th component — all other components are simply generic
inhabitants. The expression f(CY,---,C¥) — <7,a> in the ¢’th component
of this predecessor tuple is just a notation for the tuple containing the func-
tion symbol f, the types C7,---,C” and the domain element <7, >, i.e., it
is just a finite representation of how the function f should behave when given
this argument as the ¢’th component. The semantic domain of our model can

be defined rigorously as follows.

Definition: Let D be the least set containing

o all pairs of the form <7,0> where 7 is a ¥-inhabitable type,

o all pairs of the form <7,1> where 7 is a non-singular -
inhabitable type,

e and all pairs of the form <C7, f(Cy,---,CF) — <r,a>>
where C7 is a non-singular type, C; is the first non-singular
class expression among C4,---,C,,, and 7 contains the class

expression f(Cq,---,Cp).

Lemma: If 7 is a singular type then D contains only a single
pair of the form <7, a>.

Note that although there are only finitely many Y-inhabitable types (for
a finite set ¥), the predecessor generation process can cause D to be infinite.
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This is ary since there exist finite sets of taxonomic ground literals that only
admit infinite models.

To complete the definition of the model of ¥ we must give the interpre-
tation of the constant, function, predicate, and relation symbols.

Definition: Let M be the first order model with domain D (as
defined above) and which interprets constant, function predicate
and relation symbols as follows.

o A constant ¢ is interpreted to be the pair <c¢*, 0>.

e A monadic predicate symbol P is interpreted to be the set
of all pairs <7, a> where the type 7 contains the symbol P.

o A n-ary relation symbol R for n > 1 is interpreted as the
set of n-tuples <<C7,0>,...,<Cr_;, 0>, <7, a>> such that
7 contains the class expression R(Cq,...,Ch_1).

e An n-ary function symbol f is interpreted as the function
that maps <<oy, 51>,...,<0o,, 3,>> to <7,a> provided
one of the following two conditions hold.

— Some f3; is the specification f(oq,---,0,) — <7, a>.

— No f3; is an appropriate specification, and 7 is the union
of all types of the form f(C4,...,C,)" where f(Cy,---,C,)
is a local class expression such that ¥ H Ex(f(Cq,---,C)))
and each class expression C; is a member of the corre-
sponding type o;. In this case <7,a> is the generic
inhabitant of type 7, i.e., a is 0.

Well-Formedness Lemma: The above definition interprets each
n-ary function symbol as a unique function from D" to D.

Proof: There are two cases in the definition of the interpretation of a func-
tion symbol f. In the first case we must show that it is not possible for
distinct 8; and 3; to give incompatible values for f applied to this argu-
ment tuple. This follows from the definition of D. If 3; is the specification
flo1,-+,04) — <7,a> then the definition of D ensures that o; is the first
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non-singular type among oy, - - -, 0,. This condition uniquely determines the
index ¢ of any appropriate specification. If the second condition in the defi-
nition of the interpretation of f holds, the output type 7 is taken to be the
union of all types of the form f(Cy,---,C,)" where f(Cy,---,C,) is a local
class expression such that ¥ H Ex(f(C4,---,C,)) and each class expression
C; is a member of the corresponding type ;. In this case we must show
that 7 is a Y-inhabitable type. By an earlier lemma, each set of the form
f(Cy,--+,C,)" is a Y-inhabitable type. To be a X-inhabitable type, the set 7
must satisfy three conditions. Any union of ¥-inhabitable types satisfies the
first two conditions — every element of the union is provably non-empty, and
any local class expression that provably denotes a superset of a member of
the union is also a member of the union. To show that the union 7 satisfies
the third condition on ¥-inhabitable types, consider any two class expressions
7y and Zy in 7. We must show ¥ H Int(Z;, 7). The expressions 7Z; and 7
must be members of types of the form f(Cy,---,C,)" and f(Wy,---, W,)"
respectively where each C; and W, are members of the argument type o;.
Since C; and W, are members of the same Y-inhabitable type o; we must
have ¥ H Int(C;, W;). But, by the intersection monotonicity rule (rule 17)
we then have ¥ H Int(f(Cy,---,C,), f(Wh,---,Wi)). By the intersection
transitivity rule (rule 16) we then have ¥ H Int(Z;, 7). m

The above well-formedness lemma depends critically on the intersection
monotonicity rule (rule 17). If this rule were not included in the rule set
then the union used to define function application would not produce a -
inhabitable type, and hence would not produce a valid domain element. The
intersection monotonicity rule ensures that the set of ¥-inhabitable types is
rich enough to contain appropriate values for function applications.

We now prove the main lemma of our model construction.

Definition: The syntactic type of a domain element <7, a> is
the type 7.

Definition: The semantic type of a domain element x is the set
of local class expressions (' such that = is a member of the set

denoted by €' in the model M defined above.

Lemma: For any element x of the domain of M, the semantic
type of & equals the syntactic type of .
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Proof:. We prove, by structural induction on class expressions, that for
any local class expression (', a domain element <7, a> is a member of the
set denoted by C' if and only if (' is a member of 7. For constant symbols
and monadic predicate symbols the result follows directly from the defini-
tion of the interpretation that M assigns to constant and function symbols.
Applications of relations and function symbols are discussed below.

Consider a local class expression of the form R(C4,---,C,) where the
result holds for each C}, and consider a domain element <7,a>. Note
that since R(C4,---,C,) is local, each C; must also be local. Now sup-
pose that R(Cq,---,C,) is a member of 7. Since R(Cy,---,C,) is a mem-
ber of a Y-inhabitable type, we must have ¥ H Ex(R(Cy,---,C,)). By
the painful rule (rule 9) we must have ¥ H Ex(C;) for each C;. This im-
plies that C7 is a X-inhabitable type that contains C;. By the induction
hypothesis the domain elements <C7,0>,---,<C? 0> are members of the
sets denoted by C4,---,C, respectively. The interpretation of the relation
symbol R now ensures that <7,a> is a member of the class denoted by
R(Cy,---,C,). Conversely, suppose that <7,a> is a member of the class
denoted by R(C4y,---,C,). The interpretation of R implies that 7 contains
a type of the form R(Wy,---, W, ) where each W; is such that <W 0> is a
member of the set denoted by ;. The induction hypothesis implies that C;
is a member of W*. So we have ¥ H Is(W;, ;). The monotonicity rule now
ensures that ¥ H Is(R(Wy,---,W,), R(Cy,---,C,)). Since R(Wy,---, W)
is a member of 7, and 7 is a ¥-inhabitable type, we have that R(Cy,---,C,)
is a member of 7.

Now consider a local class expression of the form f(Cy,---,C,,) where the
result holds for each ;. There are two subcases. First, suppose that each
C; 1s singular. In this case the existence and determined monotonicity rules
(rules 8 and 14) ensure that f(Cy,---,C,) is singular. So f(Cy,---,C,)" is
the only ¥-inhabitable type containing f(Cy,---,C,) and <f(Cy,---,C,)", 0>
is the only domain element of this syntactic type. In this case we must show
that f(Cy,---,C,) denotes the singleton set containing <f(Cy,---,C,)",0>.
The induction hypothesis, and the definition of the semantic domain D, im-
plies that, for each (;, the set denoted by C; consists of the single element
<C*,0>. The interpretation of f then implies that f(Cy,---,C,) denotes
the set containing the single element <7,0> where 7 is the union of all
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types of the form f(Wy,---, W,)" where W; is a member of C* for each W;.
This union includes f(Cy,---,C,)", and the monotonicity rule ensures that
each set f(Wy,---,W,)" is contained in f(Cy,---,C,)", so this union equals
f(Cyy--,CL)

Now suppose that some (; is non-singular. Consider a domain ele-
ment <7,a>. We must show that <7,a> is a member of the class de-
noted by f(Ci,---,C,) if and only if 7 contains f(Cy,---,C,). As be-
fore, since f(Cy,---,C,) is local, each C; must be local. First suppose that
f(Cr,---,Cy) is a member of 7. Since f(Cq,---,C,) is a member of a X-
inhabitable type, we must have ¥ H Ex(f(Cy,---,C,)). By the painful rule
(rule 9) we must have ¥ H Ex(C;) for each C;. This implies that C7 is a
Y-inhabitable type that contains C;. Let C; be the first non-singular type
among C'q,---,C,. The definition of D ensures that D contains the element
<Cr, f(CF,---,Cr) = <7,a>>. By the induction hypothesis the domain
elements,

<CF 0>, <O, 0>, <Cr f(CF, -, CF) — <rya>>, <Ci+ 170>, <Cr 0>

are members of the sets denoted by Cf,---,C), respectively. The inter-

pretation of f then ensures that <7,a> is a member of the set denoted
by f(C1,---,C,). Finally, suppose that <7,a> is in the set denoted by
f(Cr,---,Cy). In this case the sets denoted by Cy,---,C,, must contain el-
ements <oy, 1>, ..., <o,,[3,> respectively such that one of the following
two conditions hold.

e Some f3; is the specification f(oq,- -, 0,) — <7, a>.

e No [3; is an appropriate specification and 7 is the union of all types of
the form f(Zy,...,7,)" where f(Z,, -+, 7Z,) is a local class expression
such that ¥ H Ex(f(Z1,---,7Z,)) and each class expression Z; is a

member of the corresponding type o;.

In either case, the induction hypothesis implies that, for each C;, we have
that C; is a member of ;. In the first case, the definition of D ensures
that each o; is of the form W/ such that f(Wy,---,W,) is a member of .
Since C; is a member of o;, which equals W, we have ¥ H Is(W;, C;). The
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monotonicity rule then ensures that f(Cy,---,C),) is a member of 7. In the
second case, note that since o; contains (;, and since o; is a X-inhabitable
type, we have ¥ H Ex(C;). By the existence monotonicity rule (rule 8) we
have ¥ H Ex(f(Cy,---,C,)). This implies that the set f(Cy,---,C,)" is

included in the union that defines 7. So f(C4,---,C,) is a member of 7. m

The satisfiability of X is a corollary of the equivalence of syntactic and se-
mantic types.

Satisfiability Corollary: M is a model of ¥ and hence X is
satisfiable.

Proof: We must show that every formula in ¥ is true in M. If Ex(C) is
an element of ¥ then € is a Y-inhabitable type that includes C so, by the
equivalence of semantic and syntactic types, Ex(C') is true in M. If =Ex(C)
is in ¥ then, since ¥ is consistent, ¥ Hf Ex(C') and so no ¥-inhabitable type
can contain C'. This implies that Ex(C') is false in M. Now suppose that
Det(C) is an element of ¥. There are two cases. First if ¥ H Ex(C') then
(' is a singular type and only one domain element has a syntactic type that
contains ', so Det(C') is true in M. If ¥ K Ex(C') then C denotes the empty
set in M so Det(C') is again true in M. Now suppose ¥ contains ~Det(C').
In this case the first extraneous existence introduction rule (rule 10) ensures
that ¥ H Ex(C). Since ¥ H F we have ¥ K Det(C) and thus C' is not
singular. The definition of the semantic domain ensures that there are at
least two domain elements whose syntactic types include C'. Thus Det(C') is
false in M. Now suppose that ¥ contains Int(C, W). The second extraneous
existence introduction rule (rule 11) ensures that we have ¥ H Ex(C') and
Y H Ex(W). In this case C* U W™ is a Y-inhabitable type that includes
both €' and W so the literal Int(C, W) is true in M. Now suppose that
—Int(C, W) is a member of ¥. In this case we have ¥ K Int(C, W) so
no Y-inhabitable type can include both €' and W. Thus Int(C, W) is false
in M. Now suppose that Is(C, W) is a member of ¥. In this case, every
Y-inhabitable type that includes C' must also include W, so Is(C, W) is true
in M. Finally, suppose that —Is(C, W) is a member of ¥. In this case the
second existence introduction rule (rule 6) ensures that ¥ H Ex(C'). But we
have ¥ K Is(C, W). In this case C* is a Y-inhabitable type that includes C
but does not include W. So Is(C, W) is false in M. m
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Appendix B: Socratic Completeness

This appendix gives a sketch of a proof that the Socratic proof system
defined by the rules of obviousness (rules 1 through 31) and the Socratic
proof rules (rules S1 through S8) is complete for first order inference. This
proof is based on a standard Herbrand construction analogous to similar well
known constructions for other first order inference systems [1]. Consider a
set of formulas ¥ and a particular formula ® such that ¥ | @, i.e., every
model of ¥ is a model of ®. We must show that in this case there exists a
Socratic derivation of the sequent ¥ F ®&. It was shown in section 5 that
if there exists a Socratic derivation of ¥ U {—=®} F F then there exists a
Socratic derivation of ¥ F ®. So it suffices to show that there exists a
Socratic derivation of ¥ U {=®} F F. More generally, we show that for any
unsatisfiable set of formulas I' there exists a Socratic derivation of I' = F.
Actually, we prove the contrapositive, that if there is no derivation of I' + F
then I' is satisfiable.

Suppose that there is no derivation of I' = F. We show that I is satisfiable
by constructing a Herbrand model of I'. This Herbrand model must assign
a well defined truth value to every sentence (closed formula) of taxonomic
syntax. However, the formula set I need not determine a truth value for every
sentence. Before constructing a Herbrand model, we extend I' to a consistent
set of formulas that assigns a truth value to every formula. In addition to
assigning truth values to every formula, we ensure that every true existential
statement has a witness. For example, if Ex(C') is determined to be true,
then there will exist some term ¢ such that Is(?, C') is also assigned true.
In summary, we extend I' to a larger set so that every formula is assigned a
truth value and every true existential statement has a witness.

For simplicity we assume that the set of constant, function and predicate
symbols in the language is countable and that there is a countably infinite
set of variables. In this case one can enumerate all taxonomic formulas in an
infinite sequence ©1, O, O3 ....* Given that there is no derivation of I'  F,
one can then construct an infinite sequence of sets of formulas g, 1, Qy,
Q3 ... such that each €); is a consistent extension of I, i.e., {}; contains I’

8The completeness proof can be modified to handle uncountable langnages, in which
case one constructs a transfinite enumeration of formulas.
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and there is no Socratic derivation of €}; = F. Furthermore, {; determines a
well defined truth value for ©; and if ©; is some form of existential formula
then ; ensures the existence of a witness for that formula. The sequence of
extensions g, 21, s, Q3. - - -, can be defined by stating that 2y equals ' and
for ¢ > 0, €; is constructed from £2;_; as follows.

1. If ©; is a Boolean combination of other formulas then if Q,_; F ©; is
derivable, then €; equals Q;_;, otherwise €; equals Q;_; U {=0,}.

2. If ©; is of the form Va®(x) then, if Q;_; F Va®(x) is derivable then
Q; equals ,_y, otherwise Q; equals Q;_; U{=Va®(z), ~P(x)} where x
is a variable that does not appear free in 0; or £;_;.

3. If ©; is of the form Ex(C') then, if 2,y F —Ex(C) is derivable then
Q; equals ,_y, otherwise Q; equals Q;_; U{Ex(C),Is(x, C')} where x

is a variable that does not appear free in 0; or £;_;.

4. If ©; is of the form Det(C) then, if Q,_; F Det(C) is derivable
then €, equals ,_1, otherwise Q; equals Q,_; U {=Det(C), Is(zq, C),
Is(zq, C), —Is(x1, x2)} where 21 and xy are variables that do not ap-
pear free in O; or ;_;.

5. If ©; is of the form Int(C, W) then, if Q;,_; F —Int(C, W) is derivable
then 2, equals ;_1, otherwise Q; equals Q;_U{Int(C, W),Is(z, C),Is(x, W)}

where x is a variable that does not appear free in ©; or ;_;.

6. If ©; is of the form Is(t, f(Cy,---,Cy)) where £ is a term and f is
a function symbol, then if Q,_; F —Is(t, f(Cq,---,C,)) is derivable
then Q; equals ©;_1, otherwise Q; equals Q,_; U {Is(¢t, f(C1,---,Ch)),
Is(zq, Cy), -+ -, Is(@n, Cn), Is(t, f(ax1, -, 2,))} where aq,---, 2, are

variables that do not appear free in ©; or €;_;.

7. If ©; is of the form Is(C, W), but not of the form of case 6 then, if
Q,_1 F Is(C, W) is derivable then Q; equals €,_1, otherwise §2; equals
O, U {-Is(C, W), Is(x, C),-Is(x, W)} where x is a variable that

does not appear free in ©; or €,_1.
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There is a direct relationship between cases 2 through 7 above and the
Socratic inference rules 53 through S8. For each of the cases 2 through 7 the
corresponding rule in S3 through 58 guarantees that if there no derivation of
Q,_1 F F then there is no derivation of ; F F. We leave it the reader to
verify that for each €2; there does not exist a derivation of ; F F but there
does exist a derivation of either ; F 0O, or ; F —=0,. Cases 2 through 7
guarantee the existence of witnesses for all existential claims. For example, if
0, is Ex(C') and there is a derivation of 2; F ©;, then there exists a variable
x such that there is a derivation of Q; F Is(x, C').

Now let € be the set of all formulas W such that there exists some ),
such that there is a derivation of ); = W. Note that () contains the original
set I'. Because all formulas are elements of the sequence 01,0, -, the
set ) is complete in the sense that for any formula W either ¥ € Q or
- € Q. Furthermore, there cannot be any derivation of Q F F because,
since any finite derivation will involve only a finite subset of €, if there exists
a derivation of 2 F F then there must be some (; such that there exists a
derivation of ; = F. Furthermore, the set € is closed under all of the rules
of obviousness (rules 1 through 31) where the rule of universal instantiation
(rule 31) is no longer restricted to focus terms. Finally, cases 2 through 7
above guarantee the existence of important existential witnesses.

One can now define a first order structure whose domain consists of equiv-
alence classes of terms. More specifically, for any variable ¢ we define [¢| to
be the set of terms ¢’ such that the formula Is(¢, ¢') is a member of . The
rules of obviousness for classification formulas ensure that these sets form
equivalence classes. We take the domain of the first order structure to be the
collection of equivalence classes of the form [¢|. It is now possible to define an
interpretation of the variables, constants, functions, relations, and predicate
symbols such that the semantic value of a class expression C' equals the ele-
ments of the form |t| such that the formula Is(¢, (') is a member of 2. Given
this first order model, one can define a variable interpretation p that maps
each variable x to the domain element |2|. Under this model and variable
interpretation one can show that a formula W is semantically true just in case
U is a member of €). This shows that the original set I" is satisfiable.
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Appendix C: Proof of the Extension Theorem

This appendix contains a proof of the extension theorem stated in sec-
tion 7. The extension theorem states that if T is a locality set for X, £, and
® such that ¥, ¢ A, @, then for any one-step extension a of T we have that
Y, 1 Prugay @ The following definitions will be useful in proving this result.

Definition: A new label formula is a label formula of T U {a}
that is not a label formula of T. A previously derivable formula
is formula ¥ such that ¥,7 By W. A newly derivable formula
is a formula ¥ that was not previously derivable but such that

M, t Hru{a} v,

Since ® is a member of T, ® is a label formula of Y. To prove that
Y.t thugey @ it suffices to show that every newly derivable formula is a
new label formula. This is done by proving that every new label formula
falls into one of several very specific types. A characterization of the newly
derivable formulas can be viewed as an invariant on the inference process
— the inference process maintains the invariant that every newly derivable
formula falls into one of a specified set of formula types.

The structure of the newly derivable label formulas depends on the struc-
ture of the extension expression «. If « is an atomic formula then « is a
label formula of (but not a member of) Y. In this case the only new label
formula is =« which is not newly derivable, and there are no newly derivable
formulas. If « is a quantified formula of the form Va®(x) then both a and
-« are new label formulas. However, neither of these formulas are newly
derivable so there are no newly derivable formulas. If « is a negation of the
form =W then « is a label formula of (but not a member of) T. In this case
the only new label formula is ==V and ==V is newly derivable if and only
if U was previously derivable. In this case ==V is the only possible newly
derivable formula. If « is a disjunction ¥y V W, then the only new label
formulas are Wy V Wy and —(W; V Uy). The label formula Uy vV Uy is newly
derivable provided one of ¥y and ¥, was previously derivable. The formula
=(¥y V Wy) is newly derivable provided both =Wy and =W, were previously
derivable.
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Now we consider the case where the extension expression « is a class
expression. If a is a class expression then the new label formulas are all
atomic formulas involving the new local class expression «, e.g., formulas
of the form Ex(«a), Det(a), Is(e, C), Is(C, «), Int(C, «), and Int(a, C)
where C'is a class expression in T U {a}. We must show that if « is a class
expression then every newly derivable formula is an atomic formula involving
a. If a1s a monadic predicate symbol then the only newly derivable formula
is Is(a, «). If a is a constant symbol or a variable then the only newly
derivable formulas are Is(a, «), Ex(a), and Det(a). Now suppose that o
is an application R(Cy,---,C,) where each class expression C; is a member
of T. In this case one can show that every newly derivable formula is of one
the types listed below. In each of these types the newly derivable formula
is a new label formula, so the extension theorem follows from the statement
that every newly derivable formula is of one of these types.

e The formula Is(R(Cy,---,Cy), R(Cyi,---,Ch)).

e A formula of the form Is(Z, R(Cy,---,C,)) where there exists an ex-
pression R(Wq,---, W,)in T such that the formulas Is(Z, R(Wy,---,W,)),
Is(Wy, Cy), ..., Is(W,, C,) were previously derivable.

e A formula of the form Is(R(Cy,---,C,), Z) where there exists an ex-
pression R(Wy,---,W,) in T such that the formulas Is(Cy, W), ...,
Is(Ch, Wo), Is(R(W1,---,W,), Z) were previously derivable.

e A formula of the form Is(Z, R(Cy,---,C,)) where there exists an ex-
pression R(Wq,---, W,)in T such that the formulas Is(Z, R(Wy,---,W,)),
Det(R(Wq,---,W,)), Int(W;, Cy), ..., Int(W,,, C,,) were previously

derivable.

e The formula Ex(R(Cy,---,C,)) where R is a function symbol and the
formulas Ex(C4), ..., Ex(C,) were previously derivable.

e The formula Ex(R(Cy,---,C,)) where there exists a class expression
R(Wy,--- W,) in T such that Ex(R(W4,---,W,)), Is(Wy, C1), ...,
Is(W,, C,) were previously derivable.

e The formula Det(R(C1,---,C,)) where R is a function symbol and the
formulas Det(C4), ..., Det(C,,) were previously derivable.
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e The formula Det(R(Cy,---,C})) where there exists a class expression
R(Wy,--- W,) in T such that Det(R(Wy,---,W,)), Is(Cy, W1), ..
Is(C,, W,) were previously derivable.

)

e The formulaInt(R(Cy,---,C,), R(Cy,---,C,)) where Ex(R(Cy,---,C,))

is newly derivable.

e A formula of the form Int(R(Cy,---,C,), Z)or Int(Z, R(Cy,---,C,))
where there exists a class expression R(Wq,---, W,)in T such that the
formulas Int(Z, R(Wh,---,W,)), Is(Wq, Cy), ..., Is(W,, C,) were

previously derivable.

e A formula of the form Int(R(Cy,---,C,), Z)or Int(Z, R(Cy,---,C,))
where R is a function symbol and there exists an expression R(Wy,---, W,,)
in T such that the formulas Is(R(W4,---,W,,), Z), Int(Wy, Cy), ..
Int(W,, C,) were previously derivable.

)

The inference process maintains the invariant that every newly derivable
formula is of one of the above types. To prove this one can consider each
inference rule and consider each way that the rule might be applied to both
newly derivable and previously derivable formulas. If we assume that each
newly derivable formula is of one of the above types, then one can show that
no matter how the rules are applied to both previously derivable and newly
derivable formulas, every derivable formula is either previously derivable or
is of one of the above types.

The large case analysis involved in considering each inference rule and
each way that the rule might be applied is not given here. Proofs of this
type, i.e., proofs involving a large invariant and a large case analysis, are
difficult to verify and subject to error. Unfortunately, we have not been able
to find any simpler proof. On the other hand, it is possible to construct a
general theory of “local” inference rules — a rule set is local if it satisfies
an appropriate generalization of the extension theorem given here. It is also
possible to construct a mechanical procedure that can determine in a large
number of cases whether or not a given rule set is local. Such a procedure
is described in [14]. It is straightforward to verify that when the extension
« is an application term then only inference rules that can derive new label
formulas are rules 1 through 19. The fact that rules 1 through 19 maintain
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the invariant given above has been mechanically verified using the general

procedure for determining locality. The formula types in the above list were
mechanically generated by this procedure.
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