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1 IntroductionAutomated reasoning is one of the central problems of arti�cial intelligenceand computer science. E�ective automated reasoning systems, if they couldever be constructed, would have a wide range of applications including theveri�cation and synthesis of computer programs, question answering based ondeclarative knowledge bases, the mechanical veri�cation of new mathematicalresults, the veri�cation of student arguments in computer aided instructionsystems, and probably other unforeseen applications. Unfortunately, manypotential applications of automated reasoning have su�ered from its apparentcomputational intractability.The most successful automated reasoning systems have been based onman-machine interaction. Following [5], we formalize man-machine interac-tive systems as Socratic proof systems. A formal Socratic proof is a series ofsteps, analogous to the questions used in the Socratic method of teaching,but where a mechanical procedure is used to determine the \acceptability"of individual steps. In this paper we discuss a general framework for theconstruction of such systems and de�ne a particular formal Socratic proofsystem based on a new procedure for determining the acceptability of steps.Our objective is to make Socratic proofs as concise and as natural as pos-sible while ensuring that acceptability can still be quickly determined. Tomake Socratic proofs concise, the step-checking procedure must provide someamount of automated reasoning. To make step-checking fast, however, thisautomated reasoning must be limited. We achieve natural, concise, andquickly-checkable Socratic proofs by basing our system on a non-standardsyntax for �rst order logic. We formally specify the acceptability of indi-vidual Socratic steps in terms of a computationally tractable, and hencesemantically incomplete, set of inference rules for this non-standard syntax.The tractable inference rules underlying our Socratic system appear not tohave any natural expression in the classical syntax of �rst order logic.Many researchers have discussed and built systems that can be viewedas Socratic proof systems. One way of constructing a Socratic system is tosimply place a limit on the amount of time allotted for theorem proving inchecking individual steps. This has been done for systems based on resolutiontheorem proving [2]. However, many researchers are uncomfortable with the2



lack of any natural characterization of exactly when an individual step inthese Socratic proofs is acceptable.Term rewriting systems form another class of Socratic systems with amore natural de�nition of an acceptable proof step. There currently exists avariety of man-machine interactive systems that use term rewriting combinedwith various methods of performing mathematical induction [3], [10], [11].The theorem proving mechanisms employed in these systems are incompleteand often terminate with failure. If a desired theorem cannot be proven ina fully automated way, it can often be broken down into a series of lemmaswhere each lemma can be proven by the automated procedure and, giventhese lemmas, the automated procedure can also prove the desired result.This series of lemmas can be viewed as a series of steps in a Socratic proof.Unfortunately, there is usually no guarantee that rewriting terminates inpolynomial time, and long computation times can be a problem in practice.Another approach to the construction of Socratic systems uses some formof decision procedure to verify individual steps of Socratic proofs. Some au-thors have proposed decision procedures that require more than polynomialtime, such as the decision procedure for propositional dynamic logic, or thedecision procedure for ground predicate calculus [20], [6]. Others have em-phasized polynomial time procedures [17]. Polynomial time procedures areclearly desirable if one wants the acceptability of Socratic proofs to be quicklycheckable.Some research on polynomial time inference procedures has emphasizedcomputationally tractable fragments of �rst order logic. For example, it isnot di�cult to give a linear time procedure for determining the satis�abilityof a set of propositional Horn clauses [9]. A more complex example involvesdeciding the satis�ability of a set of ground literals in �rst order logic withequality. The di�cult part of this satis�ability problem is computing all sub-stitutional consequences of equality. A polynomial time decision procedurebased on congruence closure was �rst given by Kozen [13]. Kozen's con-gruence closure procedure was followed by a series of applications and moree�cient implementations [17] [8]. It is also possible to combine the decisionprocedure for Horn clauses with the decision procedure for ground literalsresulting in an e�cient procedure for deciding the satis�ability of a set of3



ground Horn clauses in �rst order logic with equality.Polynomial time inference procedures have also been studied within theknowledge representation sub�eld of arti�cial intelligence. Knowledge rep-resentation languages are sometimes criticized as being merely \pretty ver-sions" of ordinary �rst order logic. There are two responses to such criticism.First, some of the constructs of knowledge representation languages cannotbe easily translated into �rst order logic.1 Second, even for languages thatcan be faithfully translated to �rst order logic, the non-standard syntax of aknowledge representation language often allows the identi�cation of compu-tationally tractable fragments of the logic which have no natural character-ization in classical syntax. Non-standard tractable fragments of logic havebeen identi�ed in the context of a certain family of knowledge representationlanguages called frame description languages, or FDLs [4] [16].Although an FDL is a nonstandard syntax, one can still identify atomicformulas, literals, Boolean combinations and quanti�ed formulas. Earlierwork on FDLs has focused primarily on the problem of determining the va-lidity of individual atomic formulas. Because atomic formulas can be moreexpressive in a nonstandard syntax than in classical syntax, determining thevalidity of an atomic formula can be nontrivial.2 In this paper we focus on theproblem of determining the satis�ability of a set of ground literals in an ex-pressive nonstandard syntax. For a given syntax, the problem of determiningthe satis�ability of a set of literals is at least as hard as, and usually muchharder than, the problem of determining the validity of individual atomicformulas. Previous work on FDLs is discussed in more detail in Section 3.The existence of tractable fragments of �rst order logic has lead someresearchers to adopt a two-language approach to knowledge representation| the knowledge base of facts is separated into those facts expressible ina �xed tractable language and those facts not expressible in that language1There are (at least) three features occurring in various knowledge representation lan-guages that are di�cult, if not impossible, to translate into �rst order logic. The �rstinvolves heuristic or probabilistic knowledge, also known as defaults and nonmonotonicity[19]. The second is \intensional" propositions such as the proposition P in the sentence\John believes that P" [12]. A third is recursive de�nitions. Recursive de�nitions areperhaps best modeled using the �-calculus [18].2In classical syntax, the only valid atomic formulas are equations of the form t = t.4



[4]. If a given query is expressed as a formula in the tractable fragment oflogic, then a polynomial decision procedure can be used to determine if thequery formula follows from the tractable component of the data base. Moreexpressive tractable fragments of logic allow more facts to be included in thetractable component of the data base and make the polynomial time inferenceprocedure more useful. However, since the decision procedure is only appliedto formulas in the tractable fragment of the language, the decision procedurecan only be applied to a subset of the possible queries. Furthermore, evenwhen the decision procedure can be applied, it can only use as premises thosefacts in the knowledge base that are also expressed in the tractable language.In this paper we propose a one-language architecture for knowledge rep-resentation. In our one-language architecture we characterize the underlyinginference procedure by a set of inference rules. Although the rules are notcomplete for the full language, the rules can be usefully applied to arbitrarysets of formulas. Furthermore, the rules are designed so that one can deter-mine, in polynomial time, whether or not a given query can be proven froma data base using the given rules. This eliminates the need to separate thedata base into two fragments. In a corresponding two-language system, theinference procedure would only be applied to that subset of the data thatcould be expressed in the decidable sublanguage, i.e., in the subset of thelanguage for which the rules are complete. However, the inference rules canbe used to draw conclusions from information not expressible in the decidablesublanguage. The one-language architecture is able to draw more conclusionsthan the corresponding two-language system.Polynomial time inference procedures have also been studied in the con-text of uni�cation theory. Most relevant to the present paper is the studyof many sorted uni�cation [22]. Certain �rst order axioms about taxonomicrelationships can be incorporated into the sort structure of many sorted logicand then handled in the uni�cation step of a resolution theorem prover. Thisallows many inference problems to be represented with fewer clauses and re-duces the space of possible proofs that the theorem prover must search. Forsimple sort systems it is possible to construct e�cient sorted uni�cation al-gorithms. There are two principle di�erences between the use of sorts inuni�cation and the use of taxonomic formulas described here. First, thesort structures that have been built into uni�cation procedures are simpler5



than the taxonomic formulas studied here. For example, in the uni�cationalgorithms presented in [22] the sorts are represented by symbols under a�xed partial order and complex class expressions are not considered. Sec-ond, like earlier work on FDLs, sorted uni�cation also takes a two-languageapproach to the use of decision procedures. The sort structure is expressedin a separate language from that used to express more complex formulas.Our one-language architecture for knowledge representation is formalizedas a Socratic proof system. Although there may be consequences of a knowl-edge base that are not \obvious" to the knowledge representation system,the system can always be \convinced" of the fact by presenting it with anappropriate Socratic proof. A Socratic proof is a sequence of steps where apolynomial time decision procedure is used to test the acceptability of in-dividual steps. More powerful decision procedures lead to shorter Socraticproofs. For the Socratic proof described here there is no need for a distinctionbetween a tractable and an intractable language.The Socratic proof system de�ned in this paper is similar to the one usedin the Ontic system [15]. Ontic provides Socratic completeness relative toZermelo-Fraenkel set theory, i.e., any formula provable in set theory can begiven a Socratic proof in that system. Ontic has been used to verify the StoneRepresentation Theorem of lattice theory starting with only the axioms ofset theory. The use of a powerful inference procedure in verifying individualsteps of a Socratic proof greatly reduces the textual length of such proofs.The introduction of our non-standard syntax allows the inference procedurede�ned here for step-veri�cation to be stronger than the one used in Ontic.2 Taxonomic Syntax for First Order LogicThe construction of a non-standard syntax for �rst order logic is motivatedby a desire for powerful yet computationally tractable inference rules. By\computationally tractable inference rules" we mean a set of inference rulessuch that there exists a polynomial time procedure for determining whetheror not an arbitrary formula can be derived from arbitrary premises, i.e., theinference relation generated by the rules is polynomial time decidable. Of6



course, no computationally tractable set of inference rules can be completefor full �rst order logic. However, there are useful tractable rule sets and thepower of tractable rule sets appears to be sensitive to the syntax used forexpressing formulas.In our taxonomic syntax, as in classical syntax, a �rst order languageis de�ned by a set of constant, function, and predicate symbols where eachfunction and predicate symbol is associated with a speci�ed arity (number ofarguments). The models that de�ne the semantics of our taxonomic expres-sions are identical to the models that de�ne the semantics of classical �rstorder expressions. A model consists of a set D, called the semantic domainof the model, together with an interpretation of every constant, function andpredicate symbol. We will use Dn to denote the set of all n-tuples of elementsof D. A �rst order model with semantic domain D interprets each constantsymbol as an element of D, each n-ary function symbol as a function fromDn to D and each n-ary predicate symbol as a subset of Dn.Our taxonomic syntax for �rst order logic is organized around class ex-pressions and taxonomic relationships between class expressions. Class ex-pressions are analogous to classical �rst order terms except that class expres-sions denote sets rather than individuals. Class expressions are constructedfrom variables, constants, function symbols and predicate symbols in muchthe same way that terms are constructed from variables, constants, and func-tion symbols. For example, if A-MAN is a monadic predicate symbol thenA-MAN is, all in itself, a class expression. Intuitively, the class expressionA-MAN denotes the set of all men. If PARENT-OF is a binary relationsymbol then PARENT-OF(A-MAN) is a class expression. Intuitively, thisclass expressions denotes the set of people who are the parent of some man.Formally, class expressions can be de�ned syntactically as follows.De�nition: A class expression is either� a variable,� a constant symbol,� a monadic predicate symbol,� an application f(C1; � � � ; Cn) of an n-ary function symbol fto n class expressions C1; � � � ; Cn,7



� or an application R(C1; � � � ; Cn�1) of an n-ary relation sym-bol R (with n > 1) to n� 1 class expressions C1; � � � ; Cn�1.Intuitively, the semantics of class expressions corresponds to simply read-ing class expressions as if they were English noun phrases. For example, ifFATHER-OF is a monadic function symbol, and A-MAN is a monadicpredicate symbol, then the class expression FATHER-OF(A-MAN) de-notes the set of individuals that are the father of some man. More formally,this class expression denotes the image of the set denoted by A-MAN un-der the function denoted by FATHER-OF. A rigorous treatment of thesemantics of class expressions is given below.The formulas of taxonomic syntax include atomic statements about thetaxonomic relationships between class expressions. More speci�cally, wewrite Is(C; W ) to say that the set denoted by C is a subset of the set denotedby W . We also write Ex(C) to say that the set denoted by C is non-emptyand we write Det(C) to say that there is at most one element of the setdenoted by C. Finally, we write Int(C; W ) to say that the set denotedby C has a non-empty intersection with the set denoted by W . Taxonomicformulas are de�ned syntactically as follows.A taxonomic formula is either� a classi�cation formula, Is(C; W ), where C and W are classexpressions,� an existence formula, Ex(C), where C is a class expression,� a determination formula,Det(C), where C is a class expres-sion,� an intersection formula, Int(C; W ), where C and W areclass expressions,� a Boolean combination of taxonomic formulas,� or a quanti�ed formula of the form 8x�(x) or 9x�(x) where�(x) is a taxonomic formula.8



As in the case of class expressions, the semantics of taxonomic formulasroughly corresponds to simply reading these formulas as if they were Englishsentences. For example, the formula Is(x; A-PERSON) is true just in casethe value of the variable x is an element of the set denoted by the class expres-sion A-PERSON. The formula Is(y; A-CHILD-OF (x)) is true just in casethe pair <x; y> is contained in the relation denoted by A-CHILD-OF. Theformula Is(z; A-CHILD-OF (A-CHILD-OF (x))) is true just in case there ex-ists some member y of the class A-CHILD-OF (x) such that z is a memberof the class A-CHILD-OF (y). The formula Is(x; TIMES (2 A-NUMBER))is true just in case x can be written as the product of 2 and some number,i.e., just in case x is an even number.We now give a rigorous de�nition of the semantics of taxonomic formu-las and class expressions. Note that a �rst order model does not providean interpretation of variables; as in classical syntax the semantic value ofan expression containing free variables is determined by a variable interpre-tation, i.e., a mapping from variables to elements of the semantic domain.The semantics of class expressions and taxonomic formulas can be rigorouslyde�ned as follows.De�nition: LetM be a �rst order model with semantic domainD and let � be a mapping from variables to elements of D. Forany class expression C we de�ne the semantic interpretation of C,denotedM(C; �), to be a subset of D determined by the followingconditions.� If v is a variable thenM(v; �) is the singleton set containing�(v).� If c is a constant thenM(c; �) is the singleton set containingthe element of D that M assigns to c.� If P is a monadic predicate symbol thenM(P; �) equals thesubset of D that M assigns to the predicate P .� If f is an n-ary function symbol, and C1; � � � ; Cn are classexpressions, thenM(f(C1; � � � ; Cn); �) is the set of all y suchthat there exist elementsx1 : : : ; xn inM(C1; �); � � � ;M(Cn; �)respectively such that y is the value of the function that Massigns to f when applied to the tuple <x1; � � � ; xn>.9



� If R is an n-ary relation symbol for n > 1, and C1; � � � ; Cn�1are class expressions, then M(R(C1; � � � ; Cn�1); �) is the setof all y such that there exist elementsx1; : : : ; xn�1 inM(C1; �),� � �,M(Cn�1; �) respectively such that the tuple<x1; � � � ; xn�1; y>is a member of the relation that M assigns to the symbolR.For any taxonomic formula � we de�ne the semantic interpreta-tion of �, denoted M(�; �), to be either T or F as determinedby the following conditions.� M(Is(C1; C2); �) is T if and only if M(C1; �) is a subset ofM(C2; �).� M(Ex(C); �) is T if and only if M(C; �) is non-empty.� M(Det(C); �) is T if and only if M(C; �) has at most onemember, i.e., is either empty or a singleton.� M(Int(C1; C2); �) is T if and only if the set M(C1; �) hasa non-empty intersection with the set M(C2; �).� Boolean combinations and quanti�ed formulas have theirstandard interpretation.Much of the standard terminology of classical syntax can be carried overto our taxonomic syntax. Any formula other than a Boolean combinationor quanti�ed formula will be called an atomic formula, i.e., atomic formulasare taken to be classi�cation formulas, existence formulas, determinationformulas, and intersection-formulas. A literal is de�ned to be either an atomicformula or the negation of an atomic formula. A ground expression is aformula or class expression that does not contain any variables (either freeor bound). A formula is called satis�able if there exists a �rst order modeland a variable interpretation under which that formula is true. A formulathat is true under all �rst order models and all variable interpretations willbe called valid. A formula is valid if and only if its negation is not satis�able.We say that a pair <M; �> satis�es a set of formulas � if M(	; �) is T forevery element 	 of �. If there exists a pair <M; �> that satis�es � then �is called satis�able. We write � j= � if � is true under all interpretations of�, i.e., if M(�; �) equals T for any pair <M; �> that satis�es �.10



Note that classical terms are a subset of class expressions | class ex-pressions that do not contain predicate or relation symbols, i.e., classes builtpurely from constants and function symbols, will be called terms. Note thatunder the semantics of taxonomic syntax, terms always denote singleton sets.So if s and t are terms then the formulas Is(s; t) and Is(t; s) are both equiv-alent to the classical equation s = t.Every atomic formula of classical syntax can be translated directly intoa classi�cation formula of taxonomic syntax. As just noted, a classical equa-tion s = t is equivalent to Is(s; t). If R is an n-ary predicate symbol thenthe classical atomic formula R(s1; � � � ; sn�1; w) is equivalent to the taxono-mic atomic formula Is(w; R(s1; � � � ; sn�1)). Although every classical atomicformula is equivalent to a taxonomic classi�cation formula, there is no cor-responding inverse translation from taxonomic atomic formulas to classicalatomic formulas. Consider the taxonomic formula Is(P; Q) where P andQ are monadic predicate symbols. It is possible to show that any classicalformula equivalent to Is(P; Q) must involve quanti�ers | if � is a quanti�er-free classical formula there exists a model and a variable interpretation inwhich � is true but Is(P; Q) is false. Intuitively, classical quanti�er-freeformulas can only mention a �nite subset of the semantic domain while theatomic formula Is(P; Q) places a constraint on all domain elements. Theseobservations imply that taxonomic ground literals are strictly more expres-sive than classical ground literals. However, taxonomic atomic formulas canbe translated into (quanti�ed) classical formulas. When the full quanti�edlanguage is considered, our taxonomic syntax is expressively equivalent toclassical syntax.3 Frame Description LanguagesOf course there other ways of de�ning a non-standard syntax for �rst orderlogic. Our taxonomic syntax for �rst order logic is related to a large familyof knowledge representation languages known as frame description languages(FDLs) [4], [16], [21], [7]. Each FDL is similar to our taxonomic syntax inthat it provides a simple recursive de�nition of a particular set of class expres-11



sions built from constant, function, predicate, and relation symbols.3 Theclass expressions of a particular FDL can be considerably di�erent from theclass expressions of our taxonomic syntax. For example, all FDLs discussedin the knowledge representation literature include intersection operations onclass expressions | given any two class expressions C1 and C2 the class ex-pression AND(C1; C2) denotes the intersection of the sets denoted by C1and C2. Various other ways of constructing class expressions are allowed de-pending on the particular FDL in question. There is no simple relationshipbetween the expressive power of quanti�er-free taxonomic syntax as de�nedhere and the FDLs that have been discussed in the literature. For exam-ple, the class expression 8R:C as de�ned in [7] cannot be expressed in thequanti�er-free fragment of our taxonomic syntax. Conversely, the class ex-pression R(C W ) of our taxonomic syntax cannot be expressed in any of thelanguages discussed in [7].For a given FDL one can de�ne at least three decision problems of in-creasing di�culty which we will call the atomic formula validity problem,the atomic formula entailment problem, and the literal conjunction satis�-ability problem. The atomic formula validity problem is just the problemof determining if a single ground classi�cation formula is valid. The atomicformula entailment problem is the problem of determining if a given groundclassi�cation formula follows from a �nite data base containing ground classi-�cation formulas, i.e., does a given classi�cation formula follow from a �niteconjunction of other classi�cation formulas. Finally, the literal conjunctionsatis�ability problem is the problem of determining if a �nite conjunctionof ground classi�cation formulas and negations of ground classi�cation for-mulas is satis�able. For a �xed FDL these three problems are of increasingdi�culty | the atomic formula validity problem is just a special case of theatomic formula entailment problem, which is itself essentially a special caseof the literal conjunction satis�ability problem.The knowledge representation literature has focused almost exclusivelyon the atomic formula validity problem. The atomic formula validity prob-3Within the knowledge representation literature an FDL is not viewed as an alternativesyntax for full �rst order logic. Rather, the formulas of an FDL are restricted to includeonly classi�cation formulas between ground class expressions. Under this restriction, theselanguages are far less expressive than full �rst order logic.12



lem for classi�cation formulas is equivalent to the problem of determiningwhether one class expression necessarily denotes a subset of the set denotedby a second class expression. This particular problem is known in the knowl-edge representation literature as the subsumption problem | the problem ofdetermining whether one class subsumes another class. Several FDLs havebeen found in which the atomic formula validity problem (the subsumptionproblem) is non-trivial yet polynomial time decidable [16]. However, we donot know of any published polynomial decision procedures for the atomicformula entailment problem of an FDL. The literal conjunction satis�abilityproblem has been similarly ignored. In practice one must draw conclusionsfrom a data base of given facts, so a solution to the atomic formula en-tailment problem is more directly applicable than a solution to the atomicformula validity problem.The ground classi�cation formulas of the taxonomic syntax de�ned in thispaper constitute a particular FDL. The atomic formula validity problem ofthis FDL is trivial | a ground classi�cation formula is valid if and only ifthe two class expressions involved are identical. Despite the trivial nature ofthe atomic formula validity problem, it is quite di�cult to construct decisionprocedures for the atomic formula entailment problem and literal conjunctionsatis�ability problem. We show in this paper that, for our taxonomic syntax,the literal conjunction satis�ability problem, and hence the atomic formulaentailment problem, is polynomial time decidable.Given the di�culty we have encountered in constructing a polynomialtime decision procedure for the literal conjunction satis�ability problem ofour taxonomic syntax, we feel that our syntax represents a distinguished com-promise between tractability and expressive power. Our taxonomic syntaxis also distinguished by its close relationship to classical syntax | the classexpressions of our syntax are constructed from constants, functions, pred-icates and relations using application as the only method for constructingnew classes.4 Literal Conjunction Satis�ability13



(1) Is(C; C)(2) Is(C; W ); Is(W; Z)Is(C; Z)(3) Ex(C); Is(C; t)Is(t; C)(4) Is(C1; W1); � � � ; Is(Cn; Wn)Is(R(C1; : : : ; Cn); R(W1; : : : ;Wn))(5) Ex(t)(6) :Is(C; W )Ex(C)(7) Ex(C); Is(C; W )Ex(W )(8) Ex(C1)� � �Ex(Cn)Ex(f(C1; � � � ; Cn))(9) Ex(R(s1; : : : ; sn))Ex(si)(10) :Det(C)Ex(C)

(11) Int(C; W )Ex(W )(12) Det(t)(13) Det(W ); Is(C; W )Det(C)(14) Det(C1); � � � ;Det(Cn)Det(f(C1; � � � ; Cn))(15) Ex(C)Int(C; C)(16) Int(C; W ); Is(C; Z)Int(Z; W )(17) Int(C1; W1); � � � ; Int(Cn; Wn)Int(f(C1; : : : ; Cn); f(W1; : : : ;Wn))(18) Int(C; W )Int(W; C)(19) Int(C; W ); Det(C)Is(C; W )Figure 1: The inference rules for taxonomic literals. In these rules C,W , andZ range over arbitrary class expressions, t ranges over terms (class expres-sions built purely from constants and function symbols), R ranges over bothfunction symbols and relation symbols, and f ranges over function symbols.14



It is a well known that the satis�ability of a �nite set of classical groundliterals is polynomial time decidable. In this section we show that this resultcan be extended to our taxonomic syntax. The signi�cance of this extensionlies in the signi�cantly greater expressive power of taxonomic ground literals.The decision procedure for the classical ground literal satis�ability prob-lem is based on congruence closure for reasoning about equality [13], [8], [17].Our decision procedure for taxonomic syntax can be viewed as a (non-trivial)adaptation of congruence closure. The congruence closure procedure can beviewed as an implementation of the four basic inference rules for equality| re
exivity, transitivity, symmetry, and substitutivity (congruence). Thesefour basic inference rules are semantically complete for deriving ground equa-tions from ground equations. An analogous set of inference rules for taxo-nomic literals is given in �gure 1. In the transition to taxonomic syntax,the four simple rules for equality have been replaced by 19 rules! Given thesimplicity of our taxonomic class expressions, and the clear analogy betweenclassi�cation formulas and classical equalities, it is surprising that so manyinference rules are needed. Before presenting the polynomial time decisionprocedure based on these rules we will present a series of examples of satis-�ability problems in an attempt to provide an intuitive justi�cation for thelarge number of inference rules.To gain better insight into the need for a large rule set, we will investigatesome ways one might attempt to reduce the number of rules required. Themost obvious way of reducing the number of rules is to simplify the languageby eliminating existence, determined, and intersection formulas. All literalsinvolving atomic formulas other than classi�cation formulas can be replacedby classi�cation formula literals. For example, Det(P ) can be replaced byIs(P; c) where c is a new constant symbol. The most di�cult literal toreplace is :Int(P; Q) which can be replaced by Is(f(P ); a), Is(f(Q); b) and:Is(a; b) where f is a new function symbol and a and b are new constantsymbols.De�nition: A �nite set � of taxonomic ground literals will becalled a clean premise set if � consists only of classi�cation for-mulas and negations of classi�cation formulas.Lemma: If � is a �nite set of taxonomic ground literals then15



one can compute, in linear time in the size of �, a clean premiseset �0 such that �0 is satis�able if and only if � is satis�able.The classi�cation formulas of taxonomic syntax are analogous to theequalities of classical syntax. In fact, the �rst four inference rules in �g-ure 1 correspond to the four basic rules of equality | rules 1 through 4 areidentical to the rules for equality except that the taxonomic symmetry rule(rule 3) can only be applied to a formula Is(C; t) when C is known to benon-empty and t is a term.4 This restriction guarantees that the symmetryrule is only applied when the two class expressions involved both denote sin-gleton sets. By restricting the symmetry rule to apply only when both classexpressions are terms, one can give a version of rules 1 through 4 that onlyinvolves classi�cation formulas. One might hope, by analogy with equality,that this version of rules 1 through 4 would be complete for clean premisesets. Unfortunately, there appears not to be any complete version of rules 1through 4. To appreciate the di�culties involved, consider the following setof three classi�cation formulas.Is(a; R(P )), Is(P; b), Is(P; c)In these literals a, b, and c are constant symbols, P is a monadic predicatesymbol, and R is a binary relation symbol. These literals together implyIs(b; c). To see this note that the �rst literal implies that R(P ) denotes anon-empty set. The semantics of class expressions is such that this can onlyhappen when P denotes a non-empty set. But the second two literals implythat if P is non-empty then it must contain a single element which is thevalue assigned to both b and c so we must have Is(b; c). We have not foundany version of rules 1 through 4 that can, in themselves, derive Is(b; c) fromthe above three literals. However, rules 1 through 9 are su�cient to deriveIs(b; c). Given the �rst literal above, inference rules 5 and 7 can be used toderive Ex(R(P )). Inference rule 9 can then be used to derive Ex(P ). Giventhe literal Is(P; b), the symmetry rule (rule 3) can now be used to deriveIs(b; P ). Finally, given Is(P; c), transitivity (rule 2) can be used to deriveIs(b; c). Note the importance of inference rule 9 in this derivation. Infer-ence rule 9 is a source of complexity for the literal conjunction satis�ability4Recall that terms are class expressions constructed entirely from constants and func-tion symbols. 16



problem. Rule 9 provides a way of proving formulas of the form Ex(C) evenwhen there is no term t such that one can derive Is(t; C).Although existence formulas appear to be essential in any complete infer-ence process, determined and intersection formulas are not. It turns out thatinference rules 1 through 9 are complete for determining the satis�ability ofclean premise sets. Note that rules 1 through 9 are self-contained in the sensethat they only involve classi�cation formulas and existence-formulas. Rules5 and 6 introduce existence formulas, rules 7 through 9 propagate existenceformulas, and rule 3 uses existence formulas in deriving new classi�cationformulas.Intractable Completeness Theorem: If � is a clean premiseset then � is unsatis�able if and only if � contains a formulaof the form :Is(C; W ) such that the formula Is(C; W ) can bederived from � using inference rules 1 through 9.For reasons explained below, we do not give a direct proof of this com-pleteness theorem. Rather, we prove that inference rules 10 through 19 areredundant in the sense that any classi�cation formula provable using the en-tire rule set is provable from rules 1 through 9 alone. A completeness prooffor the entire rule set will then establish completeness for rules 1 through9. The completeness proof for the entire rule set is not any simpler than adirect proof of the completeness of rules 1 through 9. However, a direct proofof completeness for rules 1 through 9 alone would not provide a polynomialtime decision procedure (hence the name intractable completeness theorem).Rules 10 through 19 play an essential role in the polynomial time decisionprocedure discussed below.It should be pointed out that, although inference rules 1 through 9 arecomplete for determining satis�ability, they are not complete in the normalsense. Suppose we are trying to determine if Is(P; Q) follows from a cleanpremise set �. It is possible that Is(P; Q) follows but cannot be derivedusing the above rules. However, if we add :Is(P; Q) to � then rule 6 canbe used to derive Ex(P ), a formula not necessarily derivable from �. Theadditional formula Ex(P ) may lead to a derivation of Is(P; Q) showing that17



Is(P; Q) does indeed follow from �. The construction of a concrete exampleof this phenomenon is left as an exercise for the reader.We now show that inference rules 10 through 19 are redundant (for cleanpremise sets) relative to rules 1 through 9. If � is a clean premise set thenone can prove the following facts by simultaneous induction on the length ofderivations from � using the full rule set.� If Det(C) is derivable from � using the full rule set then there existssome term t such that the formula Is(C; t) is derivable from � usingrules 1 through 9.� If Int(C; W ) is derivable from � using the full rule set then there existssome class expression Z such that Ex(Z), Is(Z; C) and Is(Z; W ) areall derivable from � using rules 1 through 9.� If Is(C; W ) is derivable from � using the full rule set then Is(C; W )is derivable from � using rules 1 through 9.� If Ex(C) is derivable from � using the full rule set then Ex(C) isderivable from � using rules 1 through 9.As mentioned above, inference rules 10 through 19 play an importantrole in the polynomial time decision procedure for determining satis�ability.The need for inference rules 10 through 19 is best demonstrated through anexample. Consider the following set of literals.� Is(a; P ), Is(g6(P ); P )� Is(g(a); Q), Is(g7(Q); Q)� Is(f(P ); b), Is(f(Q); c), :Is(b; c)In these literals a, b and c denote constant symbols, f and g denotemonadic function symbols, P and Q denote monadic predicate symbols, andgn(a) is an abbreviation for g(g(� � � g(a))) with n applications of g. It turnsout that this set of seven literals is unsatis�able. More speci�cally, inference18



rules 1 through 5 can be used to derive Is(b; c), contradicting the last lit-eral above. We will refer to rule 1 as re
exivity, rule 2 as transitivity, rule3 as symmetry and rule 4 as monotonicity. To derive Is(b; c) �rst considerthe pair of literals Is(a; P ) and Is(g6(P ); P ). From the literal Is(a; P ),repeated use of monotonicity allows us to derive Is(g6(a); g6(P )). From theliteral Is(g6(P ); P ), transitivity now allows us to derive Is(g6(a); P ). Ingeneral, given the literal Is(g6(P ); P ), and any literal of the form Is(W; P ),monotonicity and transitivity allow us to derive Is(g6(W ); P ). So fromIs(g6(a); P ) we can derive Is(g6(g6(a)); P ). And more generally, for any nat-ural number n, monotonicity and transitivity allow us to derive Is(g6n(a); P ).Similarly, from the literals Is(g(a); Q) and Is(g7(Q); Q) monotonicity andtransitivity allow us to derive Is(g7m+1(a); Q) for any natural numberm. 36is the �rst natural number that can be written both as 6n and as 7m + 1.Monotonicity and transitivity allow us to derive both Is(g36(a); P ) andIs(g36(a); Q). Now monotonicity also allows us to derive Is(f(g36(a)); f(P ))and Is(f(g36(a)); f(Q)). Given the literals Is(f(P ); b) and Is(f(Q); c),transitivity now allows us to derive Is(f(g36(a)); b) and Is(f(g36(a)); c).Symmetry, together with rule 5, now allows us to derive Is(b; f(g36(a))).Finally, transitivity can be used to derive Is(b; c).The derivation of Is(b; c) from the above literals using rules 1 through9 requires the construction of a large class expression, g36(a). This classexpression is much larger than any class expression appearing in the givenliterals. This shows a fundamental di�erence between rules 1 through 9for taxonomic formulas and the four basic rules for equalities underlyingcongruence closure. The four rules underlying congruence closure are \local".More precisely, a derivation from a set of equalities � will be called local ifevery formula in the derivation is an equality between terms appearing as asubexpression of equations in �. If � is an unsatis�able set of equalities andnegations of equalities (analogous to a clean premise set) then there exists alocal derivation of inconsistency. The locality of the equality rules allows forthe construction of a polynomial time decision procedure. Inference rules 1through 9 for taxonomic syntax are not local in this sense. However, the fullset of inference rules is local in the same sense that the four basic equalityrules are local | derivations can be restricted to the class expressions thatactually appear in the given set of literals. In the following de�nitions weavoid using the standard symbol ` which we reserve as notation for the full19



�rst order inference relation discussed in a later section.De�nition: We write � �̀ 	 if 	 can be derived from � usingthe inference rules of �gure 1. We write � �̀ F if � contains aformula of the form :	 such that � �̀ 	.De�nition: We write � ` 	 if 	 can be derived from � usingthe inference rules of �gure 1 such that every class expressionappearing in the derivation of 	 also appears as a subexpressionof some formula in �. We write � ` F if � contains a formulaof the form :	 such that � ` 	.Now let � be any �nite set of taxonomic ground literals (clean or unclean).The following three statements are the main results of this section.Tractability Lemma: One can determine whether or not � ` Fis time polynomial in the size of �.Tractable Completeness Theorem: � ` F if and only if �is unsatis�able.Locality Corollary: � ` F if and only if � �̀ F.The tractability lemma follows directly from the de�nition of .̀ If thereare n class expressions appearing in � then there are only order n2 literalsthat can be constructed from these class expressions. Since the relation `restricts all derivations to these order n2 literals, the inference relation ` ispolynomial time decidable.The locality corollary follows directly from the completeness theorem. Tosee this note that, because ` is simply a restriction of �̀, if � ` F then� �̀ F. Conversely, if � 6` F then, by the completeness theorem, � mustbe satis�able. The soundness of �̀ then implies that � 6 �̀ F.Before considering a proof of the completeness theorem we return to adiscussion of the following set of literals.20



� Is(a; P ), Is(g6(P ); P )� Is(g(a); Q), Is(g7(Q); Q)� Is(f(P ); b), Is(f(Q); c), :Is(b; c)The last three literals imply that P and Q do not intersect. Using onlyrules 1 through 9 it is possible to prove Is(g36(a); P ) and Is(g36(a); Q). Butg36(a) is a large class expression that does not appear in the above literals.Rules 1 through 9 are not, in themselves, local. Under the full rule set,however, if one can prove Int(P; Q) then one can derive a contradiction fromthe last three literals. Furthermore, under the full rule set one can deriveInt(g(P ); Q). Starting with this intersection statement, repeated use of rules17 and 16 allows one to derive all formulas of the form Int(gn(P ); gm(Q))where 0 � n � 6 and 0 � m � 7. This includes the formula Int(P; Q).All class expressions in these derivations appear in the above literals so thederivation is local. The general proof of the tractable completeness theoremis quite di�cult and is given in appendix A.Note that the locality corollary is a purely syntactic statement | it ex-presses the equivalence of two syntactic relations. We have found a purelysyntactic proof of this purely syntactic statement. Although we do not giveour syntactic proof, a syntactic proof of a similar theorem is given in sec-tion 7. Given a syntactic proof of locality it would su�ce to prove semanticcompleteness for �̀ rather than .̀ Unfortunately, it does not appear that asemantic proof of completeness for �̀ would be much simpler than the proofof completeness for .̀5 Socratic ProofsAlthough the inference rules given in the previous section are complete fordetermining the satis�ability of a �nite conjunction of ground literals, theydo not provide any method of reasoning about Boolean or quanti�ed formulasand are not complete for �rst order inference. Any knowledge representationsystem that is able to store arbitrary �rst order facts must provide additional21



inference mechanisms if some form of �rst order completeness is desired. Inthis section we show how the polynomial time decision procedure discussedin the previous section can be incorporated into a Socratic proof system thatis complete for �rst order inference.Intuitively, a Socratic proof is a series of statements, each of which obvi-ously follows from the earlier statements in the proof, and the last of whichis a desired fact or theorem. Formally, we de�ne the notion of an \obviousstatement" by a set of inference rules called rules of obviousness. A state-ment is obvious if it can be derived from previous statements in the Socraticproof using the rules of obviousness. The rules of obviousness are selected sothat one can determine, in polynomial time, whether or not a given state-ment is obvious. The formal de�nition of an obvious statement provides aformal de�nition of correctness for Socratic proofs | a Socratic proof is cor-rect if every step is obvious in this technical sense. The polynomial timedecision procedure for obviousness provides a polynomial time procedure fordetermining the correctness of Socratic proofs.This simple notion of a Socratic proof raises a technical di�culty. Con-sider a Socratic proof, a series of formulas, �1;�2; � � � ;�n, where each �i isobvious provided that one has established the preceeding formulas �1; � � � ;�i�1.The problem is that we have de�ned obviousness in terms of inference rules| a formula is obvious if it can be derived using the rule of obviousness. Thisimplies that �1 can be derived using the rules of obviousness and that �2can be derived from �1. But this implies that �2 can itself be derived usingthe given rules. In fact, each �i can be derived directly. So for any correctSocratic proof of the form �1;�2; � � � ;�n, the �nal formula �n must itself beobvious (derivable from the rules of obviousness). Our simple speci�cationof a Socratic proof is degenerate.To prevent this degeneracy we specify that the individual statements ofa Socratic proof be sequents of the form � ` � rather than formulas | ourSocratic proof system is a kind of natural deduction system. A sequent ofthe form � ` � is obvious if � can be derived from the premise set � usingthe rules of obviousness. In addition to the rules of obviousness, there areSocratic proof rules that allow for the derivation of non-obvious sequents. Forexample, if the sequents �[ f	g ` � and �[ f:	g ` � are both obvious,22



then one can derive � ` 	, even if this last sequent is not obvious. Theinference rules that allow for the derivation of non-obvious sequents will becalled Socratic inference rules. The overall Socratic proof system is de�nedby two sets of inference rules | the rules of obviousness and the Socraticrules for deriving non-obvious sequents.The length of Socratic proofs can be reduced by giving powerful rulesof obviousness and thus increasing the set of obvious sequents. The rulesof obviousness, however, are constrained by the requirement that they becomputationally tractable | they must de�ne a polynomial time decidableinference relation. Although the rules of obviousness must be tractable, theyneed not be complete in any semantic sense. Completeness is reserved forthe Socratic proof system as a whole. Although the inference rules givenin the previous section are adequate for determining satis�ability of �niteconjunctions of taxonomic ground literals, a more powerful set of rules is usedto de�ne obviousness in our Socratic proof system. The inference relationde�ned by this more powerful set of rules appears not to have any naturalsemantic characterization | there appears not to be any natural semanticsunder which the more powerful rules are sound and complete.The additional rules of obviousness are given in �gure 2. These rulesallow for inference involving both Boolean and quanti�ed formulas. Firstconsider just the Boolean rules, rules 20 through 30. Rules 20 through 30only involve disjunction and negation | all other Boolean operations can beviewed as abbreviations for expressions involving disjunction and negation.Rule 29 allows the distinguished formula F to be derived whenever one canderive both � and :�. Rule 30 allows any formula to be derived from F. Inpractice the inference process can be terminated whenever one can derive F.Rules 20 through 30 are incomplete for Boolean inference. Rules 20 through29 characterize a limited form of Boolean inference known as Boolean con-straint propagation [15]. These rules can also be viewed as a characterizationof propositional unit resolution. Intuitively, each rule expresses a local rela-tionship between a Boolean formula and its immediate subformulas.The incompleteness of rules 20 through 30 for Boolean inference resultsfrom an inability to perform case analysis. For the standard representationof P ! Q in terms of disjunction and negation, the rules allow one to derive23
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(26) :�:	:(	 _ �)(27) :(� _	):�(28) :(� _	):	(29) 	:	F(30) F�(31) 8x�(x)�(t)Figure 2: Additional Rules of Obviousness. In the universal instantiationrule (rule 31), t must be the speci�ed focus term.24



Q from P and P ! Q. However, the rules do not allow one to derive Qfrom P ! Q and :P ! Q (unless one can derive either P or :P ). Thisincompleteness can be overcome with the single Socratic rule of case analysiswhich states that if one can derive � [ f	g ` � and � [ f:	g ` � thenone can derive � ` �.Now consider the rule of universal instantiation (rule 31). First notethat in taxonomic syntax universal formulas can only be instantiated withterms. Instantiating a universal formula with a class expression can resultin unsound inference. For example, the formula 8xDet(x) is semanticallyvalid, but instantiating this formula with a monadic predicate P results inDet(P ), which is not valid. Although the restriction to terms guaranteessoundness, it does not guarantee tractability. Without additional restrictionsthe addition of the universal instantiation inference rule causes the rulesof obviousness to become intractable.5 To avoid intractability the rule ofuniversal instantiation is restricted using the notion of a focus term. A focusterm is a term that is explicitly speci�ed in a step of a Socratic proof. Ifthe sequent � ` � is introduced as an obvious sequent in a Socratic proofthen this step of the Socratic proof must be accompanied by an explicitspeci�cation of a focus object t. The sequent � ` � is acceptable as anobvious sequent if � can be derived from � using the rules of obviousnesswhere the universal instantiation rule (rule 31) is restricted to the speci�edfocus object.The rule of universal instantiation could have been incorporated into theSocratic proof rules for deriving non-obvious sequents rather than the rules ofobviousness. There are two reasons for incorporating universal instantiationinto the rules of obviousness. First, even this restricted version of universalinstantiation signi�cantly increases the power of the rules of obviousness. Inpractice, a data base of facts can be implicitly present in the antecedentof every sequent of a Socratic proof. So, in practice, the antecedent set� of a sequent � ` � can contain a very large number of general facts.Many of the these general facts will be universally quanti�ed formulas of5The rules of obviousness given in the previous section subsume the classical rules forequality on terms. Adding an unrestricted rule of universal instantiation results in a set ofrules that is complete for equational reasoning. It is well known that semantic entailmentbetween universally quanti�ed equations is undecidable.25



the form 8x�(x). By including the rule of universal instantiation in therules of obviousness, all facts of the form 8x�(x) can be applied to the givenfocus term in determining the obviousness of an individual sequent � ` �.6If the universal instantiation rule was relegated to the Socratic proof rulesthen each application of a lemma of the form 8x�(x) would have to bedone explicitly as a separate step in the Socratic proof. The second reasonfor including universal instantiation in the rules of obviousness is simply todemonstrate that it is possible to include rules for quanti�ers in the rules ofobviousness while preserving tractability. The proof that rules 1 through 31are computationally tractable is given in a later section.Figure 3 contains the Socratic proof rules used in our Socratic proofsystem. A Socratic proof is a series of lines where each line contains a sequentof the form � ` �. The sequents of a Socratic proof are divided into twokinds: obvious sequents and non-obvious sequents. Each obvious sequentmust be explicitly associated with a focus term| an obvious sequent � ` �is acceptable if the formula � is derivable from � using inference rules 1through 31 where universal instantiation (rule 31) is restricted to the speci�edfocus term. A non-obvious sequent must be derived from earlier sequentsusing one of the Socratic proof rules shown in �gure 3.The �rst Socratic inference rule (rule S1) will be called Socratic caseanalysis. Socratic case analysis, together with the rules of obviousness 20through 31, provides complete Boolean inference. The second Socratic rule(rule S2) will be called Socratic transitivity. Socratic transitivity is neededto combine obvious sequents. Suppose � ` � is obvious under focus termt1 and that � [ f�g ` 	 is obvious under focus term t2. Because thesetwo obvious sequents involve di�erent focus terms, there may not exist anysingle focus term under which � ` 	 is obvious. The Socratic transitivityrule, however, allows one to derive the non-obvious sequent � ` 	 from6It is possible to allow for more than one focus term. Universal instantiation is thenallowed on any of the given focus terms. The use of a set of focus terms greatly increases thepower of the rules of obviousness at some cost in computational tractability. In the presenceof more than one focus object the cost of determining the obviousness is exponential in thelevel of quanti�er nesting in the given sequent. In practice the level of quanti�er nestingremains small. For a �xed level of quantifer nesting the cost remains polynomial in thenumber of focus objects | the order of the polynomial being determined by the level ofquanti�er nesting. A more detailed discussion of sets of focus terms can be found in [15].26



(S1) � [ f	g ` �� [ f:	g ` �� ` �(S2) � ` 	� [ f	g ` �� ` �(S3) � ` �(x)� ` 8x�(x)(S4) � ` :Is(x; C)� ` :Ex(C)(S5) � [ fIs(x1; C); Is(x2; C)g ` Is(x1; x2)� ` fDet(C)g(S6) � [ fIs(x; C); Is(x; W )g ` F� ` :Int(C; W )(S7) � [ fIs(x1; C1); : : : ; Is(xn; Cn)g ` :Is(t; R(x1; : : : ; xn))� ` :Is(t; R(C1; : : : ; Cn))(S8) � [ fIs(x; C)g ` Is(x; W )� ` Is(C; W )Figure 3: The Socratic Proof Rules. In these rules C, C1; � � � ; Cn and Ware class expressions, t is a term, R is a predicate or function symbol, andx; x1; � � � ; xn are variables that do not appear free in �, C, C1; � � � ; Cn, W ort. 27



the obvious sequents � ` � and � [ f�g ` 	. The remaining Socraticrules, rules S3 through S8, are forms of universal generalization. The needfor universal generalization rules in the Socratic proof system is discussedbelow.It is worth noting that from Socratic case analysis (S1), Socratic transi-tivity (S2), and rule 31 of the rules of obviousness, one can derive a Socraticrefutation rule | if there exists a derivation of the sequent � [ f:�g ` Fthen there exists a derivation of the sequent � ` �. To see this, suppose weare given the (possibly non-obvious) sequent � [ f:�g ` F. By the secondrule for contradictions (rule 31), the sequent � [ f:�;Fg ` � is obvious.The Socratic transitivity rule (rule S2) can be applied to these two sequentsto give �[f:�g ` �. The sequent �[f�g ` � is obvious. These last twosequents can be combined using Socratic case analysis to give � ` �.The completeness of the Socratic proof system can be proven by a stan-dard Herbrand construction. We will say that a set of formulas � is consistentif there is no derivation of the sequent � ` F. The Herbrand constructionis used to prove refutation completeness | if � is consistent then � is satis-�able, or equivalently, if � is not satis�able then there exists a derivation of� ` F. Given the derived refutation rule, refutation completeness impliescompleteness in the normal sense | if � j= � then �[f:�g is unsatis�ableso there must exist a derivation of �[ f:�g ` F and therefore a derivationof � ` �. The proof of refutation completeness is given in appendix B.The Socratic rules of universal generalization (rules S3 through S8) playan important role in the construction of the Herbrand model given in ap-pendix B. In the proof of refutation completeness we are given a consistentset of formulas � and we construct a Herbrand model of �. Suppose that �contains Ex(C). A Herbrand model of � must contain a witness for Ex(C),i.e., a term t such that the model satis�es Is(t; C). Let x be a variable thatdoes not appear free in �. If � is consistent then there must not exist aderivation of the sequent � ` :Is(x; C), otherwise rule S4 would ensurethat there exists a derivation of � ` :Ex(C) and � would be inconsistent.But if there is no derivation of � ` :Is(x; C) then there cannot be anyderivation of � [ fIs(x; C)g ` F (otherwise the refutation rule would give� ` :Is(x; C)). So �[ fIs(x; C)g must be consistent. In summary, if � is28



consistent and contains Ex(C) then rule S4 ensures that �[ Is(x; C) is alsoconsistent for any variable x that does not appear free in �. In this way aconsistent set of formulas can be extended in a way that provides witnesses(such as the variable x) for existential statements (such as Ex(C)). The rulesof universal generalization (S3 through S8) justify a consistency-preservingextension process that provides witnesses for existential statements.6 Accessing a Large Knowledge BaseSuppose that one is trying to verify a new fact using a large library of def-initions and previously veri�ed lemmas. How can a veri�cation system au-tomatically identify those lemmas in the lemma library that are relevant tothis new veri�cation? Automtically identifying relevant lemmas is one ofthe classical problems of automated reasoning. We propose sidesteping thisproblem by �nding a way of e�ciently applying all the lemmas in a largelemma library. If the decision procedure for the tractable rule set is su�-ciently e�cient in practice, then it can be practical to determine whether ornot a sequent � ` � is obvious (under a given focus object) even if � isquite large | even if � contains a large lemma library.Of course we do not want to write Socratic proofs in which, at each stepof the proof, we have to explicitly write all the lemmas in some large lemmalibrary. It is muchmore convenient to write proofs in the presence of \implicitpremises" which are automatically added to the premise set of each sequentin the proof. Whether or not a sequent typed by a system user is obviousdepends on the particular lemmas automatically added to the premise set ofthe sequent. We say that the obviousness of a typed sequent is relative tothe knowledge base | more knowledge means that more user input sequentswill be obvious. As a simple example, consider a knowledge base (a set offormulas) that contains the lemmas8xIs(ADAM; AN-ANCESTOR-OF(x))and 8xIs(AN-ANCESTOR-OF(AN-ANCESTOR-OF(x)); AN-ANCESTOR-OF(x)):29



Now consider the sequentIs(GOD; AN-ANCESTOR-OF(ADAM)) ` Is(GOD; AN-ANCESTOR-OF(JOHN)):This sequent is not obvious (and not valid). However if a knowledge baseincluding the above axioms is added to the premise set the sequent becomesobvious under the focus object JOHN.Consider a sequent of the form � ` � as typed by a user in some ver-i�cation system. In addition to extending � to include all lemmas from alemma library, it is possible to extend � to include all formulas 	 such thatthere is some earlier line in the proof of the form �0 ` 	 where �0 is a subsetof �. This allows for proofs of the formLine Number Sequent Justi�cation1. � ` �1 Focus t12. � ` �2 Focus t2...n. � ` �n Focus tnwhere each �i for i < j is added as an implicit premise in line j.The Socratic proof system described here is similar to the one used inthe Ontic system described in [15]. The Ontic system provides Socratic com-pleteness relative to Zermelo-Fraenkel set theory, i.e., any formula provablein set theory can (in principle) be given a Socratic proof in the Ontic sys-tem. The Ontic system has been used to verify the Stone RepresentationTheorem of lattice theory starting with only the axioms of set theory. Inthe veri�cation of this proof, a lemma library with hundreds of lemmas wasautomatically added to the premise set of each sequent. The decision pro-cedure for determining the obviousness of individual sequents was found tobe e�cient enough to make the veri�cation of obviousness relative to a largelemma library possible. 30



7 A Decision Procedure for ObviousnessWe now show that the rules of obviousness (rules 1 through 31) are tractable.The decision procedure given here is similar to the decision procedure dis-cussed in Section 4. The basic idea is to run the inference rules on a restrictedset of \local" formulas. Provided that there is only a small (polynomial) num-ber of local formulas, this inference process can be run to completion in asmall (polynomial) amount of time. After de�ning a polynomial time infer-ence procedure of this form, we prove that the restricted inference processunderlying the procedure is complete relative to the rules of obviousness | ifthe restricted inference procedure fails to �nd a proof then there is no proof.We start by de�ning the notion of a local expression. In the followingde�nitions � is a �nite set of formulas, t is a term, and � is a formula. Weare interested in determining whether or not the sequent � ` � is obviousunder the focus term t.De�nition: A set � of formulas and class expressions will becalled downward closed under focus term t provided it satis�esthe following conditions.� If 	1 _	2 2 � then 	1 2 � and 	2 2 �.� If :	 2 � then 	 2 �.� If 8x�(x) 2 � then �(t) 2 �.� Any class expression appearing as a subexpression of anatomic formula in � is also in �.De�nition: A formula or class expression will be called localrelative to �, t and � if it is a member of the least set of formulasand class expressions that contains � and all members of � andthat is downward closed relative to t.Lemma: The number of expressions local to �, t and � is linearin the total written length of �, t and �.31



The conditions in the de�nition of downward closed correspond to theways in which the inference rules can derive information from the truth orfalsity of a formula. A truth value for a disjunction can be relevant to deter-mining truth values of the two disjuncts. A universal formula can be usedto derive the instantiation of that formula with the given focus object. It isimportant to note, however, that the conditions in the de�nition of down-ward closed are not themselves inference rules | these rules are used onlyin determining the set of local expressions.De�nition: We write �; t �̀ 	 if 	 can be derived from � usingrules 1 through 31 under focus term t.De�nition: We write �; t ` � if �; t �̀ � and every formula inthe derivation of � from � is either a local formula, the negationof a local formula, or an atomic formula involving only local classexpressions.The de�nition of �; t ` � is similar to the de�nition of � ` � givenin section 4. The de�nitions di�er in two ways. First, the set of local classexpressions is de�ned slightly di�erently to take into account quanti�ed for-mulas and the focus term t. Second, in the de�nition of � ` � given earlier,proofs are allowed to contain any formulas as long as all class expressionsappearing in those formulas are local. In fact, for the earlier de�nition, theinference rules can only derive atomic formulas. So the earlier de�nition isequivalent to the statement that � ` � just in case there exists a derivationof � from � such that every derived formula is an atomic formula involvingonly local class expressions. The introduction of inference rules for formulasother than atomic formulas forces the introduction of local formulas as wellas local class expressions. The above de�nition of �; t ` � takes into accountthe local formulas as well as the local class expressions.The following statements are analogous to those in section 4.Obviousness Tractability Lemma: One can determinewhetheror not �; t ` � is polynomial time in the total written size of �,t, and �. 32



Obviousness Locality Theorem: �; t ` � if and only if�; t �̀ �.As in section 4, the tractability lemma follows directly from the de�nitionof .̀ There is a linear number of local formulas and class expressions. Anatomic formula can involve at most two class expressions. Therefore, thereis only a quadratic number of formulas that can appear in local derivations.The proof of the locality theorem is more di�cult. In section 4 the localityof the inference rules was proven as a corollary of the semantic completenesstheorem for local inference. Unfortunately, we do not know of any semanticsunder which rules 1 through 31 are complete. In this section we sketch apurely syntactic proof of the above locality theorem for rules 1 through 31.To prove the above locality theorem it su�ces to show that if �; t 6` �then �; t 6 �̀ �. Given �; t 6` � we show that it is possible to incrementally\grow" the set of local expressions in such a way that any given expressionis eventually considered to be local and so that � never becomes provable. If�; t �̀ � then there must exist some �nite proof of � and our growth processwould eventually include all the formulas in that proof. If the growth processpreserves the invariant that � is not provable, then we must have �; t 6 �̀ �.De�nition: A locality set for �, t and � is any set of formulasand class expressions that contains �, every member of �, and isdownward closed relative to t.De�nition: A label formula of a set � is either a member of �,the negation of a member of �, or an atomic formula constructedpurely from class expressions that are members of �.De�nition: If � is a locality set for �, t and �, then for anyformula 	 we write �; t �̀ 	 if �; t �̀ 	 and every formula inthe derivation of 	 is a label formula of �.Given �; t 6` �, we immediately have �; t 6`� � where � is the leastlocality set for �, t, and �. To grow � while preserving the non-derivabilityof � we de�ne the notion of a one step extension of �.33



De�nition: A one step extension of a set � relative to a focusterm t is an expression � that is either� a constant symbol,� a variable,� a monadic predicate symbol,� an application R(C1; : : : ; Cn) where R is either a relation orfunction symbol and each Ci is a class expression in �,� an atomic formula such that every class expression in � is amember of �,� the negation of a formula in �,� a disjunction of two formulas in �,� a formula of the form 8x�(x) where �(t) is a member of �.Lemma: If � is a locality set for �, t, and �, and � is a onestep extension of � relative to t, then � [ f�g is also a localityset for �, t and �.Lemma: For any expression � and any locality set � for �, tand � there exists a �nite series �1; �2; � � � ; �n such that each�i is a one step extension of � [ f�1; � � � ; �i�1g and the set � [f�1; � � � ; �ng contains �.Extension Theorem: If � is a locality set for �, t and �such that �; t 6`� �, and � is a one step extension of �, then�; t 6`�[f�g �.The above three results imply the obviousness locality theorem. The proofof the extension theorem is long but not conceptually deep (the completenesstheorem in appendix A is shorter but conceptually deeper). To prove theextension theorem we de�ne a new label formula to be a label formula of�[f�g that is not a label formula of �. We de�ne a newly derivable formulato be a formula 	 such that �; t �̀[f�g 	 but �; t 6`� 	. It su�ces to showthat every newly derivable formula is a new label formula, and hence no oldlabel formula is newly derivable. 34



The proof that every newly derivable formula is a new label formula isdiscussed in appendix C. The proof involves precisely characterizing all thenewly derivable formulas. Proving that this characterization is complete,i.e., that the inference rules only generate new formulas of the given types,requires a large case analysis that examines the interaction of each inferencerule with each type of newly derivable formula. Appendix C contains thecharacterization of the newly derivable label formulas. However, the longcase analysis required to show that this characterization is complete is notgiven here.It is possible to construct a general theory of local inference relations, i.e.,inference relations that can be proven to be tractable using a generalizationof the technique described above. In research reported elsewhere we haveconstructed an automated procedure for verifying the tractability of a largeclass of rule sets [14]. The large case analysis necessary to establish thetractability of rules 1 through 31 has been machine veri�ed.8 ConclusionAutomated reasoning is a classical problem of arti�cial intelligence. Manypotential applications, such as software veri�cation, automatic programming,and intelligent data bases have su�ered from the apparent computationalintractability of automated reasoning. Polynomial time inference proceduresprovide one approach to improving the e�ciency of inference systems.We have presented an example of a general approach to the constructionand use of polynomial time inference procedures. A polynomial time infer-ence procedure can be speci�ed by a set of inference rules that generatesa polynomial time decidable inference relation. It seems that the construc-tion of a powerful natural tractable rule set requires the introduction of anon-standard syntax for �rst order logic. We have shown how a polynomialtime inference procedure can be incorporated into a Socratic proof systemthat is complete for �rst order inference. The length of proofs in such aSocratic proof system is sensitive to the power of the underlying polynomialtime inference procedure. More powerful tractable rule sets should reduce35



the length of Socratic proofs. Other non-standard syntactic variants of �rstorder logic are possible and such syntactic variants may result in yet morepowerful tractable rule sets.
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Appendix A: Proof of the Tractable Completeness TheoremIn this appendix we prove the tractable completeness theorem of sec-tion 4. The theorem states that the restricted inference relation ` for rules1 through 19 is complete for determining the satis�ability of a set of groundliterals in taxonomic syntax. The �rst step in understanding the proof ofthe completeness theorem is to become familiar with the rule set. Each rule�ts into an overall pattern based on rules 1 through 4. The overall patternis based on the fact that determined, existence and intersection formulascan all be associated with a notion of \witness". A witness for an existenceformula Ex(C) is a term t such that one can derive Is(t; C). Recall thatterms always denote singleton sets, so that if one can derive Is(t; C) then Cmust be non-empty. A witness for a determined formula Det(C) is a termt such that one can derive Is(C; t). Finally, a witness for an intersectionformula Int(C; W ) is a class expression Z such that one can derive Ex(Z),Is(Z; C) and Is(Z; W ). It was noted in section 4 that, for clean premisesets, derivable determined formulas and derivable intersection formulas al-ways have witnesses. If, in addition, every existence formula had a witness,then the four basic inference rules would su�ce provided the symmetry rulewas restricted to pairs of terms. Unfortunately, inference rules 6 and 9 canintroduce existence formulas that do not have witnesses.The �rst four inference rules are called re
exivity, transitivity, symmetry,and monotonicity respectively. Rules �ve and six are called the �rst and sec-ond existence introduction rules. Rule 7 is called the existence transitivityrule and rule 8 is called the existence monotonicity rule. If every existenceformula had a witness, then rules 7 and 8 would correspond to transitivity andmonotonicity respectively. Rule 9 will be called the painful rule for reasonsdiscussed below. Rules 10 and 11 are called the �rst and second extrane-ous existence introduction rules. Rules 10 and 11 are not needed for cleanpremise sets | they are used to introduce existence formulas from negativedetermined literals and negative intersection literals in unclean premise sets.Rule 12 is called the determined introduction rule. Rules 13 and 14 are calledthe determined transitivity and determined monotonicity rules respectively.Rule 15 is called the intersection introduction rule. Rules 16 and 17 are calledthe intersection transitivity and intersection monotonicity rules respectively.Rule 18 is called the intersection symmetry rule | it compensates for the37



lack of symmetry in the intersection transitivity rule. Rule 19 is called thefeedback rule. Rule 19 allows formulas other than classi�cation formulas toderive new classi�cation formulas. If all determined and intersection formu-las had witnesses, then rule 19 would be derivable from the symmetry rule(rule 3).Unfortunately, the completeness proof is quite di�cult. To see why, con-sider a set � of taxonomic ground literals (clean or unclean) such that � 6` F.We must show that � is satis�able. As in almost all completeness proofs, thisis done by constructing a model M of �. In most completeness proofs, thesemantic domain of M consists of a \Herbrand universe" | a set of equiv-alence classes of terms. If every existential formula Ex(C) had a witness,i.e., a term t such that one could derive Is(t; C), then one might be ableto construct a model for � whose domain was equivalence classes of terms.But the painful inference rule (rule 9) introduces existential statements thathave no witnesses. One might expect that this problem could be overcomeby using equivalence classes of provably non-empty class expressions ratherthan equivalence classes of terms. But this approach does not work either.The problem is again rule 9. Consider the pair of literals Is(P; f(P )) and:Is(f(P ); P ) where P is a monadic predicate symbol and f is a monadicfunction symbol. These literals state that P is a proper subset of f(P ).These literals are satis�able. For example, P can be interpreted as the pos-itive integers and f as the function that subtracts one. Since these literalsare satis�able, any general completeness proof must provide a way of con-structing a model that satis�es them. The second literal implies Ex(f(P ))and rule 9 then implies Ex(P ). Consider an element x0 of the set denotedby P in any model of these literals. Since the model satis�es Is(P; f(P )),the element x0 must be a member of the class denoted by f(P ). But thisimplies that there a \predecessor" x1 in P such that x0 equals f(x1). By asimilar argument x1 must have a predecessor x2 and so on. One can showthat, in any model of these two literals, P must denote an in�nite set. But nosimple Herbrand construction yields a model in which P denotes an in�niteset. Our completeness proof is not based on a Herbrand construction.Before de�ning the (non-Herbrand) model construction used in our proof,it is useful to enumerate some of the properties that we would like the modelto have. The inference rules are based on the derivation of atomic formulas38



| there are no inference rules for deriving negative literals. To prove com-pleteness of a rule set of this form, the model should exhibit certain \defaultproperties". Intuitively, any atomic formula not derivable from the inferencerules should be false in the model. Consider the proof of completeness for thefour basic inference rules for classical equality. In the standard proof of com-pleteness of equational reasoning, any equation not provable from the premiseset is false in the constructed model. We might say that equations defaultto false. Under our taxonomic model construction process, existence, deter-mined, and intersection formulas default to false | any such atomic formulathat is not provably true is false in the constructed model. Unfortunately, thefact that existence formulas default to false does not permit arbitrary classi-�cation formulas to default to false. Consider a class expression C such thatone cannot deriveEx(C). If we cannot deriveEx(C) then Ex(C) defaults tofalse. This means that classi�cation formulas cannot always default to false.Suppose that we ca not derive either Ex(C) or Is(C; W ). In this case Ex(C)defaults to false, which forces Is(C; W ) to be true. So Is(C; W ) does notdefault to false. However, our model construction process is designed so thatif one can derive Ex(C), then classi�cation formulas of the form Is(C; W )default to false just like all the other atomic formulas. We have not beensuccessful at basing a completeness theorem on any other form of defaultconditions | attempts to have all classi�cation formulas default to false andto have existence formulas default to true have not been successful.The partial default properties of classi�cation formulas are not a seriousproblem regarding completeness for determining satis�ability. Suppose �contains a negative literal of the form :Is(C; W ). In this case we wantthe formula Is(C; W ) to default to false | if � contains :Is(C; W ) thenIs(C; W ) had better be false in the constructed model. We have assumedthat � 6` F. Since � contains :Is(C; W ), we must have that � 6` Is(C; W ).Since � contains :Is(C; W ), the second existence introduction rule (rule 6)ensures that one can derive Ex(C). But our model construction process willensure that if one can derive Ex(C) then the formula Is(C; W ) defaults tofalse. Given that � 6` Is(C; W ) we will have that Is(C; W ) is false in theconstructed model.Although the partial default properties of classi�cation formulas are nota problem in determining the consistency of a set of ground literals, they39



are a problem for the classical notion of completeness. A failure to deriveIs(C; W ) does not imply that there exists a model of � in which Is(C; W )is false. In fact, rules 1 through 19 are not complete in this traditional sense.Our model is constructed from the atomic formulas (positive literals)derivable from � and observes the default properties for non-derivable for-mulas discussed above. We do not construct a Herbrand model. The problemwith Herbrand constructions involves formulas of the form Is(W; f(C1; � � � ; Cn)).If we can derive this formula then, for every element x in the set denoted byW there must be elements y1; � � � ; yn in the sets denoted by C1; � � � ; Cn respec-tively such that f(y1; � � � ; yn) equals x.7 The existence of appropriate \prede-cessor" domain elements for each element of the set denoted by W cannot beguaranteed in any natural Herbrand universe. Our model construction mustinclude a predecessor construction process for handling provable formulas ofthe form Is(W; f(C1; � � � ; Cn)). This predecessor construction process canitself generate an in�nite domain. For example, if we can prove Is(P; f(P ))then every element of P must have a predecessor in P and our predecessorconstruction process will construct an in�nite number of elements of P .The predecessor construction process is only needed for function symbols.Consider a derivable formula of the form Is(W; R(C1; � � � ; Cn)) and consideran element x in the set denoted by W . As in the case of function symbols, xmust have predecessors y1; � � � ; yn in the sets denoted by C1; � � � ; Cn respec-tively such that x is an element of R(y1; � � � ; yn). However, if R is a relationsymbol then R(y1; � � � ; yn) is a set and can include the entire set denotedby W . This allows all elements of W to have the same predecessor tuple.In our model construction process any single tuple of \generic" elements ofC1; � � � ; Cn serves as a single predecessor tuple for all elements of the classR(C1; � � � ; Cn). The existence of a single predecessor tuple for all elementsof the class R(C1; � � � ; Cn) eliminates the need for a predecessor constructionprocess for relation symbols.7If y1; � � � ; yn are elements of the semantic domain of a model M, and f is an n-aryfunction symbol, then by abuse of notation we use the expression f(y1; � � � ; yn) to denotethe element of the semantic domain ofM that results from applying the function denotedby f to the domain elements y1; � � � ; yn. A similar convention is used for an (n + 1)-ary relation symbol R and the expressions of the form R(y1; � � � ; yn) | the expressionR(y1; � � � ; yn) denotes the set of all domain elements x such that <y1; � � � ; yn; x> is in therelation denoted by R. 40



Our semantic domain is the result of a predecessor construction process.Before discussing this process we consider a way of classifying domain ele-ments into types. Consider an arbitrary model M. The type of a domainelement x in M is de�ned to be the set of class expressions such that x isan element of the set denoted by the class expression. Intuitively, the typeof an element is the set of class expressions that contain it. In general, atype is de�ned to be any set of class expressions. A type � will be said to beinhabited in the model M if there exists a domain element x such that � isprecisely the type of x, i.e., � is the set of all class expressions C such that xis an element of the class denoted by C. Not all types need be inhabited inM. For example, suppose that C and W are class expressions that denotedisjoint sets in M. In this case no domain element will have a type thatincludes both C and W .So far we have ignored the fact that we are trying to prove completenessfor a restricted inference process. The fact that � 6` F implies that there isno local derivation of an inconsistency. Local derivations are restricted to for-mulas containing class expressions that actually appear as subexpressions offormulas in �. These class expressions will be called local. Our classi�cationof domain elements into types will be based only on local class expressions| types will be subsets of the local class expressions. The desired defaultproperties of the model dictate which subsets of the local class expressionsshould be allowed to be inhabited.De�nition: A class expression will be called local if it appearsin � (either as a member or as a subexpression of a member).De�nition: A �-inhabitable type is a set � of local class expres-sions satisfying the following properties.� If C is in � and � ` Is(C; W ) then W is in � .� � ` Ex(C) for every C in � .� For all C and W in � , � ` Int(C; W ).The �rst property must be satis�ed by any inhabited type in any modelof �. The second property is forced by the desire for existence formulas todefault to false | if we cannot derive Ex(C) then C should be empty and41



so C should not be a member of any inhabited type. The third property isdictated by the desire for intersection formulas to default to false | if wecannot derive Int(C; W ) then no inhabited type should contain both C andW .Roughly speaking, the semantic domain of our model will correspond tothe �-inhabitable types | each �-inhabitable type will be inhabited by atleast one domain element. At an intuitive level, the �-inhabitable typescorrespond to the term equivalence classes of a Herbrand model | each �-inhabitable type speci�es a kind of domain element. Note that the emptyset is �-inhabitable. Our semantic domain will include elements that are notmembers of any set denoted by a local class expression.De�nition: If � ` Ex(C) then we de�ne C� to be the set of alllocal class expressions W such that � ` Is(C; W ).Lemma: If � ` Ex(C) then C is an element of C� and C� is a�-inhabitable type.Proof: If � ` Ex(C) then C must be a local class expression.The re
exivity rule (rule 1) guarantees that C is an element ofC�. The transitivity rule guarantees that C� satis�es the �rstcondition on �-inhabitable types. The existence transitivity rule,and the fact that � ` Ex(C), guarantees the second condition.GivenEx(C), Is(C; W ), and Is(C; Z) one can derive Int(W; Z).This guarantees the third condition and so C� is a �-inhabitabletype.Lemma: If � ` Ex(C) then C� is the least �-inhabitable typethat contains C.Proof: The �rst condition on the de�nition of �-inhabitabletypes, and the de�nition of C�, guarantee that any �-inhabitabletype that contains C must also contain C�.In general, there can be many �-inhabitable types that contain C otherthan the type C�. For example, if � ` Int(C; W ) then C� [W � is also a�-inhabitable type that contains C. In certain cases, however, C� is the onlysuch �-inhabitable type. 42



De�nition: A local class expression C will be called singular if� ` Ex(C) and � ` Det(C).Lemma: If C is singular then C� is the only �-inhabitable typethat contains C.Proof: Consider a �-inhabitable type � that contains C. Thetype C� is the least type containing C so C� must be a subset of � .To show that � is a subset of C�, consider a class expressionW in� . The de�nition of �-inhabitable ensures that � ` Int(C; W ).But since � ` Det(C), the feedback rule (rule 19) ensures that� ` Is(C; W ). So W is a member of C�.Each domain element is to inhabit a particular �-inhabitable type andeach �-inhabitable type is to be inhabited by at least one domain element.If the above lemma about singular classes had failed, our model constructionwould not work. If there is to be at least one domain element inhabitingevery �-inhabitable type, and the set denoted by C is to contain exactly oneelement, then there must be exactly one type that contains C, the type C�.De�nition: A �-inhabitable type � will be called singular if itcontains a singular class expression.Lemma: If � ` Ex(C) then C is singular if and only if C� issingular.Proof: If C is singular, then since C is a member of C�, C� issingular. Conversely, if C� is singular, then there exists some Wsuch that � ` Is(C; W ) and � ` Det(W ). But in this case thedetermined transitivity rule (rule 13) ensures that � ` Det(C)so C is singular.We now turn to the actual construction of a semantic domain. The seman-tic domain elements are pairs of the form <�; �> where � is the �-inhabitabletype to be inhabited by this domain element. Each type � will have a dis-tinguished \generic inhabitant" which is the pair <�; 0>. If � is a singulartype, then the generic inhabitant of � is the only inhabitant of � . If � is notsingular then in order to guarantee that determined formulas default to falsewe add a second inhabitant of the type � which is the pair <�; 1>. Other43



domain elements are constructed by a predecessor generation process. Sup-pose that � contains a class expression of the form f(C1; : : : ; Cn). If the pair<�; �> is to inhabit the type � , then the pair <�; �> must be a member ofthe class f(C1; � � � ; Cn). This means that the domain element <�; �> musthave predecessor elements in the classes denoted by C1; � � � ; Cn. If the type� is singular then generic inhabitants of C�1 ; � � � ; C�n serve as the predecessortuple to the single inhabitant of � . It is possible to show that if each Ci isa singular class expression, and the type � contains f(C1; � � � ; Cn) then � isa singular type. Thus if � is not singular, then some Ci is not singular. LetCi be the �rst such non-singular class. If � is not singular, and contains theclass expression f(C1; � � � ; Cn), then the predecessor tuple of <�; �> is<C�1 ; 0>; � � � ; <C�i�1; 0>; <C�i ; f(C�1 ; � � � ; C�n) 7! <�; �>>; <C�i+1; 0>; � � � ; <C�n; 0>:Note that the information about where f should map this predecessor tupleis contained in the i'th component | all other components are simply genericinhabitants. The expression f(C�1 ; � � � ; C�n) 7! <�; �> in the i'th componentof this predecessor tuple is just a notation for the tuple containing the func-tion symbol f , the types C�1 ; � � � ; C�n and the domain element <�; �>, i.e., itis just a �nite representation of how the function f should behave when giventhis argument as the i'th component. The semantic domain of our model canbe de�ned rigorously as follows.De�nition: Let D be the least set containing� all pairs of the form <�; 0> where � is a �-inhabitable type,� all pairs of the form <�; 1> where � is a non-singular �-inhabitable type,� and all pairs of the form <C�i ; f(C�1 ; � � � ; C�n) 7! <�; �>>where C�i is a non-singular type, Ci is the �rst non-singularclass expression among C1; � � � ; Cn, and � contains the classexpression f(C1; � � � ; Cn).Lemma: If � is a singular type then D contains only a singlepair of the form <�; �>.Note that although there are only �nitely many �-inhabitable types (fora �nite set �), the predecessor generation process can cause D to be in�nite.44



This is ary since there exist �nite sets of taxonomic ground literals that onlyadmit in�nite models.To complete the de�nition of the model of � we must give the interpre-tation of the constant, function, predicate, and relation symbols.De�nition: Let M be the �rst order model with domain D (asde�ned above) and which interprets constant, function predicateand relation symbols as follows.� A constant c is interpreted to be the pair <c�; 0>.� A monadic predicate symbol P is interpreted to be the setof all pairs <�; �> where the type � contains the symbol P .� A n-ary relation symbol R for n > 1 is interpreted as theset of n-tuples <<C�1 ; 0>; : : : ; <C�n�1; 0>;<�; �>> such that� contains the class expression R(C1; : : : ; Cn�1).� An n-ary function symbol f is interpreted as the functionthat maps <<�1; �1>; : : : ; <�n; �n>> to <�; �> providedone of the following two conditions hold.{ Some �i is the speci�cation f(�1; � � � ; �n) 7! <�; �>.{ No �i is an appropriate speci�cation, and � is the unionof all types of the form f(C1; : : : ; Cn)� where f(C1; � � � ; Cn)is a local class expression such that � ` Ex(f(C1; � � � ; Cn))and each class expression Ci is a member of the corre-sponding type �i. In this case <�; �> is the genericinhabitant of type � , i.e., � is 0.Well-Formedness Lemma: The above de�nition interprets eachn-ary function symbol as a unique function from Dn to D.Proof: There are two cases in the de�nition of the interpretation of a func-tion symbol f . In the �rst case we must show that it is not possible fordistinct �i and �j to give incompatible values for f applied to this argu-ment tuple. This follows from the de�nition of D. If �i is the speci�cationf(�1; � � � ; �n) 7! <�; �> then the de�nition of D ensures that �i is the �rst45



non-singular type among �1; � � � ; �n. This condition uniquely determines theindex i of any appropriate speci�cation. If the second condition in the de�-nition of the interpretation of f holds, the output type � is taken to be theunion of all types of the form f(C1; � � � ; Cn)� where f(C1; � � � ; Cn) is a localclass expression such that � ` Ex(f(C1; � � � ; Cn)) and each class expressionCi is a member of the corresponding type �i. In this case we must showthat � is a �-inhabitable type. By an earlier lemma, each set of the formf(C1; � � � ; Cn)� is a �-inhabitable type. To be a �-inhabitable type, the set �must satisfy three conditions. Any union of �-inhabitable types satis�es the�rst two conditions | every element of the union is provably non-empty, andany local class expression that provably denotes a superset of a member ofthe union is also a member of the union. To show that the union � satis�esthe third condition on �-inhabitable types, consider any two class expressionsZ1 and Z2 in � . We must show � ` Int(Z1; Z2). The expressions Z1 and Z2must be members of types of the form f(C1; � � � ; Cn)� and f(W1; � � � ;Wn)�respectively where each Ci and Wi are members of the argument type �i.Since Ci and Wi are members of the same �-inhabitable type �i we musthave � ` Int(Ci; Wi). But, by the intersection monotonicity rule (rule 17)we then have � ` Int(f(C1; � � � ; Cn); f(W1; � � � ;W1)). By the intersectiontransitivity rule (rule 16) we then have � ` Int(Z1; Z2).The above well-formedness lemma depends critically on the intersectionmonotonicity rule (rule 17). If this rule were not included in the rule setthen the union used to de�ne function application would not produce a �-inhabitable type, and hence would not produce a valid domain element. Theintersection monotonicity rule ensures that the set of �-inhabitable types isrich enough to contain appropriate values for function applications.We now prove the main lemma of our model construction.De�nition: The syntactic type of a domain element <�; �> isthe type � .De�nition: The semantic type of a domain element x is the setof local class expressions C such that x is a member of the setdenoted by C in the model M de�ned above.Lemma: For any element x of the domain of M, the semantictype of x equals the syntactic type of x.46



Proof:. We prove, by structural induction on class expressions, that forany local class expression C, a domain element <�; �> is a member of theset denoted by C if and only if C is a member of � . For constant symbolsand monadic predicate symbols the result follows directly from the de�ni-tion of the interpretation that M assigns to constant and function symbols.Applications of relations and function symbols are discussed below.Consider a local class expression of the form R(C1; � � � ; Cn) where theresult holds for each Ci, and consider a domain element <�; �>. Notethat since R(C1; � � � ; Cn) is local, each Ci must also be local. Now sup-pose that R(C1; � � � ; Cn) is a member of � . Since R(C1; � � � ; Cn) is a mem-ber of a �-inhabitable type, we must have � ` Ex(R(C1; � � � ; Cn)). Bythe painful rule (rule 9) we must have � ` Ex(Ci) for each Ci. This im-plies that C�i is a �-inhabitable type that contains Ci. By the inductionhypothesis the domain elements <C�1 ; 0>; � � � ; <C�n; 0> are members of thesets denoted by C1; � � � ; Cn respectively. The interpretation of the relationsymbol R now ensures that <�; �> is a member of the class denoted byR(C1; � � � ; Cn). Conversely, suppose that <�; �> is a member of the classdenoted by R(C1; � � � ; Cn). The interpretation of R implies that � containsa type of the form R(W1; � � � ;Wn) where each Wi is such that <W �i ; 0> is amember of the set denoted by Ci. The induction hypothesis implies that Ciis a member of W �i . So we have � ` Is(Wi; Ci). The monotonicity rule nowensures that � ` Is(R(W1; � � � ;Wn); R(C1; � � � ; Cn)). Since R(W1; � � � ;Wn)is a member of � , and � is a �-inhabitable type, we have that R(C1; � � � ; Cn)is a member of � .Now consider a local class expression of the form f(C1; � � � ; Cn) where theresult holds for each Ci. There are two subcases. First, suppose that eachCi is singular. In this case the existence and determined monotonicity rules(rules 8 and 14) ensure that f(C1; � � � ; Cn) is singular. So f(C1; � � � ; Cn)� isthe only �-inhabitable type containing f(C1; � � � ; Cn) and <f(C1; � � � ; Cn)�; 0>is the only domain element of this syntactic type. In this case we must showthat f(C1; � � � ; Cn) denotes the singleton set containing <f(C1; � � � ; Cn)�; 0>.The induction hypothesis, and the de�nition of the semantic domain D, im-plies that, for each Ci, the set denoted by Ci consists of the single element<C�i ; 0>. The interpretation of f then implies that f(C1; � � � ; Cn) denotesthe set containing the single element <�; 0> where � is the union of all47



types of the form f(W1; � � � ;Wn)� where Wi is a member of C�i for each Wi.This union includes f(C1; � � � ; Cn)�, and the monotonicity rule ensures thateach set f(W1; � � � ;Wn)� is contained in f(C1; � � � ; Cn)�, so this union equalsf(C1; � � � ; Cn)�.Now suppose that some Ci is non-singular. Consider a domain ele-ment <�; �>. We must show that <�; �> is a member of the class de-noted by f(C1; � � � ; Cn) if and only if � contains f(C1; � � � ; Cn). As be-fore, since f(C1; � � � ; Cn) is local, each Ci must be local. First suppose thatf(C1; � � � ; Cn) is a member of � . Since f(C1; � � � ; Cn) is a member of a �-inhabitable type, we must have � ` Ex(f(C1; � � � ; Cn)). By the painful rule(rule 9) we must have � ` Ex(Ci) for each Ci. This implies that C�i is a�-inhabitable type that contains Ci. Let Cj be the �rst non-singular typeamong C1; � � � ; Cn. The de�nition of D ensures that D contains the element<C�j ; f(C�1 ; � � � ; C�n) 7! <�; �>>. By the induction hypothesis the domainelements,<C�1 ; 0>; � � � ; <C�i�1; 0>; <C�i ; f(C�1 ; � � � ; C�n) 7! <�; �>>; <Ci+ 1�; 0>; � � � ; <C�n; 0>:are members of the sets denoted by C1; � � � ; Cn respectively. The inter-pretation of f then ensures that <�; �> is a member of the set denotedby f(C1; � � � ; Cn). Finally, suppose that <�; �> is in the set denoted byf(C1; � � � ; Cn). In this case the sets denoted by C1; � � � ; Cn must contain el-ements <�1; �1>, : : : ; <�n; �n> respectively such that one of the followingtwo conditions hold.� Some �i is the speci�cation f(�1; � � � ; �n) 7! <�; �>.� No �i is an appropriate speci�cation and � is the union of all types ofthe form f(Z1; : : : ; Zn)� where f(Z1; � � � ; Zn) is a local class expressionsuch that � ` Ex(f(Z1; � � � ; Zn)) and each class expression Zi is amember of the corresponding type �i.. In either case, the induction hypothesis implies that, for each Ci, we havethat Ci is a member of �i. In the �rst case, the de�nition of D ensuresthat each �i is of the form W �i such that f(W1; � � � ;Wn) is a member of � .Since Ci is a member of �i, which equals W �i , we have � ` Is(Wi; Ci). The48



monotonicity rule then ensures that f(C1; � � � ; Cn) is a member of � . In thesecond case, note that since �i contains Ci, and since �i is a �-inhabitabletype, we have � ` Ex(Ci). By the existence monotonicity rule (rule 8) wehave � ` Ex(f(C1; � � � ; Cn)). This implies that the set f(C1; � � � ; Cn)� isincluded in the union that de�nes � . So f(C1; � � � ; Cn) is a member of � .The satis�ability of � is a corollary of the equivalence of syntactic and se-mantic types.Satis�ability Corollary: M is a model of � and hence � issatis�able.Proof: We must show that every formula in � is true in M. If Ex(C) isan element of � then C� is a �-inhabitable type that includes C so, by theequivalence of semantic and syntactic types, Ex(C) is true inM. If :Ex(C)is in � then, since � is consistent, � 6` Ex(C) and so no �-inhabitable typecan contain C. This implies that Ex(C) is false in M. Now suppose thatDet(C) is an element of �. There are two cases. First if � ` Ex(C) thenC is a singular type and only one domain element has a syntactic type thatcontains C, so Det(C) is true inM. If � 6` Ex(C) then C denotes the emptyset inM so Det(C) is again true in M. Now suppose � contains :Det(C).In this case the �rst extraneous existence introduction rule (rule 10) ensuresthat � ` Ex(C). Since � 6` F we have � 6` Det(C) and thus C is notsingular. The de�nition of the semantic domain ensures that there are atleast two domain elements whose syntactic types include C. Thus Det(C) isfalse inM. Now suppose that � contains Int(C; W ). The second extraneousexistence introduction rule (rule 11) ensures that we have � ` Ex(C) and� ` Ex(W ). In this case C� [ W � is a �-inhabitable type that includesboth C and W so the literal Int(C; W ) is true in M. Now suppose that:Int(C; W ) is a member of �. In this case we have � 6` Int(C; W ) sono �-inhabitable type can include both C and W . Thus Int(C; W ) is falsein M. Now suppose that Is(C; W ) is a member of �. In this case, every�-inhabitable type that includes C must also includeW , so Is(C; W ) is truein M. Finally, suppose that :Is(C; W ) is a member of �. In this case thesecond existence introduction rule (rule 6) ensures that � ` Ex(C). But wehave � 6` Is(C; W ). In this case C� is a �-inhabitable type that includes Cbut does not include W . So Is(C; W ) is false in M.49



Appendix B: Socratic CompletenessThis appendix gives a sketch of a proof that the Socratic proof systemde�ned by the rules of obviousness (rules 1 through 31) and the Socraticproof rules (rules S1 through S8) is complete for �rst order inference. Thisproof is based on a standard Herbrand construction analogous to similar wellknown constructions for other �rst order inference systems [1]. Consider aset of formulas � and a particular formula � such that � j= �, i.e., everymodel of � is a model of �. We must show that in this case there exists aSocratic derivation of the sequent � ` �. It was shown in section 5 thatif there exists a Socratic derivation of � [ f:�g ` F then there exists aSocratic derivation of � ` �. So it su�ces to show that there exists aSocratic derivation of � [ f:�g ` F. More generally, we show that for anyunsatis�able set of formulas � there exists a Socratic derivation of � ` F.Actually, we prove the contrapositive, that if there is no derivation of � ` Fthen � is satis�able.Suppose that there is no derivation of � ` F. We show that � is satis�ableby constructing a Herbrand model of �. This Herbrand model must assigna well de�ned truth value to every sentence (closed formula) of taxonomicsyntax. However, the formula set � need not determine a truth value for everysentence. Before constructing a Herbrand model, we extend � to a consistentset of formulas that assigns a truth value to every formula. In addition toassigning truth values to every formula, we ensure that every true existentialstatement has a witness. For example, if Ex(C) is determined to be true,then there will exist some term t such that Is(t; C) is also assigned true.In summary, we extend � to a larger set so that every formula is assigned atruth value and every true existential statement has a witness.For simplicity we assume that the set of constant, function and predicatesymbols in the language is countable and that there is a countably in�niteset of variables. In this case one can enumerate all taxonomic formulas in anin�nite sequence �1, �2, �3 : : :.8 Given that there is no derivation of � ` F,one can then construct an in�nite sequence of sets of formulas 
0;
1, 
2,
3 : : : such that each 
i is a consistent extension of �, i.e., 
i contains �8The completeness proof can be modi�ed to handle uncountable languages, in whichcase one constructs a trans�nite enumeration of formulas.50



and there is no Socratic derivation of 
i ` F. Furthermore, 
i determines awell de�ned truth value for �i and if �i is some form of existential formulathen 
i ensures the existence of a witness for that formula. The sequence ofextensions 
0;
1;
2;
3; � � � ; can be de�ned by stating that 
0 equals � andfor i > 0, 
i is constructed from 
i�1 as follows.1. If �i is a Boolean combination of other formulas then if 
i�1 ` �i isderivable, then 
i equals 
i�1, otherwise 
i equals 
i�1 [ f:�ig.2. If �i is of the form 8x�(x) then, if 
i�1 ` 8x�(x) is derivable then
i equals 
i�1, otherwise 
i equals 
i�1 [ f:8x�(x);:�(x)g where xis a variable that does not appear free in �i or 
i�1.3. If �i is of the form Ex(C) then, if 
i�1 ` :Ex(C) is derivable then
i equals 
i�1, otherwise 
i equals 
i�1 [ fEx(C); Is(x; C)g where xis a variable that does not appear free in �i or 
i�1.4. If �i is of the form Det(C) then, if 
i�1 ` Det(C) is derivablethen 
i equals 
i�1, otherwise 
i equals 
i�1 [ f:Det(C), Is(x1; C),Is(x2; C), :Is(x1; x2)g where x1 and x2 are variables that do not ap-pear free in �i or 
i�1.5. If �i is of the form Int(C; W ) then, if 
i�1 ` :Int(C; W ) is derivablethen 
i equals 
i�1, otherwise 
i equals 
i�1[fInt(C; W ); Is(x; C); Is(x; W )gwhere x is a variable that does not appear free in �i or 
i�1.6. If �i is of the form Is(t; f(C1; � � � ; Cn)) where t is a term and f isa function symbol, then if 
i�1 ` :Is(t; f(C1; � � � ; Cn)) is derivablethen 
i equals 
i�1, otherwise 
i equals 
i�1 [ fIs(t; f(C1; � � � ; Cn)),Is(x1; C1), � � � ; Is(xn; Cn), Is(t; f(x1; � � � ; xn))g where x1; � � � ; xn arevariables that do not appear free in �i or 
i�1.7. If �i is of the form Is(C; W ), but not of the form of case 6 then, if
i�1 ` Is(C; W ) is derivable then 
i equals 
i�1, otherwise 
i equals
i�1 [ f:Is(C; W ); Is(x; C);:Is(x; W )g where x is a variable thatdoes not appear free in �i or 
i�1.51



There is a direct relationship between cases 2 through 7 above and theSocratic inference rules S3 through S8. For each of the cases 2 through 7 thecorresponding rule in S3 through S8 guarantees that if there no derivation of
i�1 ` F then there is no derivation of 
i ` F. We leave it the reader toverify that for each 
i there does not exist a derivation of 
i ` F but theredoes exist a derivation of either 
i ` �i or 
i ` :�i. Cases 2 through 7guarantee the existence of witnesses for all existential claims. For example, if�i is Ex(C) and there is a derivation of 
i ` �i, then there exists a variablex such that there is a derivation of 
i ` Is(x; C).Now let 
 be the set of all formulas 	 such that there exists some 
isuch that there is a derivation of 
i ` 	. Note that 
 contains the originalset �. Because all formulas are elements of the sequence �1;�2; � � �, theset 
 is complete in the sense that for any formula 	 either 	 2 
 or:	 2 
. Furthermore, there cannot be any derivation of 
 ` F because,since any �nite derivation will involve only a �nite subset of 
, if there existsa derivation of 
 ` F then there must be some 
i such that there exists aderivation of 
i ` F. Furthermore, the set 
 is closed under all of the rulesof obviousness (rules 1 through 31) where the rule of universal instantiation(rule 31) is no longer restricted to focus terms. Finally, cases 2 through 7above guarantee the existence of important existential witnesses.One can now de�ne a �rst order structure whose domain consists of equiv-alence classes of terms. More speci�cally, for any variable t we de�ne jtj tobe the set of terms t0 such that the formula Is(t; t0) is a member of 
. Therules of obviousness for classi�cation formulas ensure that these sets formequivalence classes. We take the domain of the �rst order structure to be thecollection of equivalence classes of the form jtj. It is now possible to de�ne aninterpretation of the variables, constants, functions, relations, and predicatesymbols such that the semantic value of a class expression C equals the ele-ments of the form jtj such that the formula Is(t; C) is a member of 
. Giventhis �rst order model, one can de�ne a variable interpretation � that mapseach variable x to the domain element jxj. Under this model and variableinterpretation one can show that a formula 	 is semantically true just in case	 is a member of 
. This shows that the original set � is satis�able.52



Appendix C: Proof of the Extension TheoremThis appendix contains a proof of the extension theorem stated in sec-tion 7. The extension theorem states that if � is a locality set for �, t, and� such that �; t 6`� �, then for any one-step extension � of � we have that�; t 6`�[f�g �. The following de�nitions will be useful in proving this result.De�nition: A new label formula is a label formula of � [ f�gthat is not a label formula of �. A previously derivable formulais formula 	 such that �; t �̀ 	. A newly derivable formulais a formula 	 that was not previously derivable but such that�; t �̀[f�g 	.Since � is a member of �, � is a label formula of �. To prove that�; t 6`�[f�g � it su�ces to show that every newly derivable formula is anew label formula. This is done by proving that every new label formulafalls into one of several very speci�c types. A characterization of the newlyderivable formulas can be viewed as an invariant on the inference process| the inference process maintains the invariant that every newly derivableformula falls into one of a speci�ed set of formula types.The structure of the newly derivable label formulas depends on the struc-ture of the extension expression �. If � is an atomic formula then � is alabel formula of (but not a member of) �. In this case the only new labelformula is :� which is not newly derivable, and there are no newly derivableformulas. If � is a quanti�ed formula of the form 8x�(x) then both � and:� are new label formulas. However, neither of these formulas are newlyderivable so there are no newly derivable formulas. If � is a negation of theform :	 then � is a label formula of (but not a member of) �. In this casethe only new label formula is ::	 and ::	 is newly derivable if and onlyif 	 was previously derivable. In this case ::	 is the only possible newlyderivable formula. If � is a disjunction 	1 _ 	2 then the only new labelformulas are 	1 _ 	2 and :(	1 _ 	2). The label formula 	1 _ 	2 is newlyderivable provided one of 	1 and 	2 was previously derivable. The formula:(	1 _	2) is newly derivable provided both :	1 and :	2 were previouslyderivable. 53



Now we consider the case where the extension expression � is a classexpression. If � is a class expression then the new label formulas are allatomic formulas involving the new local class expression �, e.g., formulasof the form Ex(�), Det(�), Is(�; C), Is(C; �), Int(C; �), and Int(�; C)where C is a class expression in � [ f�g. We must show that if � is a classexpression then every newly derivable formula is an atomic formula involving�. If � is a monadic predicate symbol then the only newly derivable formulais Is(�; �). If � is a constant symbol or a variable then the only newlyderivable formulas are Is(�; �), Ex(�), and Det(�). Now suppose that �is an application R(C1; � � � ; Cn) where each class expression Ci is a memberof �. In this case one can show that every newly derivable formula is of onethe types listed below. In each of these types the newly derivable formulais a new label formula, so the extension theorem follows from the statementthat every newly derivable formula is of one of these types.� The formula Is(R(C1; � � � ; Cn); R(C1; � � � ; Cn)).� A formula of the form Is(Z; R(C1; � � � ; Cn)) where there exists an ex-pressionR(W1; � � � ;Wn) in � such that the formulas Is(Z; R(W1; � � � ;Wn)),Is(W1; C1), : : : ; Is(Wn; Cn) were previously derivable.� A formula of the form Is(R(C1; � � � ; Cn); Z) where there exists an ex-pression R(W1; � � � ;Wn) in � such that the formulas Is(C1; W1), : : : ;Is(Cn; Wn), Is(R(W1; � � � ;Wn); Z) were previously derivable.� A formula of the form Is(Z; R(C1; � � � ; Cn)) where there exists an ex-pressionR(W1; � � � ;Wn) in � such that the formulas Is(Z; R(W1; � � � ;Wn)),Det(R(W1; � � � ;Wn)), Int(W1; C1), : : : ; Int(Wn; Cn) were previouslyderivable.� The formula Ex(R(C1; � � � ; Cn)) where R is a function symbol and theformulas Ex(C1), : : : ; Ex(Cn) were previously derivable.� The formula Ex(R(C1; � � � ; Cn)) where there exists a class expressionR(W1; � � � ;Wn) in � such that Ex(R(W1; � � � ;Wn)), Is(W1; C1), : : : ;Is(Wn; Cn) were previously derivable.� The formulaDet(R(C1; � � � ; Cn)) where R is a function symbol and theformulas Det(C1), : : : ; Det(Cn) were previously derivable.54



� The formula Det(R(C1; � � � ; Cn)) where there exists a class expressionR(W1; � � � ;Wn) in � such that Det(R(W1; � � � ;Wn)), Is(C1; W1), : : : ;Is(Cn; Wn) were previously derivable.� The formula Int(R(C1; � � � ; Cn); R(C1; � � � ; Cn)) whereEx(R(C1; � � � ; Cn))is newly derivable.� A formula of the form Int(R(C1; � � � ; Cn); Z) or Int(Z; R(C1; � � � ; Cn))where there exists a class expression R(W1; � � � ;Wn) in � such that theformulas Int(Z; R(W1; � � � ;Wn)), Is(W1; C1), : : : ; Is(Wn; Cn) werepreviously derivable.� A formula of the form Int(R(C1; � � � ; Cn); Z) or Int(Z; R(C1; � � � ; Cn))whereR is a function symbol and there exists an expressionR(W1; � � � ;Wn)in � such that the formulas Is(R(W1; � � � ;Wn); Z), Int(W1; C1), : : :,Int(Wn; Cn) were previously derivable.The inference process maintains the invariant that every newly derivableformula is of one of the above types. To prove this one can consider eachinference rule and consider each way that the rule might be applied to bothnewly derivable and previously derivable formulas. If we assume that eachnewly derivable formula is of one of the above types, then one can show thatno matter how the rules are applied to both previously derivable and newlyderivable formulas, every derivable formula is either previously derivable oris of one of the above types.The large case analysis involved in considering each inference rule andeach way that the rule might be applied is not given here. Proofs of thistype, i.e., proofs involving a large invariant and a large case analysis, aredi�cult to verify and subject to error. Unfortunately, we have not been ableto �nd any simpler proof. On the other hand, it is possible to construct ageneral theory of \local" inference rules | a rule set is local if it satis�esan appropriate generalization of the extension theorem given here. It is alsopossible to construct a mechanical procedure that can determine in a largenumber of cases whether or not a given rule set is local. Such a procedureis described in [14]. It is straightforward to verify that when the extension� is an application term then only inference rules that can derive new labelformulas are rules 1 through 19. The fact that rules 1 through 19 maintain55
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