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Abstract
We study resource-limited online learning, moti-
vated by the problem of conditional-branch out-
come prediction in computer architecture. In
particular, we consider (parallel) time and space-
efficient ensemble learners for online settings,
empirically demonstrating benefits similar to
those shown previously for offline ensembles.
Our learning algorithms are inspired by the previ-
ously published “boosting by filtering” frame-
work as well as the offline Arc-x4 boosting-style
algorithm. We train ensembles of online decision
trees using a novel variant of the ID4 online deci-
sion-tree algorithm as the base learner (our ID4
extensions significantly improve ID4 perfor-
mance), and show empirical results for both
boosting and bagging-style online ensemble
methods. Our results evaluate these methods on
both our branch prediction domain and online
variants of three familiar machine-learning
benchmarks. The results indicate poor perfor-
mance for our bagging algorithm, but significant
improvements in predictive accuracy with ensem-
ble size for our boosting-style algorithm. In addi-
tion, we show that given tight space constraints,
ensembles of depth-bounded trees are often a bet-
ter use of space than single deeper trees.

1.  Introduction

Ensemble methods such as boosting and bagging have
provided significant advantages in offline learning set-
tings—but little work has been done evaluating these
methods in online settings. Here we consider an online set-
ting motivated by the problem of predicting conditional
branch outcomes in microprocessors. Like many online
learning problems, branch prediction places tight time and
space constraints on a learning algorithm due to limited
chip real-estate and high processor speeds, making time
and space efficiency critical. The application offers cheap
parallelism, so our focus is on efficient parallel methods.
Our main goal is to demonstrate that familiar ensemble
performance gains can be seen in online settings using
(parallel) time/space efficient online ensembles.

We consider the simplified problem of online binary con-

cept learning with binary features. It is likely that our
methods extend to non-binary problems in ways similar to
offline ensemble extensions. We use as a base learner an
online decision-tree algorithm extending ID4 (Schlimmer
& Fisher, 1986) that we developed for the branch predic-
tion problem. The full paper (Fern & Givan, 2000) gives
results showing that our extensions improve ID4 classifi-
cation accuracy both for single trees and for ensembles.

Due to our resource constraints, we consider online en-
semble methods that do not store training instances
(though methods that store a few instances may also be
feasible)—this rules out directly applying offline methods
by storing instances and reinvoking the algorithm.

Freund (1995) describes an online boosting algorithm
called onlineboost-by-majority (BBM)for the “boosting
by filtering” learning framework—there ensembles are
also generated online without storing instances. The BBM
algorithm implements a sequential ensemble generation
approach—the ensemble members are generated one at a
time. In practice, to use such an approach we must address
at least two challenging issues: first, how to determine
when to stop generating one ensemble member and begin
the next (BBM provides a theoretical method using param-
eters that are generally not known in practice); and second,
how to adapt to drifting target concepts, since ensemble
members are not updated once they are created. Also, we
expect methods that update only one ensemble member
per training instance to warm up more slowly than “paral-
lel update” methods. Therefore, we present and evaluate
here a variation of the ‘boosting by filtering’ approach that
generates ensemble members “in parallel”. There is no
“parallel time” cost to this approach in our application.

We describe two such “parallel-generation” online ensem-
ble algorithms: one inspired by offline bagging, and one
inspired by offline Arc-x4 (Brieman, 1996b). These meth-
ods have an implementation with parallel time complexity
for both learning and making predictions that is logarith-
mic in the numberT of ensemble members (critical for our
application), and space complexity linear inT, dominated
by the space occupied by the ensemble members.

We empirically evaluate our online ensemble methods
against instances of the branch prediction problem drawn
from widely-used computer-architecture benchmarks, as
well as against online variants of several familiar machine-
learning benchmarks. Our results show that online Arc-x4
consistently outperforms the online bagging method we



tried, for the problems we consider here. The ensembles of
online trees produced by online Arc-x4 “boosting” gener-
ally significantly improve the error rate of single online
decision-tree learners. We also find that ensembles of
small trees often outperform large single trees or smaller
ensembles of larger trees that use the same number of total
tree nodes (again, important for our application).

This paper is organized as follows. In Section 2 we discuss
the motivating problem of branch prediction. In Section 3
we introduce online ensemble learning and our two algo-
rithms. In Section 4 we describe our online decision-tree
base learner. In Sections 5 and 6, we give our empirical re-
sults for boosting and bagging ensembles.

2.  Branch Prediction

This research is motivated by the problem of conditional-
branch outcome prediction in computer architecture. It is
not our primary goal here to beat current state-of-the-art
branch predictors but rather to open a promising new ave-
nue of branch-predictor research. Below we describe the
branch prediction problem, aspects of the problem that are
interesting from a machine learning perspective, and how
this research contributes to branch prediction.

Problem description. Modern microprocessors prefetch
instructions far ahead of the currently executing instruc-
tion(s), and must accurately predict the outcome of condi-
tional branch instructions encountered during prefetch in
order to perform well. Typical programs contain condi-
tional branches about every third instruction, and individ-
ual branches are encountered hundreds of thousands of
times. For each encounter, the processor predicts the out-
come using the processor state during prefetch along with
learned state obtained in prior encounters with the same
branch. Branch prediction is thus a binary feature space
two-class concept learning problem in an online setting.

Qualitative domain characteristics. Several characteris-
tics make branch prediction an interesting and challenging
problem from a machine learning viewpoint: first, it is a
bounded time/space problem—predictions must typically
be made in a few nanoseconds; second, a highly-parallel
space-sensitive hardware implementation is required;
third, branch prediction requires an online setting where
warm-up effects are important (due to process context
switching, aliasing1, and unknown number of instances);
fourth, branch prediction provides a fertile source for large
automatically-labelled machine-learning problems; fifth,
significant progress in branch prediction could have a
large impact—reducing branch predictor error rates by
even a few percent is thought to result in a significant pro-
cessor speedup (Chang et al., 1995).

Contribution to branch prediction. The full version of
this paper (Fern & Givan, 2000) contains an overview of

past and present branch prediction research. Virtually all
proposed branch predictors are table based (i.e., they
maintain predictive information for each possible combi-
nation of feature values) causing their sizes to grow expo-
nentially with the number of features considered. Thus,
state-of-the-art predictors can only use a small subset of
the available processor state as features for prediction.

The methods we describe avoid exponential growth—our
predictors (ensembles of depth-bounded decision trees)
grow linearly with the number of features considered. This
approach is able to flexibly incorporate large amounts of
processor state within architecturally-realistic space con-
straints, possibly resulting in substantial improvementsin
the prediction accuracy available for a fixed space usage.

The empirical work in this paper uses the same feature
space used by current state-of-the-art predictors (rather
than exploit our linear growth in feature space dimension
to consider additional processor state)—this is because our
immediate goal is to explore the utility of online ensemble
methods. This goal also motivates our inclusion of results
on familiar machine learning data sets. Future work will
explore the use of additional processor state to exceed the
state of the art in branch prediction. Similarly, this work
does not yet attempt a full empirical comparison to current
techniques because architecturally-convincing comparison
is enormously computationally demanding.2

Additionally, we note that on a chip we cannot dynami-
cally allocate tree nodes, so we must provide space for
full-depth decision trees—as a result, our predictors grow
exponentially with the tree-depth bound. We show below
that using ensembles allows us to more effectively use the
limited space by trading off depth for more trees.

3.  Online Learning using Ensembles

This research addresses the problem of online concept
learning in two class problems with binary features. In on-
line settings, training instances are made available one at a
time, and the algorithm must update some hypothesis con-
cept after each example is presented. Given a sequence of
training instances, an online algorithm will produce a se-
quence of hypotheses. It is straightforward to construct an
online algorithm from any offline algorithm by arranging
to store the training instances seen “so far” and construct-
ing each updated hypothesis from scratch. However, on-
line settings typically have resource constraints that make
this direct application of an offline algorithm infeasible.
Online learning algorithms are designed to reuse the previ-
ous hypothesis to reduce update times.3 In addition, online
algorithms may face space constraints preventing the stor-
age of the entire stream of training instances, or in a dis-
tributed setting network bandwidth may limit the ability to
consider all the training data at once.

1. Aliasing occurs when one predictor is responsible for predicting the
outcomes of instances from two different branches (without knowing
which instances come from which branches). Aliasing is a result of
space limits forcing fewer predictors than actual unique branches.
Context switching also forces a learner to handle multiple branches.

2. Since simulations are carried out on serial machines the cost of run-
ning large simulations is proportional to the ensemble size and will
take months on current high-performance multiprocessors.

3. Hypothesis reuse is even more important in ensemble algorithms.



Ensemble algorithms provide methods for invoking a
“base” learning algorithm multiple times and for combin-
ing the resulting hypotheses into an ensemble hypothesis.
We explore online variants of the two most popular meth-
ods, bagging (Breiman, 1996a) and boosting (Schapire,
1990; Freund, 1995; Brieman, 1996b). To our knowledge,
all previous empirical evaluations of ensemble methods
have taken place in offline learning settings (Freund &
Schapire, 1996; Quinlan, 1996; Bauer & Kohavi, 1999;
Dietterich, in press)—our evaluation demonstrates similar
online performance gains and also shows that ensemble
methods are useful in meeting tight resource constraints.

3.1 Online Approaches to Ensemble Learning

Directly adapting an offline approach to produce the same
ensembles online appears to require both storing the in-
stances seen and reinvoking the base learning algorithm
(particularly for boosting). Due to resource constraints, we
consider methods that do not store previous instances.

We say that an online ensemble algorithm takes a sequen-
tial-generation approach if it generates the members one at
a time, ceasing to update each member once the next one
is started (otherwise, the approach is parallel-generation).
We say the algorithm takes a single-update approach if it
updates only one ensemble member for each training in-
stance (otherwise multiple-update). Note that a sequential-
generation approach is by definition single-update.

We wish to avoid the single-update/sequential approach.
Offline methods of boosting and bagging allow a single
training instance to contribute to many ensemble mem-
bers—we seek this property in the online setting. This is
particularly important in the presence of concept drift/
change. Sequential-generation algorithms also suffer addi-
tionally in the presence of concept drift because most en-
semble members are never going to be updated again—
this patently requires adapting such algorithms with some
kind of restart mechanism. Sequential methods also re-
quire a difficult-to-design method for determining when to
start on another member, “freezing” the previous one.

To address these problems, we considered in this work
only algorithms taking the parallel-generation multiple-
update approach. This approach interacts well with our
motivating application in that multiple updates can easily
be carried out simultaneously on a highly parallel imple-
mentation platform such as VLSI. Freund (1995) de-
scribed theboost-by-majority (BBM)algorithm for an
online setting, taking a sequential generation approach.
The online boosting algorithm we evaluate below can be
viewed as a parallel-generation multiple-update variant of
this algorithm that uses Arc-x4-style instance weighting.

Generic multiple-update algorithm. Here we present
formally a generic online ensemble algorithm allowing
multiple updates, and two instances of this algorithm. An
ensemble is a 2-tuple consisting of a sequence ofT hy-
potheses (h1,...,hT) and a corresponding sequence ofT sca-
lar voting weights (v1,...,vT). A hypothesishi is a mapping

from the target concept domain to zero or one (i.e.,hi (x)∈
{0,1} for each domain elementx). Given a domain ele-
ment x the prediction returned by an ensembleH =
〈(h1,...,hT), (v1,...,vT)〉 is simply a weighted vote of the hy-
potheses, i.e., one if(v1[2h1(x)–1] +… + vT[2hT(x)–1]) >
0 and zero otherwise. A training instance is a tuple〈x,c〉
wherex is a domain element andc is the classification in
{0,1} assigned tox by the target concept (assuming no
noise). We assumeLearn() is our base online learning al-
gorithm: taking as input a hypothesis, a training instance,
and a weight; the output ofLearn is an updated hypothesis.

Table 1 shows the generic multiple-update algorithm we
will use. The algorithm outputs an updated ensemble, tak-
ing as input an ensemble, a training instance, an online
learning algorithm, and two functionsUpdate-Vote() and
Weight(). The functionUpdate-Vote() is used to update the
(v1,...,vT) vector of ensemble member voting weights—
e.g., if Update-Vote() always returns the number one, the
ensemble prediction will simply be the majority vote. The
functionWeight() is used for each ensemble memberht to
assign a weightwt to the new instance for updatinght—to
resemble boosting, this weight is related to the number of
mistakes made by previous hypotheses on the current in-
stance; for bagging the weight might be random.

For each hypothesisht the algorithm performs the follow-
ing steps. First, in line 2 a new scalar voting weightvt is
computed by the functionUpdate-Vote(). In line 3 a scalar
instance weightwt is computed byWeight(). In line 4,ht is
updated byLearn() using the training instance with the
computed weightwt. Each hypothesis and voting weight is
updated in this manner (possibly in parallel). Our immedi-
ate research goal is to find (parallel) time and space effi-
cient functionsUpdate-Vote() andWeight() that produce
ensembles that outperform single hypotheses.

3.2 Online Bagging

The bagging ensemble method has a natural parallel im-
plementation since it does not require any interaction
among theT hypotheses—our online variant simply en-
sures that each of theT hypotheses are the result of apply-
ing the base learnerLearn() to a different sequence of

Input:
     ensemble

new training instance
     base online learnerLearn (instance, weight, hypothesis)
     voting wt. update funUpdate-Vote (ensemble, instance, t)
     instance weight functionWeight (ensemble, instance, t)

1.      for  each , ;;possibly in parallel

2.               do  =Update-Vote (H, I, t) ;; the new wt of ht

3.  =Weight (H, I, t) ;; instance wt for ht

4.  =Learn (I, wt, ht)

Output: new ensemble

H h1 …, hT,( ) v1 … vT, ,( ),〈 〉=
I x c,〈 〉=

t 1 2 … T, , ,{ }∈

v̂t

wt

ĥt

Ĥ ĥ1… ĥT,( ) v̂1 … v̂T, ,( ),〈 〉=

Table 1.Generic multiple-update online ensemble learner.



training instances. We use the generic algorithm from
Figure 1 with the instance weight function given by

Weight (H, I, t) = coin (Pu), 0 <Pu < 1 (1)

wherecoin(P) returns one with probabilityP and zero
otherwise, and the probabilityPu is user specified.

For our online bagging variant the functionUpdate-Vote()
simply counts the number of correct predictions made by a
hypothesis on the training instances,

Update-Vote (H, I, t) = vt + 1 – (2)

So accurate hypotheses tend to get larger voting weights.4

3.3 Online Arc-x4

Online Arc-x4 uses the same instance weight function
Weight() used by the offline algorithm Arc-x4 (Brieman,
1996b). The weight function is computed in two steps:

Weight (H, I, t) = 1 +mt
4, (3)

The weight for thet’th hypothesiswt is calculated by first
counting the numbermt of previous hypotheses that incor-
rectly classify the new instance. The weight used is then
one more thanmt to the fourth power, resulting in a boost-
ing-style weighting that emphasizes instances that many
previous hypotheses get wrong. This function was arrived
at (partly) empirically in the design of offline Arc-x4 (Bri-
eman, 1996b). Nevertheless, it has performed well in prac-
tice and its simplicity (e.g., compared to AdaBoost) made
it an attractive choice for this application. Online Arc-x4
uses the same accuracy based voting weight functionUp-
date-Vote() as online bagging (Equation 2 above). Note
that the offline version of Arc-x4 uses a majority rather
than a weighted vote. We found, however, an empirical ad-
vantage to weighted voting for small ensembles.

Alternative weight functions. We note that other offline
weighting functions can fairly easily be adapted to the on-
line setting, including those used in AdaBoost and Boost-
by-Majority (BBM). One issue of concern is that the bell-
shaped weighting function used in BBM that gives small
weights for both very easyandvery hard instances may be
inappropriate for multiple-update online learners, espe-
cially in the presence of target concept drift or change.

Complexity and Implementation of Online Arc-x4. An
efficient parallel implementation is particularly significant
to our target domain of conditional-branch outcome pre-
diction. In the full paper (Fern & Givan, 2000) we show
that the time complexity of a parallel implementation of
online Arc-x4 isO(log2 T) plus the prediction time used
by an individual base learner; and that the space complex-
ity of the same implementation isO(T · log T) plus the
space used by theT individual base learners.

4.  Online Decision-Tree Induction

Here we briefly describe an online decision tree learning
algorithm that will be used as the base learner in our en-
semble experiments. Most decision-tree methods are de-
signed for offline settings, as in the well-known ID3
algorithm (Quinlan, 1986); but there has also been re-
search on online algorithms, with two key methods being
ID5R (Utgoff, 1989) and ID4 (Schlimmer & Fisher, 1986).

The ID5R method incrementally build trees by storing pre-
vious training instances and restructuring the current tree
if necessary when a new instance arrives. The tree restruc-
turing operations required are expensive and somewhat
complex for use in resource-bounded online settings. In
addition, although the recursive restructuring operationis
straightforward to implement in software, our motivating
domain requires a hardware implementation that appears
quite difficult for these methods. For these reasons, and
also to avoid the space costs of storing instances, we use a
variant of the simpler online decision tree algorithm ID4.
Below we describe our extensions to ID4. The full paper
also contains a complete description of ID4 and empirical
results showing that our extensions significantly improve
the accuracy of both single trees and tree ensembles.

ID4 incrementally updates a decision-tree by maintaining
an estimate of the split criterion of each feature at each
node, and using these estimates to dynamically select the
split feature as well as to prune the tree via pre-pruning.

Advanced warm-up extension. In the ID4 algor i thm
when a leaf node is “split” to become an internal node, its
new children must begin learning from scratch. We extend
ID4 to allow for advanced warm-up—leaf nodes (for pre-
diction) have descendents that are learning from examples
(even though they are not used for predictions).

Post-pruning by subtree monitoring extension. The de-
cision to make a node a leaf in ID4 is determined by aχ2-
test on potential split features, usingpre-pruning. When
using advanced warm-up we can monitor the performance
of subtrees of leaves, and use the result topost-pruneby
comparing the monitored accuracy to the leaf accuracy.

Feature-switch suppression by subtree monitoring. In
the original ID4, when a new split feature is selected at a
node, the subtrees of the node are discarded (regardless of
how well they are performing). To avoid frequent discard-
ing, our ID4 variant refuses to change the split feature of a
node (and hence prune the subtrees) unless the accuracy of
making predictions with the candidate new split feature
(discarding the subtrees) is better than that of making pre-
dictions with the current split feature and subtrees.

5.  Empirical Results for Arc-x4

From here on we refer to our online variants of bagging
and Arc-x4 as simply “bagging” and “Arc-x4”, respec-
tively. In this section we present empirical results using
Arc-x4 to generate decision tree ensembles for several
problems, starting with machine learning benchmarks then4. We have also implemented online bagging using straight majority

vote and the empirical results are not substantially different.

ht x( ) c–

mt hi x( ) c–
i 1=

t 1–

∑=



moving to our domain of branch prediction. Arc-x4 is
shown to generally significantly improve prediction accu-
racy over single trees. In addition, we show that boosting
produces ensembles of small trees that often outperform
large single trees with the same number of nodes.

5.1 Results for Machine Learning Data Sets

Full details of the data sets and experimental protocol used
are available in the full paper (Fern & Givan, 2000); we
provide a brief summary here. We considered four familiar
machine learning benchmarks5, dividing each into equal
test and training sets twenty different ways (randomly) and
averaging the results—each problem is treated as an online
problem by sampling training instances with replacement
from the training set. Error is measured periodically by
“freezing” the learned concept and checking its accuracy
on the testing or training set. Most of our plots use only the
average testing error of the final ensemble.

The four benchmarks used are: an eleven-bit multiplexor
problem (as investigated in (Quinlan, 1988)); “easy” and
“hard” encodings of the Tic-Tac-Toe endgame database at
UCI (see (Merz & Murphy, 1996))—one encoding uses
two bits per game cell, the other uses ASCII eight-bit en-
codings for ‘x’/‘o’/‘b’ (‘b’ for blank); and a two-class ver-
sion of the letter recognition problem in the UCI

repository where the two-class task is to recognize vowels.

We vary the ensemble size (T) and the tree-depth bound
(d). Figure 1 shows the test set errors versusT for the four
benchmarks. Each figure has one curve for each value ofd.
Stars on the graphs indicate the unbounded-depth base-
learner error.

Advantages of larger ensemble size. In all four prob-
lems, increased ensemble size generally reduces the error
effectively. Increasing ensemble size leads to significant
improvements for the benchmarks, even though the stars
show an apparent performance limit for single trees.

We also note that weaker learners (lowd values) are gener-
ally less able to exploit ensemble size, as reflected in the
slopes of the plots for varying depth bounds—we find a
steeper error reduction with ensemble size for deeper
trees. Apparently ensemble learning is exploiting different
leverage on the problem than increased depth—i.e., in-
creasing ensemble size arbitrarily can never get all the
benefits available by increasing depth, and vice versa.

Training error comparisons. Space precludes showing
the very similar training error graphs. Similar trends pre-
vail in those graphs, indicating that Arc-x4 is generalizing
the four concepts well. We also note that larger ensembles
can improve testing error (over smaller ones) even when
the training error has gone to zero (e.g., the training error
for TTT1 depth ten goes to zero atT=5).

Warm-up behavior. Figures 2a and 2b show percent error
versus number of instancesN encountered for two prob-
lems. Comparing the curves for ensemble sizes one and
100, we see that (as expected) the large ensemble achieves
a lower percent error after many training instances, but for
a smaller number of training instances the single tree is su-
perior. This observation indicates that the ideal ensemble
size may depend on the number of training instances we
expect to encounter (or may even be ideally selected dy-
namically as more instances are encountered). However,
for these two benchmarks it appears that ensemble size
T=25 achieves both the early performance ofT=1 and the
late performance ofT=100 ensembles. Comparing the 25
member ensemble and the 100 member ensemble reveals
that large ensembles suffer from poor early performance.

5. These four benchmarks were selected to offer the relatively large
quantities of labelled data needed for online learning as well as a nat-
ural encoding as binary feature space two-class learning problems.
We have not run these algorithms on any other machine learning data
sets.
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Figure 1. Final Arc-x4 test error vs. ensemble size for the ma-
chine learning data sets. (Note: the x-axis isnot ~time)Results af-
ter ensembles encounter 50,000 training instances (100,000 for
vowel). Each curve varies ensemble size using trees of a fixed
depth limitd. Stars show unbounded-depthT=1 performance.
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Figure 2. Arc-x4 warm-up performance (varying ~time). Train-
ing error vs. number of instances (~time) for two benchmarks.
Each curve reflects a single ensemble with depth bound ten.



5.2 Branch Prediction Domain and Results

Experimental Procedure. We used the trace-driven mi-
croprocessor simulator described in (Burger & Austin,
1997), and focused on eight branches from three different
benchmark programs in the SPECint95 benchmark suite
(Reilly, 1995)—we selected “hard” branches where single
trees are outperformed by current table-based branch pre-
dictors. Table 2 provides information about the benchmark
programs used and the branches selected from these
benchmarks. The “State-of-the-art % Error” shown is from
the highly-specialized “hybrid” table-based predictor from
computer architecture (McFarling, 1993)—it is not our
current goal to improve on these results with our general-
purpose method, particularly on these “hard” branches.

The online nature of this application makes separate test-
ing and training data sets unnatural—instead, we present

each branch to the learner during simulation as a test in-
stance, and then provide the correct answer for training
when the branch is resolved. The final percent error plot-
ted is the percent of test instances predicted incorrectly,
varying both ensemble size (T) and tree depth (d).

Basic Arc-x4 Performance. Figures 3a-3f give the per-
cent error versus ensemble size for six branches, with
curves plotted for six different depth bounds (d), as well as
stars showing the percent error achieved by a single (on-
line) tree of unbounded depth. These graphs exhibit the
same trends as the results above for the machine learning
benchmarks, with error decreasing with increasingT, even
well beyond the unbounded-depth single online tree error.

Small ensemble effects. The graphs show erratic behavior
for small ensemble size—we conjecture that at small sizes,
an “unlucky” sequence (or weighting) of instances affect-
ing a few consecutive ensemble members can easily domi-
nate the vote. We note that this erratic behavior is even
worse if we use unweighted voting (not shown), support-
ing this conjecture—asT increases unweighted and
weighted voting perform nearly identically.

Comparing to ensemble size one. The graphs in Figure 3
all exhibit a similar trend with respect to increasingd. For
smalld, large ensembles are needed to see much benefit,
but the eventual benefits are larger (than whend is large).
However, every curve shows peak performance at an en-
semble size larger than one. The stars showing the best
single tree performance indicate that bounded-depth en-
sembles can outperform unbounded-depth single trees.

Space usage. Figures 4a–4f show error versus log space
usage, giving a basis for selectingd andT to optimize ac-

Table 2. Branches used in our experiments.

Branch
Name

# of
Instances

%
Taken

State-of-the-art
% Error

Benchmark
Program

go-A 413,908 35% 5.3% go: an AI
program that
plays the
game of go

go-B 370,719 47% 19.8%
go-C 407,380 33% 13.8%
go-D 451,042 57% 14.0%

li-A 2,653,159 20% 5.3% li: a LISP
interpreterli-B 1,238,803 71% 1.6%

com-A 253,031 56% 4.84% com: UNIX
compresscom-B 17,104 75% 2.59%
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Figure 3. Arc-x4 Percent Error vs. Ensemble Size for six hard branches. (x-axis isnot ~time)Each curve varies ensemble size fixing
a depth limit. The stars show the error achieved by a single tree with unbounded depth. The dotted line show state-of-the-art error.



curacy when facing space constraints. A sizeT ensemble
of depthd trees hasT · (2d+1 – 1) non-leaf nodes (hard-
ware implementations cannot virtually allocate nodes).

Note that asd increases the ensemble curves shift to the
right—ensemble size is generally a better use of space
than tree depth. For a fixed node usage the best error is
usually achieved by an ensemble withT greater than one.
This observation is strongest for thego branches and
weakest forli-A. (Consider a vertical cross-section and de-
termine whether the lowest error corresponds to a smalld
and thus a largeT—e.g., at 1000 nodes,d equal to three
shows the best performance on five of the six graphs).

Now suppose that instead of a size constraint we are given
a maximum percent error constraint. Figure 4 shows that
using ensembles often allows us to achieve a particular
percent error using much less space with a large ensemble
of small trees rather than smaller ensembles or single
trees. These observations suggest that online boosting may
be particularly useful in domains with space constraints.

Poor performance on com branches. Two of the eight
branches showed poor performance for Arc-x4 ensembles.
Figures 5a and 5b show the percent error versusT plots
for these branches, as well as the state-of-the-art error and
unbounded single-tree performance. Thecom-A and
com-B branches show little benefit for ensembles as well
as generally poor performance for single trees, suggesting
that these concepts are not well captured by the ID4-style
base learners here. In addition, we note thatcom-B has
only 17,104 instances, suggesting that the ensembles have
also not had enough time to warm up.

6.  Empirical Results for Bagging

Figure 6 compares the performance of bagging and Arc-x4
on three online problems—these three plots typify perfor-
mance on our other problems (particularly Figure 6a). In
each figure we plot percent error versus ensemble sizeT
for four different ensemble methods (Arc-x4 and threePu
choices for bagging) using trees with a depth bound of
twelve. The bagging plots for branch prediction are aver-
aged over ten runs due to the random choices made in the
algorithm. These results indicate poor performance forPu
equal to 0.1, most likely because trees in the ensembles are
updated too infrequently. We show in Figure 6b the most
significant improvement over Arc-x4 achieved by bagging
in any of our bagging experiments (many not shown). Arc-
x4 outperforms bagging for small and large ensembles.
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Figure 4. Arc-x4 Percent Error vs. Ensemble Node Count for six hard branches. Again, each curve fixes the tree-depth limit and varies
ensemble size—but here we plot total number of tree nodes (space usage).
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A possible explanation for the poor performance of bag-
ging may be the use of zero/one instance weighting: of-
fline bagging can weight an instance higher than one. This
is explored in the full paper (Fern & Givan, 2000).

7.  Conclusions and Future Work

In this work we empirically studied two online ensemble
learning algorithms—bagging and boosting-style ensem-
ble approaches—that do not store training instances and
have efficient parallel hardware implementations. We gave
empirical results for the algorithms, using ID4-like deci-
sion tree learners using conditional branch prediction as
well as online variants of familiar machine learning data
sets. These results indicate that online Arc-x4 significantly
outperforms our online bagging method. The online Arc-
x4 ensembles are shown to achieve significantly higher ac-
curacies than single trees—with ensembles of small trees
often outperforming single large trees or smaller ensem-
bles of larger trees using the same total nodes, suggesting
the use of ensembles when facing space constraints.

Future research is needed on issues raised by this work, in-
cluding: parallel vs. sequential ensemble generation; bag-
ging using weights other than zero/one; characterizing
when boosting performs poorly (and/or bagging well); dy-
namically varying ensemble size during warm-up/concept
drift; varying tree depth within an ensemble; and develop-
ing other resource-constrained online application domains.
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Figure 6. Bagging versus Arc-x4. Percent error versus the ensemble sizeT for three problems (as indicated above each graph).
Three curves per graph show the performance of bagging for Pu = 0.1, 0.7, 0.9 and one curve shows the performance of Arc-x4. All
trees used a depth bound of twelve. Our other domains give graphs strongly resembling Graph (a).


