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ABSTRACT

Imany, Poolad Ph.D., Purdue University, May 2019. Quantum Frequency Combs and
Their Applications in Quantum Information Processing. Major Professor: Andrew
M. Weiner.

We experimentally demonstrate time-frequency entangled photons with comb-like

spectra via both bulk optical crystals and on-chip microring resonators and explore

their characterization in both time and frequency domain using quantum state manip-

ulation techniques. Our characterization of these quantum frequency combs involves

the use of unbalanced Mach-Zehnder interferometers and electro-optic modulators for

manipulation in time- and frequency-domain, respectively. By creating indistinguish-

able superposition states using these techniques, we are able to interfere states from

various time- and frequency-bins, consequently proving time- and frequency-bin en-

tanglement. Furthermore, our time-domain manipulations reveal pair-wise continuous

time-energy entanglement that spans multiple frequency bins, while our utilization

of electro-optic modulators to verify high-dimensional frequency-bin entanglement

constitutes the proof of this phenomenon for a spontaneous four-wave mixing pro-

cess. By doing so, we show the potential of these quantum frequency combs for

high-dimensional quantum computing with frequency-encoded quantum states, as

well as fully secure quantum communications via quantum key distribution by per-

forming a nonlocal dispersion cancellation experiment. To show the potential of our

entangled photons source for encoding quantum information in the frequency do-

main, we carry out a frequency-domain Hong-Ou-Mandel interference experiment by

implementing a frequency beam splitter. Lastly, we use the high-dimensionality of

our time-frequency entangled source in both time and frequency domain to imple-

ment deterministic high-dimensional controlled quantum gates, with the quantum



xiv

information encoded in both the time and frequency degrees of freedom of a single

photon. This novel demonstration of deterministic high-dimensional quantum gates

paves the way for scalable optical quantum computation, as quantum circuits can be

implemented with fewer resources and high success probability using this scheme.
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1. INTRODUCTION

Quantum information processing (QIP) has gained massive attention in recent years

as it promises to solve some exponentially hard problems in polynomial time through

quantum computation [1–3], as well as having other unique capabilities such as fully

secure communications through quantum key distribution (QKD) [4,5], and enhanced

sensing through quantum metrology [6]. To perform these nonclassical operations,

quantum entanglement plays a key role. Entangled particles are a pair of particles that

show correlations in a way that classical mechanics fails to explain; the states of the

particles are joint such that the outcome of a measurement on one of the particles can

instantaneously predict the result of a measurement on its partner particle. Amongst

many platforms that entanglement can be created in, photonic states draw a great

deal of attention due to their ability to maintain coherence over a long time, and their

aptitude for communications. In this Thesis, we focus on showing the potential of

quantum states of light for these quantum operations.

Typical QIP systems are based on two-level quantum states, also called qubits.

To simplify the complexity of quantum circuits [7, 8] and increase the practicality

of quantum computation, high-dimensional entangled states (entangled qudits) are

strong candidates as a result of their robustness and stronger immunity to noise,

compared to two-dimensional systems [9–12]. In photonics, many degrees of freedom

have the potential to exhibit high-dimensionality (time, frequency, spatial, orbital

angular momentum). Here, we focus on time and frequency degrees of freedom, where

the states can easily be generalized to higher dimensions. We use integrated and bulk

platforms to create time-frequency (time-energy) entangled photons with a comb-like

spectrum and show the potential of these platforms for time and frequency encoding

of information. The bulk platform is faced with the drawback of low scalability and

high cost; therefore, our main focus is on integrated optical microresonators which



2

offer a solution that is highly scalable, low cost and compatible with semiconductor

foundries. Now, we look at the potential applications of these sources in more detail.

1.1 Quantum Computing

Quantum computing is one of the most important processes that entangled pho-

tons can be used in. By using qubits instead of classical bits of information, some

exponentially hard algorithms like factoring can be solved in polynomial time [13–15].

Quantum computing can also be of tremendous help in simulating complex quantum-

mechanical systems, such as designing drugs and simulating their effects on human

body on a molecular level, a task called quantum simulations which is exponentially

hard with classical computers [16]. Right now, building a quantum computer that

can solve complex problems that classical computers can not is out of reach, since

this requires having multiple qubits and many quantum gates, which are very hard

to implement. We show that by using a quantum frequency comb, we can extend the

two-dimensional qubits to higher dimensions (qudits), which can potentially reduce

the number of required quantum gates to simplify quantum computing protocols [10].

We then show the potential of our source for encoding information in multiple high-

dimensional degrees of freedom of a photon by demonstrating, for the first time,

two-qudit operations [17],necessary for universal quantum computation with qudits.

1.2 Quantum Communications

Quantum communications promise fully secure communications over a quantum

channel, where the presence of an eavesdropper can be revealed by the communicating

parties [4] . In these protocols, the two entangled particles are sent to two different

parties, who can build a secret key based on their measurement choices. One party

(Alice) can later use this key to encode her classical data and send it to the other

party (Bob) (Fig 1.1). Since Bob is the only other party with the key, he alone

can decode this data, a method called Quantum Key Distribution. Since photons
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experience close to no decoherence over time, they are excellent candidates for QKD.

It has been shown that using time-frequency entangled photons allows the use of

QKD protocols in a high-dimensional way, which enables building more complex

codes between the two parties in less time [18]. The applications of these biphotons

for quantum computation and QKD shows the potential of these sources to be used

in a quantum internet protocol.

Fig. 1.1. Illustration of quantum key distribution scheme.

1.3 Overview

In this thesis, we first focus on the proof of concept for time and frequency-bin

entanglement of the generated biphoton frequency combs [19–21]. Unlike other works

done in our laboratory, this work is mainly with quantum frequency combs generated

from a silicon nitride microring resonator; a platform that was not explored as a source

of entangled photons in our group before these works. We then show the potential of

these biphoton frequency combs for quantum information processing in the frequency

domain [22]. At last, we demonstrate a scheme for deterministic optical quantum

computing using the time and frequency degrees of freedom in a single photon [17].
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In chapter 2, we introduce time-frequency entangled photons (biphotons) with a

comb-like spectrum along with the different processes and respective platforms we

use to generate them in. Chapter 3 focuses on time correlation function of these

biphotons that are created in an optical microresonator. In chapter 4, we discuss

the time domain manipulation of biphotons through Franson interferometry [19], as

well as a dispersion cancellation experiment, showing the potential of our biphotons

for large-alphabet QKD [19]. In chapter 5, we show the frequency-bin entangle-

ment of biphotons generated in both integrated and bulk platforms which shows the

phase coherence between different comb line pairs and proves their potential for high-

dimensional quantum computation [20, 21]. In chapter 6, a fundamental quantum

mechanical experiment–namely Hong-Ou-Mandel interference–has been carried out

in the frequency domain [22], the first time a frequency-domain Hong-Ou-Mandel has

been demonstrated using only linear optical components. In chapter 7, we make use

of both the time and frequency degrees of freedom in a single photon to demonstrate

elementary high-dimensional deterministic quantum gates [17], the first time high-

dimensional controlled quantum gates are demonstrated in not only photonics, but

any platform that quantum information processing can take place in.



5

2. TIME-FREQUENCY ENTANGLED PHOTONS

2.1 Introduction

Time-frequency entangled photons (biphotons) are a pair of photons that are

highly correlated with each other in time and energy, namely signal and idler. The

signal field is defined as the photon with higher frequency and the idler field is defined

as the photon with the lower frequency. Since the creation time of this pair is at the

same time, these photons are correlated in time, and because of energy conservation

in the creation process, their energies are dependent on each other as well. We use

two different processes to create these entangled photons: spontaneous parametric

down conversion (SPDC) and spontaneous four-wave mixing (SFWM). In both of

these processes, we have a pump beam that shines on a nonlinear material and the

photons from the pump beam decay into a pair of entangled photons.

2.2 Spontaneous Parametric Down Conversion

In an SPDC process, one pump photon(∼775 nm) goes through a χ(2) material

[a periodically poled lithium niobate (PPLN) crystal in our case] and decays into a

pair of entangled photons(Fig. 2.1) [23]. The setup used to create the biphotons with

this process is depicted in Fig. 2.2a, where after the PPLN crystal, free space filters

are used to block the pump beam; therefore, only biphotons remain after the filters.

The spectrum of the biphoton has a broad bandwidth of ∼40 nm (5 THz), as shown

in 2.2b. Since we are interested in biphotons with a comb-like spectrum, we use a

commercial pulse shaper as a programmable filter [24] to carve out a frequency comb

from this broadband spectrum.



6

!. b.

Fig. 2.1. a. SPDC process. b. Illustration of the pump photon and
entangled photons in frequency. This figure is adapted from [23].

!. b.
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Fig. 2.2. a. Experimental setup for the SPDC process. b. Generated
broadband biphoton spectrum for the SPDC process.

2.3 Spontaneous Four-Wave Mixing

In an SFWM process, a χ(3) material is used [silicon nitride (Si3N4) microring

resonator in our case], meaning two photons from the pump beam decay into a pair

of entangled photons(Fig. 2.3).
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!. b.

Fig. 2.3. a. SFWM process. b. Illustration of the pump photon and
entangled photons in frequency. This figure is adapted from [23].

The simplified setup used to create biphotons from a silicon nitride microring

is depicted in 2.4a. Here, we couple a tunable continuous-wave (CW) laser source

with a wavelength around 1550 nm to the microring. If the frequency of the CW laser

matches with one of the resonances of the microring, it will survive in the ring’s cavity

and the pump photons will have the chance to decay into entangled photon pairs. Due

to the resonant structure of the microring, only certain frequencies spaced by the free

spectral range (FSR) survive in the cavity, and due to the photon lifetime in the cavity,

each resonance has a linewidth of hundreds of MHz. Hence, this SFWM process leads

to the generation of a quantum frequency comb with an FSR and linewidth identical

to the properties of the ring (Fig. 2.4b). The comb line in the middle is the pump

line, attenuated by ∼60 dB using dense wavelength division multiplexing(DWDM)

filters.
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Laser
Source

Si3N4(1550 nm)

!. b.

Fig. 2.4. a. Experimental setup for the SFWM process. b. Generated
comb-like biphoton spectrum for the SFWM process. This spectrum was
measured with the microring with 380 GHz FSR (∼3 nm), which is the
spacing between the comb lines in this figure.

2.4 Theory

Throughout both of these processes, energy has to be conserved which for photons,

it directly translates into a frequency dependence between the biphoton pair if the

frequency of the pump photons are known. The entangled photons with these comb-

like spectrums are also called a quantum frequency comb, or biphoton frequency comb

(BFC). Generally, a BFC state can be written as:

|Ψ〉 =
N∑
k=1

αk |k, k〉SI , (2.1)

with

|k, k〉SI =

∫
dΩ Φ(Ω− k∆ω) |ω0 + Ω, ω0 − Ω〉SI (2.2)

where |k, k〉SI represents the signal and idler photons from the kth comb line pair,

αk is a complex number describing the amplitude and phase of the kth comb line

pair and N is the total number of mode pairs, Φ(Ω) is the lineshape function and

∆ω is the FSR. ω0 is the pump frequency for a SFWM process and half the pump
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frequency for an SPDC process. The coherent superposition of states implied by

Eq. 2.1 requires phase coherence between the frequency mode pairs, meaning the

relative phases between different comb line pairs are fixed and not random. This

phase coherence is identical to frequency-bin entanglement between these comb line

pairs.



10

3. QUANTUM FREQUENCY COMBS IN AN OPTICAL

MICRORESONATOR

3.1 Background

To generate a BFC from an optical microresonator, we have to seed it with a

laser with low enough power to operate the microresonator under threshold. If the

power of the CW laser is higher than a certain threshold, we reach the classical comb

generation regime, where each comb line generated from the pump is strong enough

to undergo the Four-Wave Mixing (FWM) process again and generate entangled pho-

tons of its own. Since we are interested in biphotons that are energy matched with

respect to the pump line, we want the FWM process from the other comb lines to be

negligible compared to that of the pump. This way, we are also making sure that the

power in each comb line is low enough to operate in the entanglement regime, which

we talk about in more detail in the next section.

We use two different microring resonators to generate our BFCs for different ex-

periments. The first one, used for the time domain measurements and quantum

gating experiments, has a 380 GHz FSR, ∼270 MHz linewidth and a loaded quality

factor of QL = 7.2 × 105 (Fig. 3.1a). The second microresonator is considerably

larger, has an FSR of ∼50 GHz, a linewidth of ∼100 MHz and its QL = 2 × 106

Fig. 3.1b. We use the second microring in the frequency domain processing of the

BFC because of the lower frequency spacing between comb lines, thereby making it

easier to mix comb lines in frequency using linear-optical techniques. We characterize

both of these microrings through measurements of time correlations between different

comb line pairs [19,21].
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Fig. 3.1. Pictures of the microrings with a. 380 GHz FSR and b. 50 GHz
FSR. Since bigger microrings have smaller FSRs, the microring with a 380
GHz FSR has a factor of 7.6 smaller radius than the microring with a 50
GHz FSR.

3.2 Time Correlations

To characterize the BFC’s time correlations, we first use the ring with 380 GHz

FSR. Using a pump power of 160 mW, we obtain the spectrum shown in Fig. 3.2a

for the BFC using an optical spectrum analyzer (OSA). By using these DWDMs,

we separate the strong pump from the other comb lines of the BFC and route them

to a different fiber output.In Fig. 3.2a, we also observe a roll-off in the power of

the sidebands as we move away from the pump frequency. This is due to the dis-

persion of the microring which causes the FSR to vary throughout the spectrum.

This reduces the overlap of the energy-matched resonances as we move away from

the central frequency. To measure this dispersion, the microring was characterized

through a transmission spectrum measurement. The wavelength of the tunable CW

laser was swept over the lightwave C-band, from 1520 to 1570 nm, while a power

meter and wavelength meter (HighFinesse WS6-100) recorded the transmitted power

and the current wavelength with 10 MHz resolution, respectively. We measured a

free spectral range of 380 GHz (equivalent to ∼ 3 nm), a dispersion parameter D of

−57ps/(nm.km) (indicating normal dispersion), and an intrinsic quality factor Qi of

1.12 × 106 of the resonance located at 1550.9 nm. Figure 3.2b shows the frequency
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differences between the resonances used to generate signal sidebands and the pump

resonance (blue curves); the corresponding frequency differences between idlers and

pump are shown as the red curves. The progressive frequency mismatch explains the

reduction in photon pair flux for resonances farther away from the pump.

a.

b.

Fig. 3.2. a. BFC spectrum. b. Transmission spectra of resonances cor-
responding to signal 1 to 5, S1−5, and idler 1 to 5, I1−5. The horizontal
axes correspond to the absolute frequency difference between the displayed
resonances and the central frequency of the pump resonance.

Now, to verify the correlations of our comb-like photon pairs, we first select the

signal and idler photons of the 2nd sideband pair (S2I2) with the two DWDM filters

(Fig. 3.3). Using a pair of Single-Photon Detectors (SPDs) along with a Time Interval

Analyzer (TIA), we record the relative arrival time between signal and idler photons

as coincidences.
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Fig. 3.3. Experimental setup to measure the time correlations between
the signal and idler comb lines.

In this process, some accidental events are also registered as a result of detecting

background (uncorrelated) photons—any event that is not due to a signal and idler

from the same photon-pair is considered an accidental (dark counts, signal and idler

from different pairs, or any such combination). Figure 3.4a shows the measured

coincidences (accidentals were not subtracted); the sharp peak with a full width at

half maximum (FWHM) of ∼ 600 ps corresponds to the temporal correlation. This is

in agreement with the expected correlation time which is calculated from the inverse

of the resonance linewidth (∼ 2π×270 MHz). Furthermore, to show correlations exist

only between energy-matched frequencies, we measured the coincidences between the

3rd signal and 3rd idler (S3I3) (Fig. 3.4b), and the coincidences between the 2nd signal

and 3rd idler (S2I3) (Fig. 3.4c). The absence of a coincidence peak between the 2nd

signal and 3rd idler reveals a lack of correlation between mismatched frequencies. In

addition, we were able to obtain a high coincidence to accidental ratio (CAR) of 52

for the 3rd sideband pair, without compensating for the losses in our setup; if we

take into account the losses from the biphoton generation stage up till detection, the

corrected CAR would be 655.
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c.b.a.

Fig. 3.4. Time correlations for a. S2I2, b. S3I3 and c. S2I3.

3.3 Joint Spectral Intensity

In order to show the spectro-temporal correlations across the photon-pair spec-

trum, we measured the Joint Spectral Intensity (JSI) by using the pulse shaper as

a programmable frequency filter to route different sidebands to the pair of detectors

(Fig. 3.5). The time correlation measurement was repeated between all combinations

of the sideband pairs from 2 to 7 (S2−7I2−7). Figure 3.6a shows the measured JSI,

which provides a strong confirmation that time correlations only appear in the en-

ergy matched sidebands. Following the same procedure to measure the JSI for the

50-GHz-FSR ring, we obtain Fig. 3.6b, which shows the tight diagonal correlations

between diagonal modes up to the 40th mode. We note that JSI does not have any

phase information, and does not show the phase coherence between different modes.

These JSIs show the potential of these microrings for high-dimensional frequency-bin

entanglement— if the phase coherence between frequency bins is proven.
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Fig. 3.5. Experimental setup to measure the JSI.
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JSI   S2-7I2-7a.

Fig. 3.6. JSI of the microring with a. 380 GHz FSR. b. 50 GHz FSR.
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4. TIME-DOMAIN MANIPULATION

4.1 Introduction

In this chapter, we investigate the time-frequency signatures of the BFC generated

from the microring with the FSR of 380 GHz [19]. Using a Franson interferometer, we

examine the multifrequency nature of the photon pair source in a time entanglement

measurement scheme; having multiple frequency modes from the BFC results in a

modulation of the interference pattern. This measurement together with a Schmidt

mode decomposition shows that the generated continuous variable energy-time en-

tangled state spans multiple pair-wise modes.

For this experiment, a Franson interferometer–two unbalanced Mach-Zehnder in-

terferometers (MZIs)–is placed in the signal and idler paths (Fig. 4.1). The relative

delays between long and short arms in the signal and idler interferometers, defined

as τs and τi, respectively, are approximately 6 ns. This value is much less than the

coherence time of the pump (∼ 1 µs) but greater than the coherence time of a single

photon (∼ 1 ns) to avoid self-interference. Here, the difference between τs and τi is

defined as τd. When τd is near to 0, the arrival time difference between signal and

idler photons traveling through the long arms is approximately the same as when they

both travel through the short arms. In consequence, we have path indistinguishability

in this detection scheme using gated detection to only register the mentioned events

(|SS〉 and |LL〉), discarding the events in which the signal photon travels the long

path and the idler photon travels the short path and vice versa (|SL〉 and |LS〉). This

indistinguishability between the quantum states gives us the ability to interfere them

and show a non-classical behavior called time-bin entanglement.
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Fig. 4.1. Experimental setup for Franson interferometry.

4.2 Theory

We verify the time entanglement between photon pairs from the biphoton fre-

quency comb (BFC) by separating signal and idler photons and sending each into

an unbalanced Mach-Zehnder interferometer [25]. The probability distribution of de-

tecting a signal photon at time t + τ and its corresponding idler photon at time t is

given by the Glauber second order correlation function [26],

G(2)(τ) = |φ(τ)|2 (4.1)

and φ(τ) is the biphoton wavepacket given by

φ(τ) ∼
∫
dΩΦ(Ω)e−iΩτ (4.2)

where Φ(Ω) is the spectrum of the biphoton frequency comb. First, we consider

a signal-idler photon pair generated in a superposition of two frequency-bin pairs,

|n, n〉SI and |n+ 1, n+ 1〉SI , generated with equal amplitudes in two contiguous res-

onances. The temporal wavefunction of this biphoton state is denoted by:
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|ψ(τ)〉 = φ(τ)
(
|n, n〉SI + ei∆ωτ |n+ 1, n+ 1〉SI

)
(4.3)

Here, φ(τ) is assumed the same for both sideband pairs, and the second order correla-

tion function can be expressed as 〈ψ(τ)|ψ(τ)〉. In addition, there exists a phase term

(ei∆ωτ ) multiplying the contributions of the two sideband pairs which is dependent

on the frequency spacing between them or FSR, ∆ω. A measurement of the coinci-

dences between photon pairs would yield a correlation function G(2)(τ); as a result of

the phase term, the correlation peak will contain fast fringes with oscillation period

2π/∆ω under an envelope of duration proportional to the inverse of the linewidth (see

Fig. 4.2). However, using our single-photon detectors, we are only able to observe

the envelope of the correlation function; the inability to resolve the fast fringes stems

from the large timing-jitter of our single-photon detectors (300 ps).

1/∆$

Fig. 4.2. Theoretical correlation function for two sideband pairs of the
BFC. The zoomed in plot shows the fast fringes inside the correlation
envelope.

Now, we add the unbalanced interferometers in the paths of the signal and idler, with

the long paths having an extra relative delay of τs and τi for each interferometer,

respectively. The wavefunctions for the nth and (n+1)th sideband pairs are described
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in Eqs. 4.4 and 4.5, respectively, as the interferometers result in path indistinguisha-

bility between the short and long paths.

|ψ(τ)〉n = φ(τ)
(
|SS〉n + ei(ωsnτs+ωinτi) |LL〉n

)
(4.4)

|ψ(τ)〉n+1 = φ(τ)
(
|SS〉n+1 + ei(ωsn+1τs+ωin+1

τi) |LL〉n+1

)
(4.5)

Here, |SS〉n represents the state when signal and idler photons of the nth sideband

pair take the short path in their corresponding interferometers. Likewise, |LL〉n
represents the state when both photons take the long path. ωsn and ωin are the

central frequencies of the signal and idler resonances of the nth sideband pair. Using

the energy matching and cavity resonance conditions,

2ωp = ωsn + ωin (4.6)

∆ω = ωin − ωin+1 = ωsn+1 − ωsn (4.7)

and defining:

τd = τi − τs (4.8)

We can rewrite Eqs. 4.4 and 4.5 as

|ψ(τ)〉n = φ(τ)
(
|SS〉n + ei(2ωpτs+ωinτd) |LL〉n

)
(4.9)

|ψ(τ)〉n+1 = φ(τ)
(
|SS〉n+1 + ei(2ωpτs+ωinτd+∆ωτd) |LL〉n+1

)
(4.10)

If τd is set to zero (τi = τs), the wave function for the nth sideband is

|ψ(τ)〉n = φ(τ)
(
|SS〉n + ei2ωpτs |LL〉n

)
(4.11)
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which is consistent for all the sidebands. As Eq. 4.11 suggests, in this case, both

comb line pairs show a similar effect and interference pattern. To prove this, we go

even further and use three signal and idler frequency-bin pairs S2−4I2−4. If

taus and τi are both swept together, it is as if the signal and idler photons are both

sent through the same interferometer, therefore, for this experiment, we send both

photons through the same interferometer and were split after using a pulse shaper.

By sweeping the delay of the interferometer, we retrieve a sinusoidal coincidence

pattern with a period of ∼ 2.5 fs (half the period of the pump laser) and a visibility

of 80% ± 5% for all signal and idler sidebands (Fig. 4.3). The interference pattern

is similar to those reported in previous microcavity BFC experiments that examined

only a single signal-idler pair [27–29]. The visibility higher than 71% [30] shows

evidence of energy-time entanglement for biphotons consisting of a multiplicity of

sideband mode pairs.

0 1 2
Delay [fs]

0

100

200

300

C
oi

nc
id

en
ce

s

Fig. 4.3. Measured coincidences while simultaneously sweeping the inter-
ferometer delay for signal and idler.
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If τd is not equal to 0, and we consider sidebands n and n + 1, the overall wave-

function can now be written as:

|ψ(τ)〉n,n+1 = φ(τ)
(
|SS〉n + ei(2ωpτs+ωinτd) |LL〉n

)
+ei∆ωτφ(τ)

(
|SS〉n+1 + ei(2ωpτs+ωinτd+∆ωτd) |LL〉n+1

) (4.12)

The assumed indistinguishability in the arrival times of the states |SS〉 and |LL〉
results in a coincidence rate that is given by the squared magnitude of the sum of the

contributions of the probability amplitudes described in Eq. 4.12. This coincidence

rate as a function of τ is:

c(τ) =

∣∣∣∣φ(τ)

(
1 + ei(2ωpτs+ωinτd) +ei∆ωτ

(
1 + ei(2ωpτs+ωinτd+∆ωτd)

))∣∣∣∣2 (4.13)

In the limit of slow detection, the coincidence rate is integrated over a long range of

delays and expressed as

C =

∫ ∆

−∆

c(τ)dτ (4.14)

We used ∆ = 500 ps as our delay range in simulations. Eq. 4.14 can be solved to

obtain the following expression for the two sideband pair coincidences

C2SB ∝ 1 + cos

(
2ωpτs +

ωin + ωin+1

2
τd

)
cos

(
∆ω

2
τd

)
(4.15)

If we adopt the same procedure for three adjacent sideband pairs (n,n+ 1,n+ 2), we

obtain Eq. 4.16.

C3SB ∝ 3 + cos
(
2ωpτs + ωin+1τd

) (
1 + 2 cos (∆ωτd)

)
(4.16)

We define the visibility as:

V =
Cmax − Cmin

Cmax + Cmin

(4.17)
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where Cmax and Cmin are the maximum and minimum of the coincidences over a fast

variation of delay as shown in Fig 4a. Given this expression, the visibilities of this

experiment for 2 and 3 sideband pairs are:

V2SB =

∣∣∣∣cos

(
∆ω

2
τd

)∣∣∣∣ (4.18)

V3SB =
1

3
|1 + 2 cos (∆ωτd)| (4.19)

4.3 Experimental Results

To see the multifrequency signature, we fix τs and vary τi (hence varying τd) in the

two interferometer experiment. Sweeping τd over a small range results in a sinusoidal

interference pattern in the registered coincidences, as shown in Figs. 4.4a,d. The

period of ∼5 fs corresponds to the average optical carrier frequency. For Figs. 4.4a-

c we use two pairs of sidebands (S2−3I2−3). By varying τd over a larger range, we

observe modulation and revival of the envelope of the two-photon fringes with a

period of 2.6 ps, corresponding to the inverse of the FSR. In contrast, the fringe

envelope for an individual signal-idler pair should decay smoothly on the sub-ns time

scale of Fig. 3.6 [27, 28]; the observation of picosecond scale modulation arises from

the superimposed contributions of multiple signal-idler frequency bins.The envelope

and visibility of the coincidences agree with the quantum mechanical model, eq.

4.15. We repeated this experiment for 3 sideband pairs (S2−4I2−4)—the intensities of

these sidebands were equalized with the pulse shaper in order to have almost equal

contribution in the interference experiment. With increased number of sideband pairs,

the visibility vs. delay curve becomes sharper (Fig. 4.4d-f), again in agreement with

theory (Eq. 4.16). The visibility of the fringes in Fig. 4.4 is as high as 92% ± 13%.

The modulation in the fringe envelope, down to 14% ± 2%, gives us clear evidence

of equal contribution of these sidebands in the coincidence pattern.
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Fig. 4.4. Two-photon interference experiment of the BFC. Interference
fringes measured with a Franson interferometer for a. small and b. large
τd ranges with two sideband pairs. c. The visibility of the sinusoidal
fringes in b. Registered coincidences using three sideband pairs for d.
small and e. large τd ranges. f. The visibility of the sinusoidal fringes in
e. The blue error bars are the experimental results, the red curves in b.,
c., e. and f. are theoretical predictions, and the green curves in a. and d.
are sinusoids fitted to the experimental data.
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4.4 Schmidt Decomposition

After examining pairwise time-entanglement, we use a Schmidt mode decomposi-

tion technique to measure the degree of correlations between our biphotons [31]. Any

spectrally entangled biphoton state can be written as a superposition of separable

biphoton states via Schmidt decomposition, where the JSI can be written as [32]:

F (ωS, ωI) =
∑
p

√
λpfp(ωS)gp(ωI) (4.20)

where F (ωS, ωI) denotes the JSI function, fp(ωS) and gp(ωI)–Schmidt functions–are

each complete sets of orthonormal functions and λp are the Schmidt magnitudes

normalized such that
∑

p λp = 1. Using singular value decomposition, F (ωS, ωI)

can get decomposed to a diagonal matrix with strictly positive values λp along the

diagonals. The Schmidt decomposition of the JSI can now be used as a measure of

the degree of accessible correlations in the state via a Schmidt number [33]:

K =
1∑
p λ

2
p

(4.21)

Note that since the JSI does not contain any phase information of the state, the

aforementioned Schmidt number in Eq. 4.21 gives us a lower bound on the degree of

correlations. A Schmidt number lower-bound (Kmin) of 4.0 is measured for the JSI

shown in Fig. 3.6a. Therefore, we are able to corroborate a high frequency correlation

of our photons, since Kmin is greater than one. If the off-diagonal terms are all set

to zero in our measured JSI (Fig. 3.6a), we obtain a Schmidt number of 4.08, which

confirms that we have a very low number of accidentals in our measurements. This

Schmidt number can also be interpreted as the number of bits (log2(Kmin) = 2) that

each photon carries and can be shared between two parties when a photon pair is

detected, each by one party. We note that while we have large continuous variable

energy-time entanglement under pairs of resonance modes as suggested by Φ(Ω) in Eq.

2.2—which would result in a very high Schmidt number—our measurement technique

does not allow access to the fine structure under each resonance. Thus, the Schmidt
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analysis is done on different k modes but time-energy entanglement is on each |k, k〉SI
’s fine structure. Therefore, our Schmidt number bound indicates that the continuous

variable energy-time entangled state spans 4 effective modes. The same technique

have been used to calculate the Schmidt number of the JSI measured for the 50 GHz

FSR microring (3.6b), (Kmin = 20), showing higher frequency correlations in this case

compared to the Schmidt number calculated for the 380 GHz FSR microring.

4.5 Nonlocal Dispersion Cancellation

We proceed to examine the potential of the BFC for QKD by demonstrating

a nonlocal dispersion cancellation measurement [34], wherein the correlation peak

maintains its undispersed form even though the signal and idler photons are dispersed.

This nonlocal dispersion cancellation effect can enhance security in QKD by serving

as a non-orthogonal basis to direct time-correlation measurements [18,35].

If we apply a quadratic spectral phase to the biphotons, the biphoton wavepacket

will be modified as follows:

φ(τ) ∼
∫
dΩΦ(Ω)e

iDΩ2

2 e−iΩτ (4.22)

where

D = Ds +Di

[
units ps2

]
(4.23)

Ds and Di are the dispersions applied to the signal and idler photons, respectively.

Thus, as Franson pointed out [34], the undispersed form of G(2) is reproduced when

Ds = −Di. This is the condition for nonlocal dispersion cancellation.

We use the experimental setup illustrated in Fig. 4.5 for this part. First, we use

four sideband pairs (S2−5I2−5) and measure the correlation function in the absence of

dispersion (Fig. 4.6a). Next, we apply dispersion of 2 ns/nm [using a chirped fiber

bragg grating (CFBG), which provides a dispersion equivalent to that of ∼ 120 km of

standard single mode fiber, but with a loss of only 3 dB] to only the signal sidebands
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of the BFC; this results in a measurement of four correlation peaks corresponding

to the four different sideband pairs. The peaks are spaced by 6 ns, an expected

outcome since different frequencies travel at different speeds in a dispersive medium

(Fig. 4.6c). Applying the opposite dispersion to only the idler sidebands will result

in a similar outcome but with opposite sign of delay variation (Fig 4.6d). These

measurements with the separated correlation peaks are equivalent to a frequency-

to-time mapping of our BFC, thus enabling us to resolve the JSI in the temporal

basis [36]. To emphasize this equivalence, the diagonal terms of the JSI for sideband

pairs (S2−5, I2−5) are normalized to the maximum of Fig. 4.6c and plotted as red

squares; the good agreement with the correlation peaks in time provides a quantitative

confirmation of frequency-to-time mapping. When we apply both dispersive media

(positive dispersion on the signals and negative dispersion on the idlers), we expect

nonlocal cancellation of the dispersion. As shown in Fig. 4.6b, this behavior is clearly

observed: the coincidence plot collapses back into a single peak, with an improvement

in the peak-to-background ratio evident despite the extra loss incurred through the

introduction of a second CFBG.

Fig. 4.5. Experimental setup for nonlocal dispersion cancellation.
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a. b.

c. d.

Fig. 4.6. Nonlocal dispersion cancellation experiment. Time correlation
of four sideband pairs S2−5I2−5 a. without dispersion, c. with positive dis-
persion of D = 2 ns/nm applied on signal photons S2−5, d. with negative
dispersion of D = −2 ns/nm applied on idler photons I2−5, and b. with
both dispersions applied at the same time as shown in Fig. 4.5 for non-
local dispersion cancellation. In these plots, accidentals were subtracted
and the effect of a finite detection-gate width (which results in a roll-off in
coincidences as one moves away from zero delay) was compensated. The
red squares in b. represent the diagonal of the JSI in Fig 3.6b for the
sideband pairs S2−5I2−5, normalized to the maximum of the blue plot for
ease of visualization.
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5. FREQUENCY-DOMAIN MANIPULATION

5.1 Introduction

In photonics, amongst different degrees of freedom capable of high-dimensionality,

the frequency domain–using single or entangled photons in a coherent superposition

of multiple frequency bins–offers more robust and scalable systems because it does not

require stabilization of interferometers or complex beam shaping [11,37]. Frequency-

bin entangled photons have already been explored through SPDC together with cavity

and programmable spectral filtering [38–40]. While chip-scale devices have been used

to generate comb-like photon pairs through SFWM [19, 28, 29], the ensuing photon

states had not been shown to be in a coherent superposition of multiple frequency-

bins prior to experiments reported in this chapter. The difficulty of this measurement

stems from the large FSR of conventional microring resonators (on the order of 100

GHz) which results in temporal correlation trains with periods (< 10 ps) much less

than the timing resolution of standard single-photon detectors (∼ 100 ps)(Fig. 4.2),

as discussed in section 4.2. As a result, direct detection of the comb-like photon

pairs is incapable of showing spectral phase sensitivity, a condition required to prove

frequency-bin entanglement. In this chapter, using a phase modulation scheme to

overlap sidebands from different comb lines– in order to create an indistinguishable

superposition of frequency states– we are able to conduct a two-photon interference

measurement, proving the high dimensional frequency-bin entanglement and phase

coherence of our on-chip BFC [21, 41]. The same technique was independently used

in [42], showing up to four dimensional frequency-bin entanglement of a Hydex mi-

croring resonator, where the FSR was approximately a factor of 4 larger than our 50

GHz microring . Our small FSR allows us to have more than 40 frequency modes

(Fig 3.6b), as opposed to 10 frequency modes in [42] . Demonstration of frequency-
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bin entanglement is a major step in qualifying integrated biphoton frequency comb

sources for applications in scalable high capacity quantum computation [43] and dense

quantum communications [18]. To validate our phase modulation approach, we also

conducted these experiments with our SPDC source and measured second order dis-

persion of a single mode fiber (SMF) with known properties using this method.

5.2 Two-Dimensional Frequency-Bin Entanglement

To show phase coherence between different comb line pairs, we implement the

setup depicted in Fig. 5.1. The output of the microring is coupled into pulse shaper

1, where in the first experiment we select only comb line pairs 6 (S6I6) and 7 (S7I7).

Subsequently, we will use this pulse shaper to apply optical spectral phase to the comb

lines. We also note that we use the first pulse shaper to equalize the contribution of

the modes to coincidence counts. By doing so, we are making sure that |αk| = |αk+1|
in Eq. 2.1 for the rest of the experiments, which optimizes contrast in quantum in-

terference. The selected lines are then coupled into an electro-optic phase modulator,

which creates optical sidebands at frequency offsets equal to multiples of the radio

frequency (rf) of the driving sinusoidal waveform, which we set to yield sidebands at

half the spacing of the BFC (Fig. 5.2). Then, with pulse shaper 2, we pick out the

sidebands which overlap midway between S6-S7 and I6-I7 (solid blue curves in Fig.

5.2), and route them to the SPDs and the TIA.

Fig. 5.1. Experimental setup for frequency-bin entanglement.
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Fig. 5.2. Illustration of biphoton spectrum after phase modulation.

Our frequency-bin entanglement verification scheme is a frequency domain analog

of the Franson interferometry approach [25] widely used to verify time-bin entangle-

ment (see Fig. 5.3). As discussed in section 4.2, in Franson interferometry, after an

input state in a superposition of two time bins passes through an imbalanced inter-

ferometer, results in 3 different states projections {|1〉 , |2〉 , |S〉} at the output, where

|S〉 is the superposition state defined as

|S〉 =
1√
2

(
|1〉+ eiφ |2〉

)
(5.1)

and φ is a relative phase varied in one of the interferometer arms. In our scheme, we

pass a two frequency-bin input state with frequency spacing ∆f through the phase

modulator, which produces upper and lower sidebands at frequency offsets ±∆f/2

from each of the parent signals and idlers. In Fig. 5.3 we label this operation as a

“frequency splitter”. The upper sideband from one parent signal (idler) frequency

overlaps with the lower sideband from the other parent signal (idler) frequency. Ac-

cordingly, at the output of the frequency splitter, we will have 3 different state projec-

tions {|1〉 , |2〉 , |S〉} where |S〉 is the superposition state again defined as in Eq. 5.1,

but now with φ corresponding to a phase imposed onto the biphoton by the first pulse

shaper prior to the phase modulator. We can apply different relative phases between

the parent frequency bins, and therefore the superposition state |S〉 can have different

representations according to Eq. 5.1. We note that unlike Franson interferometry,
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deviation indicated by the error bars.
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where phase stabilization is needed, here the phases in our frequency interferometry

approach are intrinsically stable.

To be able to measure the optimum frequency overlap and maximize the indistin-

guishability between different phase modulation sidebands, first we apply a relative

phase shift of π between S6I6 and S7I7 using pulse shaper 1—inducing a π/2 phase

on both S6 and I6—to create a destructive interference between these two modes. We

proceed to measure the coincidences as we sweep the rf frequency to yield a sideband

separation from 24.54 to 25.14 GHz. We observe a dip with a maximum visibility of

89% at 24.84 GHz, as shown in Fig. 5.4a. The full width at half maximum of this

dip is measured to be ∼100 MHz, similar to the resonance linewidth of the micror-

ing. We note that background accidentals were subtracted from the plot in Fig. 5.4a

and subsequent results in the rest of the chapter, where the coincidence to accidental

ratio was about 2:1. This reduction in coincidence to accidental ratio in the phase

measurement experiments compared to the JSI measurement in Fig. 3.6b is due to

the additional loss that the extra pulse shaper and phase modulator introduce to our

biphotons; as a consequence we are forced to use higher pump power and biphoton

flux, which reduces the ratio.

Now that we have superposition of the sidebands, we should be able to observe an

interference pattern by changing the relative phases of the comb line pairs. Using the

first pulse shaper to vary the phases of S7 and I7 simultaneously, we obtain a sinusoidal

interference pattern in the measured coincidences (Fig. 5.4b). The resulting visibility

of 93%±13% shows strong phase coherence between the comb line pairs S6I6 and S7I7.

Following the same procedure but selecting comb line pairs S5I5 and S6I6 and sweeping

the phases of S6 and I6 simultaneously, we obtain a visibility of 86%±11% (Fig. 5.4c).

By assuming a white noise model for the noise introduced to the state, since these

visibilities exceed the classical threshold of 71%, the two-dimensional frequency-bin

entanglement is proven between these comb line pairs [44].
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Fig. 5.5. Phase modulation scheme for quantum state tomography. Red
peaks represent the input signal and idler, each of which is in one of
two frequency bins. Blue curves represent projections of signal and idler
after the phase modulator (frequency splitter) into three new frequency
positions. Solid blue is a projection of the superposition state; dashed
blue peaks represent a projection from a single signal or idler frequency
bin.

5.3 Quantum State Tomography

To extract all the information about our entangled state, we perform quantum

state tomography by measuring a complete set of 16 projections of the two-qubit

entangled state [45, 46] which allows us to estimate the density matrix. We per-

formed coincidence measurements between signal and idler photons in the 16 possible

combinations of the states {|1〉 , |2〉 , |L〉 , |+〉}. Here, |L〉 and |+〉 are the superposi-

tion states in Eq. 5.1 when φ is equal to π/2 and 0, respectively, as shown in Fig.

5.5. Because we can make an exact analogy between our approach for projecting

frequency-bin qubits and the Franson interferometry approach for projecting time-

bin qubits, we can perform quantum state tomography of two-photon frequency-bin

qubit states using an exact transcription of the measurement protocol for two-photon

time-bin qubit states detailed in [46].

The measurement protocol and coincidence count data for the quantum state to-

mography are given in Table 5.1. Table 5.1 may be understood as follows. Since the

two-qubit density matrix is 4×4, we require a complete set of 16 projections |Ψν〉 (ν =

1 : 16) , written in terms of its basis coefficients (〈11|Ψν〉, 〈12|Ψν〉, 〈21|Ψν〉, 〈22|Ψν〉) .

We perform these projections by acquiring data in four different phase configurations
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(φS, φI) = {(0, 0), (0, π/2), (π/2, 0), (π/2, π/2)} , columns 5-8. Here, in performing

tomography on the S6I6-S7I7 qubit pair, φS and φI are the signal and idler phases

applied to the 7th comb line pair via pulse shaper 1 in the experimental setup shown

in Fig. 5.1. For each projection columns 2 and 3 specify which signal and idler fre-

quency channel are routed to the respective single photon detectors. Referring to Fig.

5.5, |1〉 and |2〉 in columns 2 and 3 correspond to unique frequency channels, whereas

|+〉 and |L〉 are both sideband superpositions measured when the same physical fre-

quency channel is routed for detection. Therefore, an entry in column 2 of |+〉 or

|L〉 signifies both routing of the signal superposition frequency channel for detection

and application of the appropriate phase to the 7th signal line (0 phase for |+〉 , data

reported in column 5 or 6; π/2 phase for |L〉, data reported in column 7 or 8). An

entry in column 3 of |+〉 or |L〉 has similar meaning, but refers to the idler superpo-

sition frequency channel (data in column 5 or 7 for |+〉, column 6 or 8 for |L〉). As

an example, for |Ψ8〉 we have (φS, φI) = (π/2, 0), column 7, and we obtain:

|Ψ8〉 =
1√
2

(
|1〉S + eiφS |2〉S

)
.

1√
2

(
|1〉I + eiφI |2〉I

)
=

1

2
|1, 1〉SI +

1

2
|1, 2〉SI +

i

2
|2, 1〉SI +

i

2
|2, 2〉SI

=

(
1

2
,
1

2
,
i

2
,
i

2

) (5.2)

In this notation |x, y〉SI = |x〉S |y〉I , in which signal and idler photons are in frequency

bins x and y, respectively.

Also, as explained in [46], for each of the signal and idler photons, measurement in

a nonsuperposition basis (|1〉 or |2〉) involves a factor of two loss relative to measure-

ment in the superposition channel. This is understood in the time-bin case as the loss

incurred at the output beam splitter of the interferometer, since for nonsuperposition

bases, half of the photons go to the unused output port. For the superposition cases,

with constructive interference such loss is avoided. The same argument holds in our

frequency-bin approach. These factors of two that arise for each of signal and idler

are accounted for by noting for projections such as |Ψ1〉 = |11〉, which incur a factor of
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four loss, coincidences may be measured for each of the four phase configurations. The

corresponding coincidence counts are listed in columns 5 to 8 and are added to give a

total coincidence count (column 9). Likewise, projections such as |Ψ6〉 = |1+〉 incur a

factor of two loss but may be measured in two phase configurations, and projections

such as |Ψ7〉 = |++〉 incur no extra loss but are measured in only a single-phase

configuration. Overall, 36 independent measurements are performed, and the total

number of coincidence counts obtained by adding the entries in columns 5-8 (column

9, nν) provides the correct normalization across the different projections.
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Table 5.1.
Projection measurements for frequency-bin density matrix estimation. For
each measurement coincidences were acquired over a 10-minute period.
A dash (-) indicates that the phase setting indicated by the respective
column is not involved in the projection measurement indicated by the
respective row; hence coincidence counts were not obtained.

Signal Idler (φS, φI)

ν Photon Photon |Ψν〉 (0, 0)
(
0, π

2

) (
π
2
, 0
) (

π
2
, π

2

)
nν

1 |1〉 |1〉 (1, 0, 0, 0) 36 40 36 41 153

2 |1〉 |2〉 (0, 1, 0, 0) 9 8 0 0 17

3 |2〉 |1〉 (0, 0, 1, 0) 0 0 0 7 7

4 |2〉 |2〉 (0, 0, 0, 1) 47 29 44 31 151

5 |2〉 |+〉
(

0, 0, 1√
2
, 1√

2

)
26 - 40 - 66

6 |1〉 |+〉
(

1√
2
, 1√

2
, 0, 0

)
47 - 22 - 69

7 |+〉 |+〉
(

1
2
, 1

2
, 1

2
, 1

2

)
146 - - - 146

8 |L〉 |+〉
(

1
2
, 1

2
, i

2
, i

2

)
- - 71 - 71

9 |L〉 |1〉
(

1√
2
, 0, i√

2
, 0
)

- - 14 57 71

10 |L〉 |2〉
(

0, 1√
2
, 0, i√

2

)
- - 26 44 70

11 |L〉 |L〉
(

1
2
, i

2
, i

2
, −1

2

)
- - - 4 4

12 |1〉 |L〉
(

1√
2
, i√

2
, 0, 0

)
- 21 - 29 50

13 |2〉 |L〉
(

0, 0, 1√
2
, i√

2

)
- 44 - 31 75

14 |+〉 |L〉
(

1
2
, i

2
, 1

2
, i

2

)
- 62 - - 62

15 |+〉 |1〉
(

1√
2
, 0, 1√

2
, 0
)

16 29 - - 45

16 |+〉 |2〉
(

0, 1√
2
, 0, 1√

2

)
49 32 - - 81

As in [45, 46], we perform a maximum likelihood estimate to obtain the density

matrix that best fits our projection measurement data (the nν) while satisfying the

requirement for a physical density matrix that the eigenvalues lie in the interval
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[0,1]. The measurement consists of 16 coincidences n̄ν whose expected value can

be estimated from the density matrix by n̄ν = C 〈Ψν | ρ |Ψν〉, where C =
4∑

ν=1

nν is

the normalization constant. We assume the noise in these measurements to have a

Gaussian probability distribution, therefore, the probability of obtaining a set of 16

coincidences {n1, n2, ..., n16} is [45]:

P (n1, n2, ..., n16) =
1

Nnorm

16∏
ν=1

exp

[
− (nν − n̄nu)2

2σ2
ν

]
(5.3)

where σν is the standard deviation of the νth coincidence measurement approxi-

mated by
√
n̄nu, and Nnorm is the normalization constant. Estimating the nν values

using the density matrix and measured values, this probability can be written down

as:

P (n1, n2, ..., n16) =
1

Nnorm

16∏
ν=1

exp

[
− (C 〈Ψν | ρ |Ψν〉 − nν)2

2C 〈Ψν | ρ |Ψν〉

]
(5.4)

Rather than finding the maximum for P (n1, n2, ..., n16), it is simpler to find the maxi-

mum of its logarithm which is mathematically equivalent [47], so in our optimization,

we find the minimum of the likelihood function:

L =
16∑
ν=1

(
C 〈Ψν | ρ |Ψν〉 − nν

)2

2C 〈Ψν | ρ |Ψν〉
(5.5)

As a result of this optimization, we found the following physical density matrix:

ρ =


0.4388 + 0.0000i −0.0115− 0.0699i −0.0721− 0.0193i 0.3745 + 0.0166i

−0.0115 + 0.0699i 0.0574 + 0.0000i 0.0279− 0.0244i 0.0084− 0.0227i

−0.0721 + 0.0193i 0.0279 + 0.0244i 0.0281 + 0.0000i −0.0280− 0.0211i

0.3745− 0.0166i 0.0084 + 0.0227i −0.0280 + 0.0211i 0.4757 + 0.0000i


(5.6)

The estimated real and imaginary parts of the density matrix are shown in Figs. 5.6a

and 5.6b, respectively.
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To evaluate the amount of entanglement in the measured two-qubit state, we

use the Peres-Horodecki criterion [48, 49] and calculate a measure of entanglement

from the density matrix called negativity. The negativity of a density matrix ρ is

defined as: N(ρ) =
∑3

i=0
|λi|−λi

2
,where λi are the eigenvalues of the partial positive

transposed version of ρ. A two-qubit density matrix is separable iff N(ρ) = 0, and

N(ρ) > 0 signifies entanglement (see Appendix B). For a maximally entangled state

N(ρ) = 0.5, and for the experimentally recovered state given in Eq. 5.6 we find

N(ρ) = 0.34, strongly indicating inseparability.

5.4 Three-dimensional frequency-bin entanglement

The results presented so far have been for two-dimensional quantum states. Our

observation of strong interference contrast involving comb line pairs S5I5-S6I6 and

S6I6-S7I7 individually suggests phase coherence across lines 5, 6 and 7 jointly. For a

proof of such high-dimensionality, however, we must examine phase coherence across

the selected comb line pairs simultaneously. Here we consider a biphoton state initially

made up of three comb line pairs (two entangled qutrits). We use the first pulse shaper

to select the comb line pairs S5I5, S6I6 and S7I7; after the phase modulator, we overlap

the first sidebands for the 5th and 6th comb line pairs together with the third sideband

0
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Fig. 5.6. a. Real and b. imaginary parts of the estimated density matrix
for comb line pairs S6I6 and S7I7.
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Fig. 5.7. Illustration of overlapped phase modulation sidebands for comb
line pairs S5I5, S6I6 and S7I7.

from the 7th comb line pair. In order to ensure equal mixing weights for all three

sidebands, we send a CW test laser through the modulator and adjust the electrical

drive power such that the first and third phase modulation sidebands are equalized,

as verified with an optical spectrum analyzer. We also use the first pulse shaper to

balance the intensities of the biphoton sideband pairs such that individually they

each contribute equal coincidence counts (so the three diagonal terms in the JSI are

equal), thereby maximizing the potential Bell inequality violation. Additionally, we

compensate for the relative phases on the comb line pairs induced by fiber dispersion.

Now we use the second pulse shaper to select the overlapping sidebands from the signal

and idler triplets (blue curves in Fig. 5.7), which arise from an indistinguishable

superposition of contributions from S5, S6, S7 and I5, I6, I7, respectively. Pulse

shaper 1 places spectral phases on the signal and idler lines such that the ideal

state after the second pulse shaper can be written in the form |ψ〉 ∝ |5, 5〉SI +

ei(φS+φI) |6, 6〉SI + ei2(φS+φI) |7, 7〉SI . Extensive numerical searches [44] suggest that

the largest violation of the 3-dimensional Bell inequality is realized by measurement

bases with the property that the phase applied to the 7th signal and idler should

be twice the phase put on the 6th comb line pair [30]. Now, by setting the phase

parameters φS and φI to appropriate specific values, we construct a three-dimensional

CGLMP inequality (I3 ≤ 2) adapted from [44] and described in detail for time-bin

and frequency-bin entangled photons in [30,50], respectively.
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We measure coincidences between signal and idler frequency channels selected to

represent superpositions from three parent signal and idler frequencies, respectively.

Reference [30] evaluated the three-dimensional Bell’s inequality for time-bin entan-

gled qutrit states using three-arm interferometers coupled to three different output

ports via a 3×3 splitter. They constructed a CGLMP inequality expressed in a form

equivalent to the following:

I3 = 3
[
P 11(0, 0) + P 21(0, 1) + P 22(0, 0) + P 12(0, 0)

]
−3
[
P 11(0, 1) + P 21(0, 0) + P 22(0, 1) + P 12(1, 0)

]
≤ 2

(5.7)

where P xy(a, b) is the probability of getting a coincidence count between detector

a on the signal and detector b on the idler side, using the measurement basis Ax

and By for signal and idler photons, respectively. We note that the original form of

the 3-dimensional Bell inequality consists of 24 total measurement probabilities [44];

the reduction to 8 terms (Eq. 5.7), however, is valid under the assumption of an

unbiased 3× 3 splitter and an input quantum state containing sufficient symmetries.

In particular, as we show below, the above reduction holds for a density matrix ρ

taken to be the incoherent mixture of a maximally entangled state and white noise

in the form of ρ = λ |ψ〉 〈ψ| + 1−λ
9
I9 with 0 ≤ λ ≤ 1 [30]. Such an assumption is

physically reasonable and common in visibility-based Bell-violation tests. For the

time-bin case, the measurement bases correspond to the sets of phases applied to

short, medium, and long interferometer arms. The particular sets of phases used

are [A1 = (0, 0, 0), A2 = (0, π/3, 2π/3)] for the signal and [B1 = (0, π/6, π/3), B2 =

(0,−π/6,−π/3)] for the idler. These choices of phases have been shown to give the

largest violation of the CGLMP inequality for a maximally entangled state [30]. In

the classical picture, if the signal and idler are two independent systems, meaning

a measurement on the signal does not affect the idler, and vice versa, then I3 ≤ 2.

However, for an entangled state this classical limit may be violated, and with the set

of phases specified, a maximum violation I3max = 2.872 is predicted for a maximally

entangled state.
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In our frequency bin case, the different measurement bases are constructed by

putting different sets of phases on different comb line triplets. For example, for a

triplet consisting of comb lines 5-7 as in our experiment, for signal measurement

basis A2 we would place phases (0, π/3, 2π/3) on signal lines 5, 6, and 7, respectively.

However, unlike the 3× 3 beam splitter case, we have only a single detector each for

signal and idler. This can be accounted for by imposing additional phases on the comb

lines according to the equivalent transfer function of the 3× 3 beam splitter [51,52].

Equalizing the power in the ±1 and ±3 phase modulation sidebands gives us the

ability to perform an unbiased beam splitter in frequency, thereby satisfying one of

the key assumptions behind the reduced form (Eq. 5.7). The phases are chosen

from {0,−2π/3, 2π/3} according to which “beam splitter output” is involved in the

projection that we are mapping from the three-output time-bin case to our one-output

frequency-bin case [30,50]. In this way, we adapt the CGLMP inequality for time-bin

entangled photons to our frequency bins by applying different sets of phases to our

comb lines [50]. For our experiment involving comb lines 5, 6, and 7, the phases

applied to signal and idler lines k are given by:

Φx
Sk

(a) = (k − 5)φxS(a) =
2π

3
(k − 5) (a+ αx) (5.8)

Φy
Ik

(b) = (k − 5)φyI(b) =
2π

3
(k − 5) (−b+ βy) (5.9)

Here, Φx
Sk

(a) and Φy
Ik

(b) are the phases applied to the kth signal and idler fre-

quency bin, respectively, expressed in terms of fundamental phases φxS(a) and φyI(b)

for each basis choice x for signal and y for idler; the a, b = {0, 1, 2} correspond

to the output channel used in the 3 × 3 splitter version of the projection. The

αx and βy parameters relate to the measurement bases and are chosen as α1 = 0,

α2 = 1/2, β1 = 1/4 and β2 = −1/4 . These correspond to the measurement bases Ax

and By discussed above and yield phase triplets Ax = (0, (2π/3)αx, (4π/3)αx) and

By = (0, (2π/3) βy, (4π/3) βy). These are modified by the addition of phase triplets
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(0, (2π/3) a, (4π/3) a) and (0, (−2π/3) b, (−4π/3) b) to signal and idler, respectively,

in accord with the a and b parameters.

As our quantum state, we assume a density matrix of the form

ρ = λ |ψ〉 〈ψ|+ (1− λ)ρN (5.10)

with 0 ≤ λ ≤ 1 , where |ψ〉 is the maximally entangled state represented as:

|ψ〉 =
1√
3

[
|5, 5〉SI + |6, 6〉SI + |7, 7〉SI

]
(5.11)

and ρN is our particular noise model, taken to be symmetric, or white:

ρN =
1

9

[
|5, 5〉 〈5, 5|SI + |5, 6〉 〈5, 6|SI + |5, 7〉 〈5, 7|SI + |6, 5〉 〈6, 5|SI + |6, 6〉 〈6, 6|SI

+ |6, 7〉 〈6, 7|SI + |7, 5〉 〈7, 5|SI + |7, 6〉 〈7, 6|SI + |7, 7〉 〈7, 7|SI
]

(5.12)

In the three-dimensional case, ρ is a 9×9 matrix and ρN indicates only noise elements

on the diagonal terms with the same amplitude. This is called a white noise model

due to the fact that it is considering equal noise elements are added to the ideal

density matrix in a non-correlated way. Correlated noise is neglected here, which

is when the noise added to one state is related to the noise in other states, causing

nonzero elements on the non-diagonal terms of the noise’s density matrix. Following

the discussion surrounding Eqs. 5.8 and 5.9, the projective measurements done on

each photon are:

Πx
S(a) =

1

3

[
|5〉S + eiφ

x
S(a) |6〉S + ei2φ

x
S(a) |7〉S

] [
〈5|S + e−iφ

x
S(a) 〈6|S + e−i2φ

x
S(a) 〈7|S

]
(5.13)

Πy
I(b) =

1

3

[
|5〉I + eiφ

y
I (b) |6〉I + ei2φ

y
I (b) |7〉I

] [
〈5|I + e−iφ

y
I (b) 〈6|I + e−i2φ

y
I (b) 〈7|I

]
(5.14)
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Therefore, the probabilities measured are given by:

P xy(a, b) = Tr {ρΠx
S(a)⊗ Πy

I(b)}

= λ
〈
ψ
∣∣Πx

S(a)⊗ Πy
I(b)

∣∣ψ〉+
1− λ

9

7∑
m=5

7∑
n=5

〈
mn
∣∣Πx

S(a)⊗ Πy
I(b)

∣∣mn〉
SI

(5.15)

The noise matrix elements all evaluate to

〈
mn
∣∣Πx

S(a)⊗ Πy
I(b)

∣∣mn〉
SI

=
1

9
(5.16)

and the first term in Eq. (5.15) reduces to

〈
ψ
∣∣Πx

S(a)⊗ Πy
I(b)

∣∣ψ〉 =
1

27

∣∣∣1 + ei[φ
x
S(a)+φyI (b)] + ei2[φ

x
S(a)+φyI (b)]

∣∣∣2 (5.17)

Combined, Eqs. 5.16 and 5.17 justify the simplification from a full 24-term Bell pa-

rameter to the 8-term I3 in Eq. 5.7, which is based on symmetries in the combinations

of outcomes a and b. The noise terms show no dependence on a and b (Eq. 5.16),

while the pure state contribution (Eq. 5.17) varies only via the difference (a − b)

modulo 3 since Φx
Sk

(a) + Φy
Ik

(b) = 2π
3

(k − 5)(a − b + αk + βk). Thus, under our par-

ticular noise model, we only need to obtain 8 probability estimates. This model is

consistent with the measured JSI, which shows a roughly constant background on

the off-diagonal terms within the two-qutrit subspace. (We note that a Bell test

with no such symmetry assumptions would be possible by testing all 24 projections

separately.)
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Table 5.2.
Parameters for evaluations of the CGLMP inequality. The coincidences
were measured in 10-minute spans; measurements were done three times
to obtain standard deviations. To achieve the maximum and mini-
mum number of coincidences, the phases of φxS(a) = φyI(b) = 0 and
φxS(a) = φyI(b) = π/3 were put on the biphotons, respectively. To cal-
culate each of the probabilities that appear in Eq. (5.7), the correspond-
ing coincidence counts have to be divided by the maximum number of
coincidences Pmax(0, 0).

Term x y a b φxS(a) φyI(b) Coincidences

P 11(0, 0) 1 1 0 0 0 π/6 150±10

P 21(0, 1) 2 1 0 1 π/3 −π/2 141±23

P 22(0, 0) 2 2 0 0 π/3 −π/6 152±21

P 12(0, 0) 1 2 0 0 0 −π/6 146±16

P 11(0, 1) 1 1 0 1 0 −π/2 54±4

P 21(0, 0) 2 1 0 0 π/3 π/6 33±6

P 22(0, 1) 2 2 0 1 π/3 −5π/6 49±12

P 12(1, 0) 1 2 1 0 2π/3 −π/6 32±10

Pmax(0, 0) - - 0 0 0 0 160±18

Pmin(0, 0) - - 0 0 π/3 π/3 15±13

In the Table 2, the first column corresponds to the individual terms in Eq. 5.7.

Columns 6 and 7 evaluate Eqs. 5.8 and 5.9 to obtain the signal and idler phase

parameters φxS(a) and φyI(b). Our coincidence data are given in column 8. We calculate

I3 = 2.63± 0.2 which is more than three standard deviations away from the classical

limit and indicates three-dimensional frequency-bin entanglement.
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5.5 Frequency Domain Manipulation With SPDC

To validate our phase modulation scheme, we used the same approach to prove

frequency-bin entanglement for our SPDC source [20, 53]. Frequency-bin entangle-

ment for such a source has been previously proven in [39,40]. Our experimental setup

is depicted in Fig. 5.8 and the illustration of the spectrum after each step in the setup

is shown in 5.9.

Fig. 5.8. Experimental setup for frequency-bin entanglement with SPDC.

Freq.

SignalIdler
a.

Freq.S1 S2I2 I1

36 GHz

12GHz

b.

Freq.S1 S2I2 I1

c.

Freq.

Freq.

d.

e.
S12

I12

Fig. 5.9. Illustration of the spectrum after each step for Fig. 5.8.

In fact, conducting this experiment using a BFC carved out with a pulse shaper

is easier than the microring case because of the wider linewidth of the frequency bins

(12 GHz); therefore, it is easier to overlap the frequency bins after phase modulation.
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Following the same approach as in Section 6.2, we are able to extract two-dimensional

interference patterns for three comb line pairs with high visibilities, proving the phase

coherence between them (Fig. 5.10).

a. b.

Fig. 5.10. Interference patterns for two-dimensional frequency-bin entan-
glement between a. comb line pairs 1 and 2 and b. comb line pairs 2 and
3. Here, φ2 is the relative phase of the second comb line pair with respect
to a. first and b. third comb line pair.

To prove three-dimensional phase coherence, we take the same approach as in

Section 6.4, measuring the interference pattern shown in Fig. 5.11. The agreement of

this measurement with theory (blue curve in Fig. 5.11), shows strong phase coherence

between these comb line pairs.
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Fig. 5.11. Interference pattern for three-dimensional frequency-bin entan-
glement.

Moreover, the versatility of our experimental technique facilitates the measure-

ment of dispersion using entangled photons. We insert some SMF-28e fiber before

pulse shaper 1 to induce dispersion on the biphotons (Fig. 5.12)–the dispersion of this

fiber around 1550 nm (extracted from the datasheet) is D = 16.2 ps/(nm km) and

β2 = −Dλ2/2πc = −2.06 × 10−2 ps2/m [54]. Now we revisit the d = 2 interference

results shown in Figs. 5.10a,b. Fiber dispersion will impart an additional relative

phase on the (k + 1)th bin with respect to the kth, and this will lead to a phase shift

in the interference pattern. The phase shift is given by
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Fig. 5.12. Experimental setup for dispersion shift in the interference pat-
tern.

φshift = −(2π)2β2l[(fos + ∆f)2 − f 2
os] = −(2π)2β2l∆f(2fos + ∆f) (5.18)

where l is the fiber length, ∆f = ∆ω/2π is the FSR in Hz, fos = k∆f is the

frequency difference between the kth frequency bin and the center frequency, and we

have assumed the dominant dispersion is the quadratic spectral phase term. Unlike

the classical term, a factor of 1/2 is dropped in Eq. 5.18 since the total phase

shift is sum of relative phase shifts in the signal and idler comb lines. As an initial

experimental test, we use a fiber length of 200 m and select comb line pairs S5I5

and S6I6. Similar to previous measurements, after phase modulation, we pick out

the sidebands S56 between S5 and S6, and I56 between I5 and I6, and then record the

coincidence counts as we sweep φ5 from 0 to 2π. The result, given in Fig. 5.13b,

shows a sinusoidal interference pattern albeit shifted by a phase of 0.74π, in excellent

agreement with theory (using Eq. 5.18 with k = 5 and ∆f = 36 GHz).

For a complete frequency-dependent phase shift measurement, we replace the

200-m-long fiber with another fiber, 1.1 km long. However, rather than sweep φk for

each fos, we set it to zero and only register the coincidence counts as a function of

fos (Fig. 5.14a). We can then compute the phase shift for each fos by comparing

its corresponding coincidence counts, C(fos), to the expected maximum number of

coincidences Cmax. By measuring the same single photon count rates in the selected

frequency bins, we ensure that Cmax is constant as a function of fos. The phase shift
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will be given by C(fos) = Cmax

2
[1 + cos(φshift)], which we can unwrap to obtain the

linear plot in Fig. 5.14b. From Fig. 5.14b, β2 can be retrieved by calculating the

slope of the curve (derivative of φshift with respect to fos in Eq. 5.18). We obtain

a value of β2 = (−2.030 ± 0.013) × 10−2 ps2/m, not far off the −2.06 × 10−2 ps2/m

expected for SMF-28e fiber.

a. b.

𝑓"#

Fig. 5.13. a. Illustration of the comb line pairs. b. Dispersion shift in the
interference pattern; the dashed vertical line shows φ5 = 0.74π

.
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𝑓"# (GHz) 𝑓"# (GHz)

Fig. 5.14. a. Coincidences as a function of fos. b. Phase shift of the
interference pattern as a function of fos.

.

5.6 Conclusion

In conclusion, we have demonstrated a technique for verifying phase coherence in

BFCs. The attributes of this approach, in which we mix adjacent frequency bins,

are analogous to those of Franson interferometry, which mixes entangled photon time

bins. Equivalently, our approach provides a straightforward path to prove frequency-

bin entanglement; we presented interference patterns with visibilities higher than the

classical threshold for entangled qubit and qutrit states. We note that modulating

the pump beam and multi-line pumping of these sources can give rise to more com-

plex entangled states which can be coherently controlled in both time and frequency

domain [55, 56]. These results reinforce the potential of biphoton frequency combs

as high-dimensional entangled states. Last, our dispersion measurements suggest the

potential of low-light dispersion measurement with biphotons.
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6. FREQUENCY-DOMAIN HONG-OU-MANDEL

INTERFERENCE WITH LINEAR OPTICS

6.1 Introduction

Having a source of time-frequency entangled photons in hand, we show the poten-

tial of the frequency degree of freedom of our source for quantum information process-

ing by carrying out one of the most fundamental quantum-mechanical experiments–

namely the Hong-Ou-Mandel (HOM) effect. The HOM experiment can be used as

a measure of indistinguishability between two bosonic states, which leads to a non-

classical interference effect between them [57,58]. When two identical photons simul-

taneously arrive at the input ports of a 50/50 beam splitter—simultaneous to within

the inverse of the single-photon bandwidth—four outcomes are possible: (Outcome

I) both photons get transmitted, (Outcome II) both photons get reflected, (Out-

come III) the photon incident on input 1 of the beam splitter is transmitted while

the photon in input 2 is reflected, and (Outcome IV) the photon in input 1 gets

reflected while the photon in input 2 gets transmitted. For an unbiased beam splitter,

the probability of observing both photons at two different outputs of the beam splitter

(Outcomes I and II) disappears due to destructive interference between probabil-

ity amplitudes of the photons both getting transmitted or reflected. This leads to

photon bunching, meaning that the two photons always exit the beam splitter from

the same port. The original work by Hong et al. [57] examined this phenomena us-

ing incident photons emanating from different spatial modes, while other properties

of the photons, such as polarization, temporal and spectral modes, were identical;

therefore, the concept of photon bunching in their example occurred in the spatial

domain. Demonstration of the HOM interference has not been limited to photons, and

has been shown with other bosonic particles such as atoms [59], phonons in trapped
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ions [60] and plasmons [61]. The analogue of the HOM effect in fermions leads to

anti-bunching as opposed to bunching in bosons, and it has been demonstrated using

electrons [62] and massless Dirac fermions [63].

HOM interference is at the heart of a number of applications in quantum in-

formation processing. These applications span works such as the demonstration of

fundamental optical quantum gates [8,64] necessary for quantum computation proto-

cols [2], quantum communications [65,66], optimal quantum cloning [67] and quantum

repeaters [68–70].

In this chapter, we demonstrate the photon bunching effect in a different degree

of freedom, the frequency domain, where two photons in different spectral modes

enter an unbiased frequency beam splitter, and at the output, they both wind up in

one of the two possible output frequency modes, first proposed in [71] using strong

pump beams and nonlinear interactions. Unlike prior demonstrations of frequency-

domain HOM that relied on nonlinear processes to play the role of a frequency beam

splitter [72, 73], in our experiment, we use an electro-optic phase modulator as a

frequency beam splitter, which is a linear device in the sense that its characteristics

are independent of the photon flux. Consequently, our approach, compared to the

use of nonlinear media, does not produce noise photons, thereby giving us a potential

for better signal-to-noise ratio in our measurements.

6.2 Theory

We employ an electro-optic phase modulator as the frequency-domain analogue

to a spatial beam splitter. By driving the phase modulator with an rf signal of the

form eiδ sinωmt, where ωm is the modulation frequency and δ is the modulation depth,

each frequency bin projects into sidebands offset from the original center frequency

by integer multiples of ωm [74, 75]. Recently, electro-optic phase modulators have

grown increasingly popular for frequency shifting and manipulation of single photons
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Fig. 6.1. Illustration of a phase modulator as a frequency beam splitter.
In1 and In2 are the two input spectral modes to the beam splitter, and
Out1 and Out2 are the two output modes. The red frequency bins at the
output illustrate the undesired phase modulation sidebands that cause
this scheme to be probabilistic.

[21, 42, 76–79]. After phase modulation, the complex amplitude of the nth comb line

with respect to the original frequency bin can be expressed as a Bessel function

Cn = Jn(δ) (6.1)

where Jn(δ) is the Bessel function of the first kind and J−n(δ) = (−1)nJn(δ). The

scattering matrix representing the coupling coefficients between the two input and

output modes can now be written in the form

S = α

 1√
2

1√
2

1√
2
− 1√

2

 (6.2)

Here, we assume the modulation index is chosen so that the values of |Jn(δ)| are equal

for n = −1, 0, 1 and α accounts for transfer to other frequency modes outside of our

computational space. We use two frequency-bins that are spaced from each other by

the phase modulation frequency—these two spectral modes represent the inputs to

our frequency beam splitter, as illustrated in Fig. 6.1. We are using the zero phase

modulation sideband as the transmission and the ±1 sidebands as the reflection ports
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Fig. 6.2. Experimental setup. The Roman numerals are in reference to
Fig. 6.3a.

of our frequency beam splitter. Looking at the same output spectral modes as the

input modes shown as the computational space in Fig. 6.1, based on Eq. (6.1) we

obtain that if the two input photons both get transmitted or reflected on our beam

splitter, the relative phase between these two processes is π, very much like a spatial

beam splitter. This proves that a phase modulator with these specified parameters

can operate as a beam splitter in the frequency domain. The red frequency bins are

the phase modulation sidebands that fall outside of our computational space, making

this process probabilistic.

6.3 Experimental results

The experimental setup used for this experiment is the same as the setup used for

the frequency-bin entanglement experiment with a PPLN crystal in section 6.5.The

setup is depicted in Fig. 6.2 and an illustration of the spectrum at each step is pro-

vided in Fig. 6.3a. After generation of broadband time-frequency entangled photons,

the biphoton spectrum is then carved with a commercial pulse shaper to select a pair

of energy-correlated signal and idler frequency bins with a 10-GHz full width at half

maximum. The line-shape of these frequency bins are the convolution of a rectangu-

lar band with a Gaussian resolution function (∼10 GHz width). The center-to-center

spacing between the two frequency bins is initially set to 22 GHz. The biphotons then

pass through a phase modulator driven at a radio frequency of 22 GHz. We set the rf

power such that the ±1 phase modulation sidebands have the same power as the zero
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Fig. 6.3. a. Illustration of the spectrum at each stage of the experiment.
b. The phase modulation spectrum of a single frequency mode. c. The
HOM interference pattern in the frequency domain. The coincidences are
shown in blue and the count rates on one of the single photon detectors
are shown in orange. The blue error bars are the measured coincidences
after accidentals subtraction. The subtracted accidentals were ∼700 in a
10 minute span. Each coincidence data point was measured three times to
obtain the standard deviation indicated by the error bars. The blue curve
is the theoretical HOM trace taking into account the 10 GHz wide signal
and idler spectra of approximately Gaussian shape and the experimental
visibility. The orange dashed line shows the average count rate.

sideband, making the projection probability of the photons onto these three sidebands

equal; Fig. 6.3b is a trace of the resulting phase modulation spectrum tested with

a CW test laser and an optical spectrum analyzer. This causes a projection of the

signal photons on the idler frequency and vice versa. Another pulse shaper routes the

signal and idler frequency bins to the SPDs.
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Whenever a coincidence click appears, it must have come from a coherent superpo-

sition in which the signal and idler photons both stayed in their frequency bins during

the phase modulation process (zero sideband) or they both swapped their frequency

bins (±1 sidebands). These two processes have a π phase shift with respect to each

other due to the joint phase of the first sidebands with respect to the zero sideband.

The terms in the two-photon state that contribute to detection of coincidences can

now be written as

|ψ〉 = |stay, stay〉SI − |swap, swap〉SI (6.3)

The state is written in this way due to frequency indistinguishability between the

|(stay)〉 and |swap〉 photons for both the signal and idler; therefore, if the amplitude

of the two processes are the same (which we make sure of by equalizing the 0 and

±1 phase modulation sidebands), no coincidences should be registered. Now, we

repeat the measurement but with the first pulse shaper reprogrammed such that the

spacings of both signal and idler frequency bins from the center of the spectrum

vary from 5 GHz to 17 GHz in 1 GHz intervals. At all times, we send the signal

frequency bin and +1 sideband of the idler frequency bin to one detector and the

idler frequency bin along with the −1 sideband from the signal frequency bin to the

other detector. As the frequency spacing differs from the modulation frequency (22

GHz), the sidebands are no longer indistinguishable, hence the coincidences start

to rise. This dip in the HOM interference is observed in Fig. 6.3c in blue, with a

visibility of 84%± 2% after accidentals subtraction, which is above the classical limit

of 50% [57]. The frequency offset shown in Fig. 6.3c corresponds to the distance of the

signal (idler) frequency bin from the center of the spectrum minus half of the phase

modulation frequency. The count rates on one of the SPDs is also shown in Fig. 6.3c

in orange, revealing the absence of single-photon interference in our measurement.

The coincidence-to-accidental ratio was about 1:2, which is poor due to the insertion

loss of the components.
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6.4 Discussion

We note that the imperfection in the measured visibility is due to the low coincidence-

to-accidental ratio in our experimental setup, which can be improved by utilizing a

lower pump power albeit with a longer acquisition time. Unlike the nonlinear ap-

proaches proposed in [72] and [73] which use a pump to trigger frequency conversion,

our frequency beam splitter does not contain a noise source and its performance does

not suffer from multiphoton components. Therefore, our HOM interference visibility

does not have a theoretical imperfect limit. We also note that the frequency beam

splitter used in our setup is a probabilistic splitter, in the sense that there is a proba-

bility that photons get shifted to undesired sidebands (yellow and dark blue frequency

bins in stage III. of Fig. 6.3a). This indicates that after phase modulation, there is

a possibility that the photons end up outside of our computational basis. As can be

seen in Fig. 6.3b, the transmission and reflectivity of our frequency beam splitter is

0.3 for the used phase modulator setting, so for a single photon, 0.6 of power goes

into desired two frequency bins. Therefore, for two photons, we have a (0.6)2 = 0.36

probability of both photons staying within computational space. In principle, this can

be addressed by employing a more sophisticated frequency beam splitter design which

retains photons within the computational space with almost 100% success probabil-

ity. As proposed in [76] and demonstrated in [77, 79], instead of our single phase

modulator probabilistic frequency beam splitter, a phase modulator–pulse shaper–

phase modulator sequence can be used to achieve a nearly deterministic frequency

beam splitter. However, from a practical perspective, using a single phase modulator

has the advantage of lower insertion loss (by ∼7.5 dB) compared to the reported

implementation of the deterministic splitter using discrete components. If the inser-

tion loss is taken into account, the coincidence counts achieved with our single phase

modulator frequency beam splitter should be roughly an order of magnitude higher

than would be achieved with the deterministic beam splitter. On the other hand,

photonic integration offers prospects for significantly reduced loss [21,77]; if such im-



58

provements in implementation can be realized, the deterministic frequency splitter

approach offers better generality to support scaling to more advanced operations.

Furthermore, the resolution of our data points is limited due to the 1 GHz address-

ability of the pulse shaper. An alternative is to sweep the phase modulation frequency

instead of the spacing between the signal and idler frequency bins. The drawback of

this method is that the phase modulation depth (δ) varies with the phase modulation

frequency in such a broad span (12 GHz). To ensure a constant modulation depth

for each frequency value, the phase modulation spectrum will have to be adjusted by

tweaking the rf power.

6.5 Conclusion

In summary, we used a probabilistic frequency beam splitter to demonstrate the

Hong-Ou-Mandel interference between single-photons of different colors, using linear

optical components. This experiment could contribute to frequency processing of

biphoton frequency combs [21, 42], enabling optical quantum frequency gates and

linear optical quantum computing protocols [7, 80] in the frequency domain [76].
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7. DETERMINISTIC HIGH-DIMENSIONAL OPTICAL

QUANTUM LOGIC USING MULTIPLE DEGREES OF

FREEDOM IN A SINGLE PHOTON

7.1 Introduction

In this chapter, we show the potential of our quantum source for quantum compu-

tation by demonstrating quantum gates necessary for universal quantum computation–

one of the most important applications of coherent quantum sources. Amongst the

myriad quantum systems suitable for information processing, photons have the crit-

ical advantage of extremely low decoherence, with minimal interaction with their

surrounding environment [81]. This isolation, however, has the downside of also mak-

ing photon-photon interactions for two-qubit gates difficult and, with linear optics,

inherently probabilistic. Such a situation poses a formidable roadblock for photon-

ics in scaling up quantum computing. An intriguing answer to this problem is to

encode multiple qubits in a single photon, by making use of different degrees of free-

dom [82, 83]. While this solution ultimately suffers from exponential resource scal-

ing [84], it enables deterministic two-qubit gates and thus offers significant encoding

potential in the current generation of quantum circuits. So far, though, experiments

in this paradigm have utilized two-dimensional encoding per each degree of freedom,

thus failing to exploit the full information capacity of single photons. By using high-

dimensional states, qudits can be encoded in photonic time and frequency degrees

of freedom using on-chip sources like microresonators, which can easily expand the

Hilbert space in a scalable way. Here, we demonstrate the first high-dimensional,

single-photon two-qudit gates in time and frequency bins. By exploiting fast optical

switching, we realize the cyclic shift operation (generalized X gate) for three time bins

and confirming coherence through an interference measurement. By incorporating the
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frequency-bin degree of freedom as well, via heralded single photons from an on-chip

microring resonator, we build on this X gate and implement the two-qudit controlled

increment (CINC) and modulo sum (SUM) gates–either of which are sufficient, along

with single-qudit operations, for universal quantum computing [85]. Our scheme thus

shows the potential of deterministic optical quantum computing in high-dimensional

Hilbert spaces for practical and compact quantum information processing.

7.2 Background

Quantum algorithms such as Deutsch-Jozsa [14], Shor’s factoring [86] and Grover’s

search [15] show the power of quantum computation by solving these crucial problems

considerably faster than any classical computer. Moreover, quantum computation

promises to enable the simulation of complex quantum mechanical systems which

are impossible to realize with our current computing infrastructure [16]. Quantum

gates have been demonstrated in multiple platforms such as superconductors [87], ion

traps [88], and different degrees of freedom in photons such as polarization [89], orbital

angular momentum [9], time [90], and frequency [77]. Compared to other platforms,

optical states have the advantages of low decoherence and suitability for long-distance

communications, but two-qubit gates are probabilistic with standard linear optics and

photon counting [7](Fig. 1b). To overcome this issue, encoding qubits in different

degrees of freedom (DoFs) in a single photon has been demonstrated, where each

DoF carries one qubit and, now, interactions between different qubits can be made

deterministic [82, 83]. Even though in this case two and three-qubit operations can

be executed with unity success probability, each DoF contains only one qubit, and

the number of a photon’s DoFs are limited; thus the size of the Hilbert space in

which these deterministic transformations can happen is fairly moderate (e.g., an

eight-dimensional Hilbert space has been demonstrated by encoding three qubits in

three different DoFs of a single photon [83]).
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In this chapter, we take advantage of the high dimensionality in two particular

DoFs of a single photon–namely, time and frequency, which are both compatible with

fiber optical transmission–to encode one qudit in each DoF. We consider multiple time

bins and frequency bins; as long as the frequency spacing between different modes

(∆f) and the time-bin spacing (∆t) are chosen such that they far exceed the Fourier

transform limit (i.e., ∆f∆t� 1) , we are able to manipulate the time and frequency

DoFs independently in a hyper-encoding fashion, using concepts developed in time-

division and wavelength-division multiplexing, respectively [91, 92]. In other words,

each time-frequency mode pair constitutes a well-defined entity, or plaquette [91,92],

which is sufficiently separated from its neighbors to provide stable encoding (Fig.

7.1a). An analogous process is at work in the advanced optical modulation formats

gaining adoption in modern digital communications, where many bits are encoded

in a single symbol via modulation of canonically conjugate quadratures [93]. Since

our single photons can potentially be generated in a superposition of many time and

frequency bins, multiple qubits can be encoded in each DoF, making our proposed

scheme a favorable platform for deterministic optical quantum computing algorithms

on large Hilbert spaces.
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Fig. 7.1. Illustration of the scheme. a. Two qudits encoded in d time bins
and frequency bins in a single photon, going through a deterministic quan-
tum process. The single-photon can be encoded in an arbitrary superposi-
tion of different time and frequency bins; the unused time-frequency slots
are shown with dashed circles. After the deterministic quantum process
operates on the two-qudit state, the orientation of the time-frequency su-
perpositions change to a new two-qudit state. b. 2log2d photons holding
one qubit each (shown in blue and red colors) go through a probabilistic
quantum process, which make the same Hilbert space size as the single
photon in a. The input/output qubits can be in the states red, blue or
a superposition of the two. In b. there is a possibility that the photons
do not come out through the desired outputs, hence the first two output
qubits are not shown (signifying gate failure).

7.3 Single-Qudit Cyclic Shift Gate

To show the capability of performing all single-qudit operations, it is sufficient

to demonstrate the generalized Pauli gates X (cyclic shift) and Z (state-dependent
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phase), which are universal for single-qudit operations [9], and from which all d-

dimensional Weyl operators can be constructed [94]. The Z gate applies a unique

phase shift to each of the basis states, which can be easily executed with a phase

modulator and a pulse shaper in the time domain and frequency domain, respec-

tively. Specifically, for the basis state |n〉 (n = 0, 1, ..., d − 1) , we have Z |n〉 =

exp(2πin/d) |n〉 . Here, we demonstrate the much more challenging X gate, which

realizes the transformation X |n〉 = |n⊕ 1〉 , where ⊕ denotes addition modulo d.

Our version, presented in Fig. 7.2a, operates on time bins in three dimensions, a pro-

cess which corresponds to state-dependent delay. Because the gate operates on each

photon individually, we can fully characterize its performance with coherent states;

the statistics of the input field have no impact on the principle of operation. Ac-

cordingly, we use a CW laser and prepare the desired weak coherent state by carving

out three time bins {|0〉t , |1〉t , |2〉t} using an intensity modulator and manipulating

their relative phases with a phase modulator. The time bins are 3 ns wide and 6 ns

apart from each other. To perform the X operation, we need to separate the time

bins |0〉 and |1〉 from |2〉 and delay the route for time bins |0〉 and |1〉 by 3 bins

(18 ns). We realize the necessary spatial separation between the time bins with an

integrated Mach-Zehnder modulator (MZM) switch. We emphasize that while most

MZM designs are one-port devices, with one of the two output paths terminated, this

1×2 version permits access to both interferometer outputs, and accordingly it is in

principle lossless–as required for a unitary operation. (In practice, of course, inser-

tion loss reduces throughput, but this is of a technical nature and not fundamental

to the method.) After the path-dependent delay, another 1×2 MZM, but operated

in reverse, can be used to recombine the time bins deterministically as well. How-

ever, due to lack of equipment availability, in this proof-of-principle experiment we

employ a 2×2 fiber coupler for recombination, which introduces an additional 3 dB

power penalty. For our measurement scheme, we synchronize a single photon detector

and time interval analyzer with the generated time bins. The transformation matrix

performed by the X gate when probed by single time bins is shown in Fig. 7.2b.
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Fig. 7.2. a. Experimental setup of the state preparation, the X gate, and
the state measurement. IM: intensity modulator. PM: phase modulator.
MZM: Mach-Zehnder modulator PZT: piezo-electric phase shifter. The
circle-shaped fibers indicate the delay; each circle is equivalent to one
time-bin delay (6 ns). b. The transformation matrix. c. Counts measured
after overlapping all three output time bins, for a time-bin superposition
state input into the X gate. The blue errorbars are obtained from 5
measurements for each phase. The subtracted background was 200 about
per 2 seconds.

To assess the performance of our quantum gate, we first focus on the computational-

basis fidelity–one example of a so-called ”classical” fidelity in the literature [95]. Defin-

ing |n〉 (n = 0, 1, ..., N − 1) as the set of all computational basis states and |un〉 as

the corresponding output states for a perfect operation, we have the fidelity

FC =
1

N

N−1∑
n=0

p(un|n) (7.1)

where p(un|n) is the probability of measuring the output state |un〉 given an input of

|n〉. In the operations considered here, the ideal output states |un〉 are members of the

computational basis as well, so there is no need to measure temporal or spectral super-
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positions in determination of FC. Given the measured counts, we retrieve the N con-

ditional probability distributions via Bayesian mean estimation (BME) [96,97],where

our model assumes that each set of count outcomes (after accidentals subtraction)

follows a multinomial distribution with to-be-determined probabilities; for simplicity,

we take the prior distributions as uniform (equal weights for all outcomes). We then

compute the mean and standard deviation of each value p(un|n) and sum them to

arrive at FC. Specifically, if Cun|n signifies the counts measured for outcome un, and

Ctot|n the total counts over all outcomes (both for a given input state |n〉), BME

predicts (see Appendix C):

p(un|n) =
1 + Cun|n
N + Ctot|n

±
√

1 + Cun|n
(N + Ctot|n)2

N + Ctot|n − Cun|n − 1

N + Ctot|n + 1
(7.2)

where the standard deviation in the estimate is used for the error. Since the proba-

bilities here each actually come from N different distributions, we estimate the total

error in FC by adding these constituent errors in quadrature. Using Eqs. 7.1 and 7.2,

we obtain a computational-space fidelity of FC = 0.996± 0.001 for our X gate.

As such computational-basis-only measurements do not reflect the phase coher-

ence of the operation, we next prepare superposition states as input and interfere

the transformed time bins after the gate with a cascade of 1-bin and 2-bin delay

unbalanced interferometers. In order to combat environmentally induced phase fluc-

tuations, we stabilize both these interferometers and the X gate by sending a CW

laser in the backwards direction and using a feedback phase control loop. We apply

a phase of 0, φ and 2φ to the time-bins |0〉t, |1〉t and |2〉t, respectively, with the

phase modulator in the state preparation stage and sweep from 0 to 2π, obtaining

the interference pattern shown in Fig. 7.2c. After subtraction of the background, we

calculate a visibility of 0.94 ± 0.01 from the maximum and minimum points, showing

strong phase coherence (the ability to preserve and utilize coherent superpositions)

between the time bins after the gate. If for concreteness we assume a channel model

consisting of pure depolarizing (white) noise [94], we can use this visibility to esti-
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mate the process fidelity FP of our gate. To do so, we choose a test which–while

limited–nonetheless offers strong evidence for the coherence of our time-bin X gate.

To begin with, note that all three-dimensional quantum process can be expressed

in terms of the nine Weyl operations [98]:

U0 = I =


1 0 0

0 1 0

0 0 1

 U1 = X =


0 0 1

1 0 0

0 1 0

 U2 = X2 =


0 1 0

0 0 1

1 0 0



U3 = Z =


1 0 0

0 ei
2π
3 0

0 0 e−i
2π
3

 U4 = ZX =


0 0 1

ei
2π
3 0 0

0 e−i
2π
3 0

 U5 = ZX2 =


0 1 0

0 0 ei
2π
3

e−i
2π
3 0 0



U6 = Z2 =


1 0 0

0 e−i
2π
3 0

0 0 ei
2π
3

 U7 = Z2X =


0 0 1

e−i
2π
3 0 0

0 ei
2π
3 0

 U8 = Z2X2 =


0 1 0

0 0 e−i
2π
3

ei
2π
3 0 0


(7.3)

The quantum process itself is a completely positive map E [99], meaning it sends

positive elements to positive elements. It has been shown that maps between Hilbert

spaces are completely positive [100]. For a given input density matrix ρ̂in, the quan-

tum process outputs the state

ρout = E(ρin) =
8∑

m,n=0

χmnUmρinU
†
n (7.4)

The process matrix with elements χmn uniquely describes the operation. The ideal

three-bin X gate with process matrix χX has only one nonzero value, [χX ]11 = 1. To

compare to this ideal, we assume the actual operation consists of a perfect X gate

plus depolarizing (white) noise [94]. In this case we have a total operation modeled

as

ρout = λU1ρinU
†
1 +

(1− λ)

3
I3 (7.5)
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whose process matrix we take to be χN = λχX + 1−λ
9
I9. If we then assume a pure

input superposition state ρin = |ψin〉 〈ψin|, where ψin ∝ |0〉t + eiφ |1〉t + ei2φ |2〉t, and

measure the projection onto the output (as in Fig. 7.2c), λ can be estimated from

the interference visibility as [30]

λ =
2V

3− V (7.6)

and the process fidelity can be estimated as:

FP = Tr{χXχN} = [χN ]11 =
1 + 8λ

9
=

1 + 5V

9− 3V
= 0.92± 0.01 (7.7)

7.4 Two-Qudit Controlled-Gates

With this high-performance time-bin X gate in hand, we are then in a position

to incorporate it into a frequency network to realize deterministic two-qudit gates,

where the frequency DoF acts as the control and the time DoF is the target qu-

dit. For this demonstration, instead of a weak coherent state, we utilize true single

photons, heralded by detecting the partner photon of a frequency-bin entangled pair

generated through spontaneous four-wave mixing in an on-chip silicon nitride mi-

croresonator. The time bins, defined by intensity modulation of the pump, couple

into a microring with an FSR of 380 GHz, generating a biphoton frequency comb

with mode spacing equal to this FSR. As our time-bin and frequency-bin spacings

vastly exceed the Fourier transform limit (∆f∆t = 2280 � 1), our time-frequency

entangled photons can be considered hyper-entangled–that is, entangled in two fully

separable DoFs. The signal and idler photons from the first three comb line pairs are

then selected and separated with a commercial pulse shaper, as shown in Fig. 7.4a.

Now that the time bins and frequency bins are all generated in the state preparation

stage, the idler photons are sent to a single photon detector to be used as herald-

ing photons, and the signal photons are what carry the two-qudits in the three time

bins {|0〉t , |1〉t , |2〉t} and frequency bins {|0〉f , |1〉f , |2〉f}. This procedure lets us pre-
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pare any time-bin/frequency-bin product state |m〉t |n〉f (m,n = 0, 1, 2) of the full

computational basis set. In principle, we could also herald arbitrary time-frequency

superposition states in this setup, by first sending the idler photon through a com-

bination of time- or frequency-bin interferometers prior to detection in the temporal

and spectral eigenbases. This more general case would permit the preparation of any

two-qudit state and is an important area for further research.
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Fig. 7.3. Ideal transformation matrices for the two-qutrit a. CINC and b.
SUM quantum gates. The first qutrit is the frequency-bin qutrit and the
second qutrit is the time-bin qutrit. The blue squares show the ones and
the white squares show the zeros in the transformation matrices.

As the first two-qudit gate, we demonstrate the controlled-increment (CINC) op-

eration (Fig. 7.3a), where an X gate is applied to the time-bin qudit only when

the frequency qudit is in the state |2〉f . This two-qudit gate along with single qudit

gates X and Z form a universal set of gates required for any quantum computing

algorithm [85]. To implement this gate, we separate from the other two frequency

bins with a DWDM filter and route it to a time-bin X gate (Fig. 7.4a); no operation

happens on the route of the other two frequency bins. The frequency bins are then

brought back together with another DWDM with zero relative delay to complete the

two-qudit gate operation. To measure the transformation matrix of this gate in the
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computational basis, we prepare the input state in each of the 9 combinations of

single time bins and frequency bins, using the first intensity modulator and the pulse

shaper, respectively. We then record the signal counts in all possible output time-

bin/frequency-bin pairs, conditioned on detection of a particular idler time-frequency

mode, by inserting three different DWDMs in the path of the signal photons to pick

different frequency bins. The measured transformation matrix is shown in Fig. 7.4b,

with accidental-subtracted fidelity FC = 0.90± 0.01, calculated using Eq. 7.1.
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Fig. 7.4. a. Experimental setup for the CINC and SUM gate. The MZM
for the CINC gate is driven such that it separates the time bin |2〉t from
time bins |0〉t and |1〉t. For the SUM gate, the MZM separates the time
bins that fall outside of the computational space (|3〉t and |4〉t) from
the computational space time bins (|0〉t, |1〉t and |2〉t). DWDM: dense
wavelength-division multiplexer. b. and c. The experimental transfor-
mation matrix of the CINC and SUM gate, respectively. The accidentals
were subtracted in the transformation matrices, and the coincidence to
accidentals ratio was ∼ 3.7 in the CINC and ∼ 3 in the SUM case.

For the next step, we implement an even more complex operation, the SUM gate–

a generalized controlled-NOT gate [101]–which adds the value of the control qudit

to the value of the target qudit, modulo 3 (Fig. 7.3b). In this gate, the time bins

associated with |0〉f are not delayed, the time bins associated with |1〉f experience

a cyclic shift by 1 slot, and the time bins corresponding to |2〉f go through a cyclic

shift of 2 slots. To delay the time bins dependent of their frequencies, we induce
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a dispersion of -2 ns/nm on the photons using a CFBG; this imparts 6-ns (1-bin)

and 12-ns (2-bin) delays for the temporal modes of |1〉f and |2〉f , respectively, as

required for the SUM operation. However, this delay is linear–not cyclic–so that

some of the time bins are pushed outside of the computational space, to modes |3〉f
and |4〉f . Returning these bins to overlap with the necessary |0〉f and |1〉f slots can

be achieved using principles identical to the time-bin X gate with a relative delay of

three bins. The experimental setup is shown in Fig. 7.4a, where we use the same

techniques as for the CINC gate to measure the transfer matrix shown in Fig. 7.4c,

with FC = 0.92 ± 0.01. The fact that this SUM gate is implemented with qudits in

a single step potentially reduces the complexity and depth of quantum circuits in all

the algorithms that require an addition operation [102]. We note that to enhance

computational capabilities, it would be valuable to also develop two-qudit operations

where instead time bins are the control qudit and frequency bins the target qudit

which would then require active frequency shifting conditioned on time bins.

7.5 Discussion

Hyper-entangled time-frequency entangled states, as opposed to other high-dimensional

optical degrees of freedom like orbital angular momentum, can be generated in inte-

grated on-chip sources, which have gained tremendous attention in recent years due

to their low cost, room temperature operation, compatibility with CMOS foundries

and the ability to be integrated with other optical components. These two degrees of

freedom can be extended to much higher dimensions as well; in the frequency domain,

a 50 GHz spaced biphoton frequency comb has been demonstrated with more than

40 frequency mode pairs [21]. For such a frequency spacing, independent time bins

can be placed as close as ∼20 ps to each other based on Heisenbergs limit, implying

∼50 modes available for encoding within a single nanosecond, limited only by de-

tector timing resolution. Manipulating the frequency bins in both phase and delay

should become possible with an on-chip pulse shaper [103], removing the need for
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large dispersion modules like a CFBG. In addition, demonstration of balanced and

unbalanced interferometers on-chip eliminates the need for active stabilization, which

is of considerable profit for the scalability of the scheme [104]. These contributions can

potentially lead to combining these sources with on-chip phase modulators, switches

and pulse shapers to create the whole quantum computing process on an integrated

circuit.

7.6 Conclusion

High-dimensional optical states [21,42,104–106] can open the door to determinis-

tically carry out various quantum computing algorithms in large Hilbert spaces [107].

We have demonstrated deterministic single and two-qudit gates using the time and

frequency degrees of freedom of a single photon to encode the qudits, and carried

out theses gates with a high computational space fidelity. Such demonstrations of

deterministic quantum gates [108] add significant value to the photonic platform for

near-term quantum computing.
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8. CONCLUSION

Entangled photons are the heart of many applications in the field of quantum informa-

tion processing [109]. I this thesis, we utilized both bulk and on-chip sources to gener-

ate time-frequency entangled photons, exhibiting the shape of a comb in the frequency

domain. We then manipulated these high-dimensional entangled states in both the

time and frequency domain. We provided proof-of-principle experiments in the time

domain such as Franson interferometry to show time-bin entanglement between our

photon pairs and nonlocal dispersion cancellation to show the potential of our source

for secure quantum communications [19]. We then presented a frequency-domain

manipulation scheme–analogous to Franson interferometry in the time domain–using

pulse shapers and electro-optic modulators to show the high-dimensional frequency-

bin entanglement of our source [20,21]. We then showed the potential of the frequency

degree of freedom for encoding and manipulating information coherently by showing

a fundamental quantum mechanical effect, the Hong-Ou-Mandel interference in the

frequency domain [22]. Having an on-chip time-frequency entangled source in hand,

we then showed the potential of of scheme for universal quantum computation by

showing elementary high-dimensional controlled-gates utilizing two degrees of free-

dom in a single photon–namely the time and frequency degrees of freedom [17]. Our

quantum sources can be used in quantum communication protocols such as quantum

key distribution [18] and high-dimensional quantum teleportation [110, 111]. As the

frequency degree of freedom of light is robust and more immune to noise in stan-

dard fiber-optical communication links, we are presenting a favorable platform for

communication proposes. In addition, by integrating our quantum state manipula-

tion techniques on a chip, our scheme paves the way for high-dimensional quantum

computation, which can help with solving crucial problems exponentially faster than

classical computers [86] and simulate complex quantum-mechanical systems [16].
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S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed
quantum communication based on a silicon chip,” Optics Express, vol. 24,
no. 25, pp. 28 731–28 738, Dec 2016.

[30] R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-type test of energy-time
entangled qutrits,” Physical Review Letters, vol. 93, no. 1, p. 010503, 2004.
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[78] L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing
of quantum light pulses by electro-optic phase modulation,” Physical review
letters, vol. 118, no. 2, p. 023601, 2017.

[79] H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and
P. Lougovski, “Controllable two-photon interference with versatile quantum
frequency processor,” arXiv preprint arXiv:1803.10712, 2018.

[80] H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters, A. M. Weiner,
and P. Lougovski, “A controlled-not gate for frequency-bin qubits,” arXiv
preprint arXiv:1809.05072, 2018.

[81] J. L. O’brien, “Optical quantum computing,” Science, vol. 318, no. 5856, pp.
1567–1570, 2007.



80

[82] M. Fiorentino and F. N. Wong, “Deterministic controlled-not gate for single-
photon two-qubit quantum logic,” Physical review letters, vol. 93, no. 7, p.
070502, 2004.

[83] K. H. Kagalwala, G. Giuseppe, A. F. Abouraddy, and B. E. Saleh, “Single-
photon three-qubit quantum logic using spatial light modulators,” Nature Com-
munications, vol. 8, no. 1, p. 739, 2017.

[84] N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,”
Physical Review A, vol. 57, no. 3, p. R1477, 1998.

[85] G. K. Brennen, S. S. Bullock, and D. P. O’Leary, “Efficient circuits for exact-
universal computations with qudits,” arXiv preprint quant-ph/0509161, 2005.

[86] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332,
1999.

[87] M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum
information: an outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013.

[88] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,”
Physical review letters, vol. 74, no. 20, p. 4091, 1995.

[89] A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino,
G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polariza-
tion qubits,” Nature communications, vol. 2, p. 566, 2011.

[90] P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X.-M. Jin, M. Barbieri,
W. S. Kolthammer, and I. A. Walmsley, “Linear optical quantum computing in
a single spatial mode,” Physical review letters, vol. 111, no. 15, p. 150501, 2013.

[91] W.-T. Fang, Y.-H. Li, Z.-Y. Zhou, L.-X. Xu, G.-C. Guo, and B.-S. Shi, “On-
chip generation of time-and wavelength-division multiplexed multiple time-bin
entanglement,” Optics express, vol. 26, no. 10, pp. 12 912–12 921, 2018.

[92] P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A.
Walmsley, “Continuous-variable quantum computing in optical time-frequency
modes using quantum memories,” Physical review letters, vol. 113, no. 13, p.
130502, 2014.

[93] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer,
P. Trocha, S. Wolf, V. Brasch, M. H. Anderson et al., “Microresonator-based
solitons for massively parallel coherent optical communications,” Nature, vol.
546, no. 7657, pp. 274–279, 2017.

[94] M. M. Wilde, Quantum information theory. Cambridge University Press, 2013.

[95] K. De Greve, P. L. McMahon, L. Yu, J. S. Pelc, C. Jones, C. M. Natarajan, N. Y.
Kim, E. Abe, S. Maier, C. Schneider et al., “Complete tomography of a high-
fidelity solid-state entangled spin–photon qubit pair,” Nature communications,
vol. 4, 2013.

[96] R. Blume-Kohout, “Optimal, reliable estimation of quantum states,” New Jour-
nal of Physics, vol. 12, no. 4, p. 043034, 2010.



81

[97] B. P. Williams and P. Lougovski, “Quantum state estimation when qubits are
lost: a no-data-left-behind approach,” New Journal of Physics, vol. 19, no. 4,
p. 043003, 2017.

[98] R. A. Bertlmann and P. Krammer, “Bloch vectors for qudits,” Journal of
Physics A: Mathematical and Theoretical, vol. 41, no. 23, p. 235303, 2008.

[99] J. L. O’Brien, G. Pryde, A. Gilchrist, D. James, N. K. Langford, T. Ralph, and
A. White, “Quantum process tomography of a controlled-not gate,” Physical
review letters, vol. 93, no. 8, p. 080502, 2004.

[100] M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear
algebra and its applications, vol. 10, no. 3, pp. 285–290, 1975.

[101] X. Wang, B. C. Sanders, and D. W. Berry, “Entangling power and operator
entanglement in qudit systems,” Physical Review A, vol. 67, no. 4, p. 042323,
2003.

[102] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-depth
quantum carry-lookahead adder,” arXiv preprint quant-ph/0406142, 2004.

[103] J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird,
X. Wang, F. Gan et al., “Reconfigurable radio-frequency arbitrary waveforms
synthesized in a silicon photonic chip,” Nature communications, vol. 6, p. 5957,
2015.

[104] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos,
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A. VISIBILITY WITH ACCIDENTALS SUBRTACTED

For a given CAR and accidentals level, we calculate the visibility of an interference

pattern, based on the its maximum and minimum points for accidental-subtracted

data. Since a gate-based detection scheme is used, we register the coincidence peak

at zero delay between the two detectors as the coincidences plus accidentals, and

the peak delayed by one period between the signal and idler gates as the accidentals

(Fig. A.1a). We assume the second peak in Fig. A.1a to be the accidentals, and

subtract that from the first peak to obtain the coincidences. When no coincidences

are present (at the minimum of the interference pattern), if the subtraction of our

experimental data is negative, we set the value to zero, as the number of coincidences

have to be non-negative. This will result in the minimum to not have a zero average,

and this average depends on the number of coincidences and accidentals. We assume

a Poissonian distribution for both the coincidences and accidentals:

Fig. A.1. Gated detection scheme at a. maximum and b. minimum of the
interference pattern. The gate repetition rate is assumed to be 1 MHz, so
the accidentals triangles are 1 µs apart.
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p{k;µ} =
µk

k!
e−µ (A.1)

where p{k;µ} is the probability of registering k counts, if we have a mean of µ.

In our accidental-subtracted scheme, we are subtracting two values with Poissonian

distributions with means µ1 and µ2 from each other, resulting in a Skellam distribution

[112]:

p{k;µ1, µ2} = e−(µ1+µ2)

(
µ1

µ2

) k
2

Ik(2
√
µ1µ2) (A.2)

where Iα(x) = i−αJα(ix) is the modified Bessel function. The mean of the Skellam

distribution is simply (µ1 − µ2), which we assume is the case if we have the number

of the coincidences mean much bigger than zero.

In the destructive interference case however, we are subtracting two Poissonian

distributions with the same mean of µ. Since the result is supposed to give us coin-

cidences, if the subtraction results ends up being negative, we replace it with zero.

The mean of this distribution as a function of µ can be calculated using the moments

of the distribution:

E(µ) = µe−2µ[I0(2µ) + I1(2µ)] (A.3)

This will be the mean of the minimum of the interference pattern, shown as a

function of the mean of accidentals in Fig. A.2. If µ� 1, Ik(x) can be expressed as

an exponential function independent of k, so Eq. A.3 can be estimated with:

µ� 1→ Ik(x) ' 1

2πx
ex → E(µ� 1) =

√
µ

π
(A.4)

We calculate the visibility of an interference pattern based on its maximum and

minimum point:

V (C, µ) =
Cmax − Cmin
Cmax + Cmin

=
C − E(µ)

C + E(µ)
' C −

√
µ
π

C +
√

µ
π

(A.5)
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Fig. A.2. Mean of the subtraction of two Poissonian distributions with the
same mean with negative values set to zero. As the mean grows, MATLAB
cannot calculate the exact mean, therefore, the mean is calculated using
Eq. A.4 for large means.

where C is the maximum of the interference pattern, which is the maximum number

of coincidences. Eq. A.6 can also be written as a function of CAR and mean of

accidentals:

CAR =
C

µ
→ V (CAR, µ) =

√
πµCAR− 1
√
πµCAR + 1

(A.6)

which is shown in Fig. A.3.
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Fig. A.3. Visibility as a function of CAR and mean of accidentals.
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B. SEPARABILITY OF DENSITY MATRICES

We explain the Peres-Horodocki criterion [48, 49] to calculate the negativity of a

density matrix [113], which is a measure of whether it is separable into two density

matrices or not. A quantum system consisting two separable systems is separable if

its density matrix can be written as:

ρ = ΣAwAρ
′
A ⊗ ρ′′A (B.1)

where ρ′A and ρ′′A are density matrices of the two subsystems, and the positive weights

wA satisfy ΣAwA = 1. If ρ is not separable, some of the wA values are negative [48,49].

This was used by Vidal and Werner [113] to calculate a measurement of entangle-

ment based on the density matrix of the system. The trace norm of any Hermitian

operator A is ‖A‖1 =
√
ATA [114], which is equal to the sum of the absolute values

of eigenvalues of A. For density matrices, all eigenvalues are positive and therefore,

‖ρ‖1 = Tr(ρ) = 1 [113]. The partial transpose of ρ, ρTA , also satisfies Tr(ρTA) = 1,

but if ρ is not separable, ρTA will also have negative eigenvalues, therefore, the sum

of these negative eigenvalues can be used as a measurement of separability called

negativity and is related to the trace norm of ρTA :

N (ρTA) =
‖ρTA‖1 − 1

2
(B.2)

If N (ρTA) > 0 is a witness of inseparability or entanglement.
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C. BAYESIAN ESTIMATION

We have an N -outcome experiment and perform CΣ trials resulting in one of the N

outcomes each time, i.e., obtain CΣ total counts, where each outcome n is observed

Cn times:

CΣ = ΣN−1
n=0 Cn (C.1)

Let D = {C0, C1, ..., CN−1} be shorthand for the set of all results–it is the exper-

imental ”data” underlying probabilities for each outcome. In this simple model, we

let a = {p0, p1, ..., pN−1} be the set of all probabilities, so that our data should have

occurred with probabilities:

P(D|a) =
CΣ!

C0!C1!...CN−1!
pC0

0 pC1
1 ...p

CN−1

N−1 (C.2)

This likelihood P(D|a) is the basis for both maximum likelihood estimation (MLE)

and Bayesian mean estimation (BME). In our case, we use the BME approach [97],

since the MLE does not calculate the uncertainty of the estimated values. In the

BME approach, we supplement the likelihood P(D|a) with a prior distribution q(a), a

probability density over probability sets a = {p0, p1, ..., pN−1}. With this, we form the

posterior distribution of a given that we now have data D. From Bayes’ theorem [97]:

P(a|D) =
P(D|a)q(a)

P(D)
=

P(a|D)q(a)∫
da′P(D|a′)q(a′) (C.3)

In most cases, one chooses an uninformative prior which treats all or most distribu-

tions as equally likely. It often makes sense to choose the fully uniform prior:

q(a) =

 1 ; ∀a = {p0, p1, ..., pN−1} s.t. pn ≥ 0, Σnpn = 1

0 ; otherwise
(C.4)
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Let us apply this to our case:

∫
da′P(D|a′)q(a′) = K

∫ 1

0

dp0

∫ 1−p0

0

dp1...

∫ 1−p0−p1−...−pn−3

0

dpN−2

× pC0
0 pC1

1 ...p
CN−2

N−2

(
1− ΣN−2

n=0 pn

)CN−1

(C.5)

where K is the factorial coefficients. To calculate this integral, a known method is

used, where Eq. C.5 can be written using a delta function:

K

∫ ∞
0

dp0

∫ ∞
0

dp1...

∫ ∞
0

dpN−2

∫ ∞
0

dpN−1 × pC0
0 pC1

1 ...p
CN−2

N−2 p
CN−1

N−1 δ

(
1−

N−1∑
n=0

pn

)
(C.6)

The delta function can be written in an integral form:

δ(x) =
1

2π

∫ ∞
−∞

e−ikxdk (C.7)

Using this in Eq. C.6 gives us:

1

2π
K

∫ ∞
−∞

dke−ik
∫ ∞

0

dp0p
C0
0 eikp0

∫ ∞
0

dp1p
C1
1 eikp1 ...

∫ ∞
0

dpN−1p
CN−1

N−1 e
ikpN−1 (C.8)

Using the definition of Gamma function Γ(z) =
∫∞

0
xz−1e−xdx and using the substi-

tution κ = −ik, Eq. C.8 will be:

1

2πi
K

∫ i∞

−i∞
dκeκ

Γ(C0 + 1)

κC0+1

Γ(C1 + 1)

κC1+1
...

Γ(CN−1 + 1)

κCN−1+1

=
1

2πi
K × Γ(C0 + 1)Γ(C1 + 1)...Γ(CN−1 + 1)

∫ i∞

−i∞

dκeκ

κCΣ+N

(C.9)

Using the Laplace transform, the integral can be calculated as 2πi
Γ(CΣ+N)

, therefore, Eq.

C.5 can be written as:

∫
da′P(D|a′)q(a′) = K

Γ(1 + C0)Γ(1 + C1)...Γ(1 + CN−1)

Γ(CΣ +N)
(C.10)
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Therefore, Eq. C.3 will be:

P(a|D) =
Γ(N + CΣ)

Γ(1 + C0)Γ(1 + C1)...Γ(1 + CN−1)
pC0

0 pC1
1 ...p

CN−2

N−2

(
1− ΣN−2

j=0 pj

)CN−1

(C.11)

From this distribution, one can calculate the expectation and variance of any quantity

that is a function of a. In particular, note that the moments of any probability pn

are:

〈pkn〉 =
Γ(N + CΣ)

Γ(1 + C0)Γ(1 + C1)...Γ(1 + CN−1)

∫ 1

0

dp0

∫ 1−p0

0

dp1...

∫ 1−p0−p1−...−pn−3

0

dpN−2

× pC0
0 pC1

1 ...pCn+k
n ...p

CN−2

N−2

(
1− ΣN−2

j=0 pj

)CN−1

=
Γ(1 + Cn + k)

Γ(1 + Cn)

Γ(N + CΣ)

Γ(N + CΣ + k)
=

(Cn + k)!

Cn!

(N + CΣ − 1)!

(N + CΣ + k − 1)!

(C.12)

From Eq. C.12, the mean and variance of pn can be calculated by deriving the

equation for k = 1 and k = 2:

k = 1 : 〈pn〉 =
1 + Cn
N + CΣ

k = 2 : 〈p2
n〉 =

(1 + Cn)(2 + Cn)

(N + CΣ)(1 +N + CΣ)

(C.13)

Thus, we can estimate:

p̃n =
1 + Cn

N + CΣ(1 +N + CΣ)
(C.14)

and:

∆p̃n =

√
1 + Cn

(N + CΣ)2

N + CΣ − Cn − 1

N + CΣ + 1
(C.15)


