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ABSTRACT

Odele, Ogaga D. Ph.D., Purdue University, May 2018. Optical Signal Processing
for Manipulating and Characterizing Time-Frequency Entangled Photons. Major
Professor: Andrew M. Weiner.

Time-frequency entangled photons (“biphotons”) exhibit joint spectral and tem-

poral correlations that are unattainable with classical light. Besides being deployed

for tests of quantum nonlocality, these photonic states are desirable for a unique

range of applications that can significantly impact communications and computa-

tion. In this dissertation, we describe novel schemes based on spectral and tem-

poral domain processing for manipulating and characterizing broadband biphotons.

Implementing frequency-dependent filters, first, we present and demonstrate a tech-

nique for controlling the relative delay between a pair of entangled photons, relying

on pump frequency tuning and the quantum concept of nonlocal dispersion can-

cellation. Next, we demonstrate near-field frequency-to-time mapping, a technique

adopted from classical photonics, for arbitrary control of biphoton temporal corre-

lations. Subsequently, we generate temporal correlation trains by creating biphoton

frequency combs through programmable spectral amplitude shaping and demonstrate

the temporal Talbot effect with entangled photons for the first time. Moreover, in

the absence of fast single-photon detectors, we show how electro-optic phase modu-

lation (originally a time-dependent operation) can be used to examine the coherence

of biphoton frequency combs. Lastly, we introduce a scheme based on electro-optic

intensity modulation, another time-domain operation, for improving the resolution in

biphoton temporal correlation measurements. Overall, our body of work could pro-

vide additional insight into the manipulation and characterization of biphoton states,

as well as contribute towards the improvement of quantum technologies.
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1. INTRODUCTION

Richard Feynman once said that “The word ‘quantum’ refers to this peculiar aspect

of nature that goes against common sense.” At its onset, the establishment of a means

to explain several phenomena that were incompatible with the wave and particle pic-

ture of light and matter, respectively, would fuel the development of quantum theory.

Some notable successes over the 20th century include Einstein’s explanation of the

photoelectric effect, understanding the motion of electrons around a nucleus, photon

statistics, and experimental tests of nonlocal realism. Today, the study of quantum

science is motivated not only by a quest for understanding nature’s “weirdness” but

also by a set of unprecedented technologies: quantum computation could provide an

avenue for solving some computationally hard problems [1, 2], quantum communica-

tion could allow the secure transfer of quantum states/information [3–5], and quantum

metrology could enable the highest precision allowable in measurements [6, 7].

While there are several physical systems in contention for advancing quantum

technologies, light is appealing because of its transmission speed and ability to main-

tain coherence over long distances [8]. In this regard, there has been interest in

controlling quantum states of light, such as single photons and entangled photon-

pairs. More specifically, entangled photons can exhibit nonclassical correlations in

various degrees of freedom—for example, polarization, spatial, spectral and temporal.

With respect to the spectral and temporal degrees of freedom, in recent times, there

has been tremendous progress in developing optical signal processing techniques for

manipulating time-frequency entangled photons (or “biphotons”). Control schemes

enabled by the use of dispersive media [9–12], Fourier-transform pulse shapers [13–19],

electro-optic modulators [20–24] have been demonstrated, and have even inspired new

protocols for quantum information processing [25–28].
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In this dissertation, we will present newly developed optical signal processing

techniques—hinged on spectro-temporal amplitude and phase control—for character-

izing and manipulating biphotons in ways that can contribute to the advancement of

quantum technologies. In the next section, we will provide a brief theory on time-

frequency entangled photons while describing our source, and show how spectral- and

temporal- amplitude and phase manipulations transform the biphoton wavepacket.

Then the remainder of this document will be structured as follows: in Chapter 2,

we will discuss our work on delay control between a pair of entangled photons; in

Chapter 3, we will present our experiments on near-field frequency-to-time mapping

for arbitrary shaping of biphoton temporal correlations; in Chapter 4, we will in-

troduce programmable spectral filtering with spatial light modulators for generating

biphoton correlation trains, allowing us subsequently to implement the first verifi-

cation of the temporal Talbot effect using entangled photons; in Chapter 5, we will

describe a phase-modulation scheme which we developed to examine the coherence of

biphoton frequency combs; in Chapter 6, we will discuss an approach with intensity

modulators for improving the resolution of temporal correlation measurements using

standard single-photon detectors; and in Chapter 7, we will present a summary of the

accomplished work.

1.1 Time-Frequency Entangled Photons

Time-frequency entangled photon pairs exhibit strong correlations in both the

spectral and temporal degrees of freedom. While biphotons can be generated in

a variety of materials and structures, we will only concern ourselves with type-0

(degenerate, collinear, same polarization) spontaneous parametric downconversion

(SPDC) of a continuous-wave (CW) laser, where a single frequency pump photon (at

ωp = 2ω0) decays into two daughter photons (the biphoton)—usually one is referred
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2𝜔0

𝜔s (Signal)

𝜔i (Idler)

𝜔s

𝜔i

𝑡s

𝑡i

(a) (b) (c)

Δ−

Δ+

~1/Δ+

Fig. 1.1. Time-Frequency Entangled Photons. (a) Illustration of Sponta-
neous Parametric Down Conversion. (b) Spectral anticorrelation of bipho-
ton; ∆− and ∆+ denote the pump linewidth and biphoton bandwidth,
respectively (c) Temporal correlation of biphoton.

to as the signal photon, and the other as the idler photon [Fig. 1.1(a)]. The generated

biphoton state can be written as [29,30]

|Ψ〉 = M |vac〉s|vac〉i +

∫ ω0

−ω0

dΩφ(Ω) |ω0 + Ω〉s |ω0 − Ω〉i (1.1)

where the signal-idler photons are in a joint superposition of continuous frequency

modes—the frequencies of each mode pair sum up to the pump frequency to sat-

isfy conservation of energy—and weighted by the biphoton spectral amplitude, φ(Ω),

which depends on the phasematching properties of the crystal. In Eq. 1.1, M ≈ 1,

denoting almost unity probability for unsuccessful conversion of the pump photon

into signal and idler photons, and ω0 is the center frequency, half the frequency of

the pump. Therefore, if the frequency of a photon in the signal mode is measured,

the frequency of the photon in the idler mode will be known—in practice, the idler

mode will be known within a deviation given by the pump linewidth [Fig. 1.1(b)].

In addition to frequency correlation, the birth of signal and idler photons oc-

curs at approximately the same time, and this can be observed through an intensity

cross-correlation measurement for single photons. Following the seminal approach

of Glauber [31], the probability that one photon is recorded at time t and another

photon at time t′ is formally described by

G(2)(t, t′) = |〈vac|Ê(+)
i (t)Ê(+)

s (t′)|Ψ〉|2 (1.2)
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It is also useful to define an effective biphoton wavepacket (or wavefunction) [29],

ψ(τ), such that G(2)(t, t′) = |ψ(t, t′)|2, which implies that

ψ(t, t′) = 〈vac|Ê(+)
i (t)Ê(+)

s (t′)|Ψ〉 (1.3)

In Eqs. 1.2 and 1.3, Ê
(+)
s (t′) and Ê

(+)
i (t) are the positive electric field operators

associated with the absorption or annihilation of a signal photon at time t′ and its

partner idler photon at time t, respectively, and they are represented as follows:

Ê(+)
s (t′) =

∫ ∞
0

dωs âs(ωs) e
−iωst′ (1.4)

Ê
(+)
i (t) =

∫ ∞
0

dωi âi(ωi) e
−iωit (1.5)

where we have omitted constants and slow (square root) functions of ω [29, 31]. The

terms, âs(ωs) and âi(ωi), are annihilation operators for destroying a signal photon at

frequency ωs and an idler photon at frequency ωi, respectively; for a single photon at

frequency ω, the annihilation operator satisfies the form:

â(ω)|ω′〉 = δ(ω − ω′)|vac〉 (1.6)

Therefore, using the biphoton state in Eq. 1.1 along with Eqs. 1.3–1.6, and taking

t′ = t+ τ , the resulting biphoton wavepacket can be expressed as:

ψ(t, t+τ) =

∫ ω0

−ω0

dΩ

∫ ∞
0

dωi

∫ ∞
0

dωs φ(Ω) δ(ωs−ω0−Ω) δ(ωi−ω0 +Ω) e−i[(ωs+ωi)t+ωsτ ]

(1.7)

Eq. 1.7 can be simplified further using the fundamental property of the delta function:

the integral under ωs is nontrivial only when ωs = ω0 + Ω, and the integral under ωi

is nontrivial only when ωi = ω0 − Ω. Hence the biphoton wavepacket becomes

ψ(t, t+ τ) = e−iω0(2t+τ)

∫ ∞
−∞

dΩφ(Ω) e−iΩτ (1.8)

This shows that if the arrival time of the signal photon is measured, the arrival time

of the idler photon can be predicted correctly up to a precision that is proportional to
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the square-modulus of the Fourier transform of the biphoton spectral amplitude—see

illustration in Fig. 1.1(c).

A general schematic of the setup we use for generating entangled photons is de-

picted in Fig. 1.2(a). We couple a CW pump into a periodically poled lithium niobate

(PPLN) waveguide [32, 33] to generate degenerate biphotons centered around 1550

nm—the efficiency of the conversion process is ∼ 10−5. (The waveguides we use in

all of our experiments come from our collaborations with Prof. Martin Fejer’s group

at Stanford University—see Appendix.) Unconverted pump photons are removed

with a series of colored glass filters, and using a collimator, we couple the generated

biphotons into fiber, after which we can apply spectral and/or temporal operations

to the signal and idler photons. Figure 1.2(b) is a typical spectrum of the biphoton

we obtained using an optical spectrum analyzer at a resolution of 250 GHz. Since the

photon pairs are collinear and have the same polarization, we are left with two op-

tions to separate them. The first option is to distinguish them by frequency, whereby

we define the signal mode to have frequencies greater than the center frequency (ω0)

and the idler to have frequencies less than ω0. The other option is to use a 50/50

beamsplitter, such that 50% of the time, the signal and idler photons exit in different

output ports. In the experiments discussed throughout this dissertation, we ensure
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Fig. 1.2. (a) General schematic for generating biphotons. (b) Measured
spectrum of the biphotons with center frequency around 193.5 THz (1550
nm) and bandwidth ∼ 5 THz (40 nm).
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to specify the option chosen for distinguishing between the pairs of photons. Now we

will set up some expressions that describe the implications of applying spectral and

temporal operations to the biphoton.

1.2 Spectral domain manipulation of biphotons

Applying linear, time-invariant spectral filters, Hs(ωs) to the signal mode and

Hi(ωi) to the idler mode, transforms the field operators in Eqs. 1.4 and 1.5 as

Ê(+)
s (t+ τ) =

∫ ∞
0

dωs Hs(ωs) âs(ωs) e
−iωs(t+τ) (1.9)

Ê
(+)
i (t) =

∫ ∞
0

dωi Hi(ωi) âi(ωi) e
−iωit (1.10)

Now, the effect of spectral filtering on the biphoton wavepacket can be seen by using

Eqs. 1.9 and 1.10 to evaluate Eq. 1.3. This will yield the following expression:

ψ(t, t+ τ) = e−iω0(2t+τ)

∫ ∞
−∞

dΩφ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω) e−iΩτ (1.11)

which shows that the filters applied to the signal and idler photons are multiplied

at complimentary frequencies. The consequence of this multiplication will become

apparent in Chapters 2, 3 and 4.

1.3 Temporal domain manipulation of biphotons

The application of time-domain modulation functions, ms(t) to the signal photon

and mi(t) to the idler photons, transforms the field-operators as

Ê(+)
s (t+ τ) = ms(t+ τ)

∫ ∞
0

dωs âs(ωs) e
−iωs(t+τ) (1.12)

Ê
(+)
i (t) = mi(t)

∫ ∞
0

dωi âi(ωi) e
−iωit (1.13)

By inserting Eqs. 1.12 and 1.13 into Eq. 1.3, we can evaluate the biphoton wavepacket

after time-domain modulation to be

ψ(t, t+ τ) = ms(t+ τ)mi(t)ψ0(t, t+ τ) (1.14)
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where ψ0(t, t + τ) is the biphoton wavepacket before modulation (Eq. 1.8). Here

we see that temporal correlation G(2)(t, t + τ) = |ψ(t, t + τ)|2 can be shaped if the

amplitude of the modulation function varies as a function of time; this forms the

basis for our work in Chapter 6. However, if the modulation functions consist of only

temporal phase, G(2)(t, t + τ) is incapable of revealing any features from the phase

modulation. Still the effect of phase modulation can be observed in the frequency

domain, as will be discussed in Chapter 5.
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2. TUNABLE DELAY CONTROL OF ENTANGLED

PHOTONS BASED ON DISPERSION CANCELLATION

2.1 Background

The spectral and temporal correlations of entangled photons are desirable in a

wide range of applications. For example, large-alphabet quantum key distribution

based on arrival-time measurements of entangled photons has been proposed and

demonstrated in multiple configurations [25,26,36,37]. And the tendency of biphotons

to be detected in coincidence—even though individual arrival times are random—

has been used directly to synchronize distant clocks with high precision [6, 38, 39].

However, the availability of reconfigurable optical delay lines would enhance complete

control over timing measurements using entangled photons.

High-speed delay switching schemes have already received significant attention in

the scene of classical photonics [40, 41]. In its most basic form, delay control can

be realized by varying the optical path length traversed by the field through the

system. Unfortunately, the switching speed of this approach is limited to the ∼kHz

range by the mechanical motion of a delay stage or mirror. Alternatively, drastically

faster modulation is possible through a setup using wavelength conversion followed

by dispersion [42]. Since different frequencies propagate at distinct group velocities

through a dispersive medium, the amount of wavelength shift applied to the input

field (either through electro-optic modulation or nonlinear mixing) maps directly to

the delay of the output; thus, by tuning the frequency shift, it is possible to modulate

the applied delay, in some cases with GHz switching speeds [40]. Nevertheless, this

delay comes at a price: dispersion not only shifts the arrival time, but also causes the

pulse to spread. Therefore compensation is typically achieved by propagating through

The results of this chapter have been published in Refs. [34] and [35].
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SPDC 
𝐷 

−𝐷 

Optical 
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Dispersion 

Temporal 

Correlation 

Fig. 2.1. General scheme for delay control of time-frequency entangled
photons through pump frequency tuning and propagation in dispersive
media. The signal and idler photons, generated through spontaneous
parametric downconversion (SPDC), propagate in separate media with
opposite signs of dispersion (D) to achieve nonlocal dispersion cancella-
tion. Subsequently, frequency tuning of the pump—depicted as switching
between multiple continuous-wave (CW) lasers—leads to shift in the delay
between signal and idler photons.

equal and opposite group velocity dispersion before shifting the original wavelength

or after shifting the output wavelength back to its original value [42–44].

Building on these classical systems, we propose and demonstrate tunable delay

control of nonclassical time-frequency entangled photons for the first time, through

pump-frequency detuning and propagating the generated biphotons through optical

dispersion. In related past experiments [10,11], the frequency-dependent group delay

of dispersive fiber was combined with spectral filtering to modify the arrival time

of heralded single photons. Yet such passive filtering not only eliminates large frac-

tions of the photon flux but, by reducing the total bandwidth, also lengthens the

bandlimited correlation time, an undesirable consequence especially relevant to ex-

periments resolving ultrafast correlations. Here we instead consider pump-frequency

modulation, a previously underutilized degree of freedom in biphoton manipulation

experiments offering the potential advantages of rapid delay tuning and the ability

to shift the delay of nearly the full biphoton spectrum. Temporal spreading is min-

imized in our proposed scheme by exploiting nonlocal dispersion cancellation—an
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effect whereby applying equal and opposite dispersion to the signal and idler pho-

tons leaves the biphoton correlation function unaltered [18, 45–47]. This allows us

to compensate for the broadening which would otherwise degrade the sharpness of

the temporal correlations. A schematic for this tunable delay control is shown in

Fig. 2.1. We note that this new method for entangled photon control represents a

quantum-optical analogue of classical pulse-position modulation.

2.2 Theory

Nonlocal Cancellation of Dispersion

A dispersive medium imparts frequency-dependent phase on photons propagating

through it. Mathematically, this can be represented by a spectral filter function,

H(ω) = eiα(ω) (2.1)

where α(ω) can further be expanded as α(ω) = α(ω0)+ ∂α
∂ω

(ω−ω0)+ ∂2α
∂ω2 (ω−ω0)2 + ...

The consequence of introducing such spectral phase terms to Eq. (1.11) is broadening

of the temporal correlation [9]. However, if spectral filters Hs and Hi are pure-

phase and antisymmetric with respect to each other, dispersion cancellation (net zero

spectral phase) can be achieved [18, 45]. Hence, if we consider only second-order

dispersion to the biphotons by setting Hs(ω) = exp[iAs(ω − ω0)2/2] and Hi(ω) =

exp[iAi(ω−ω0)2/2], then there will be spectral phase cancellation [Hs(ω0 +Ω)Hi(ω0−

Ω) = 1] when As = −Ai = A. In this case, the wavepacket in Eq. (1.11) can now be

written as

ψ(τ) ∝
∫
dΩφ(Ω)e−iΩτ (2.2)

as if the biphoton never experienced any dispersion.

Tunable Delay Control

As examined in [18], opposite signs of dispersion give cancellation only for even

spectral phase orders; for odd orders, opposite signs add cumulatively. This implies



11

an important distinction between delay (first-order spectral phase) and second-order

dispersion, for if we detune the center frequency of the biphotons relative to the

quadratic dispersion by δω such that ω′0 = ω0 + δω is the new center frequency,

the fixed filters Hs and Hi now introduce additional phase terms linear in frequency,

which because of the opposite signs of the coefficients (As = −Ai), add rather than

cancel. Specifically, Hs(ω
′
0 +Ω)Hi(ω

′
0−Ω) = exp(i2AΩδω) and the resulting biphoton

wavepacket is of the form

ψ(τ) ∝
∫
dΩφ(Ω)e−iΩ(τ−2Aδω) (2.3)

By the time-shift Fourier transform property, the phase term exp(i2AΩδω) corre-

sponds to a temporal delay of 2Aδω, directly proportional to both the strength of the

dispersion and magnitude of the frequency tuning. In this way the delays imparted

by the signal and idler dispersive media are retained, while the associated wavepacket

spreading is removed, a fortuitous situation made possible by the spectral anticor-

relation of the entangled state. Such a finding indicates that by shifting the pump

laser frequency, one can modulate the relative arrival times of entangled photons with

minimal impact on the shape of their correlation. In contrast to tunable optical delay

lines requiring mechanical adjustment, the filters here are fixed, so that our scheme

could in principle be implemented rapidly by simply switching between pump lasers

along a fixed frequency grid.

2.3 Experimental Demonstration

Our experimental work is divided into three parts: ps-scale delay control, ns-scale

delay control, and high-speed delay switching between entangled photon pairs.

2.3.1 ps-scale Delay Control

We first demonstrate delay control in the range of a few ps, using the experimen-

tal setup depicted in Fig. 2.2. Biphotons generated through spontaneous parametric
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Fig. 2.2. Experimental setup. Pump photons decay into signal and
idler photons in a periodically poled lithium niobate (PPLN) waveguide.
The pulse shaper is used to apply antisymmetric dispersion to the fil-
tered signal and idler photons, and then they recombine in another PPLN
waveguide through sum-frequency generation (SFG). The coincidence rate
is measured using a single-photon counter while the delay steps are deter-
mined by applying linear spectral phase on the pulse shaper.

downconversion (SPDC) of a pump around 775 nm are fiber-coupled into a pro-

grammable pulse shaper [48] (Finisar WaveShaper 1000S), where the antisymmetric

quadratic spectral phase, i.e., dispersion, is applied to the biphoton spectrum. Here

we define the signal (idler) photon as having frequency greater (less) than one-half

that of the pump (as discussed in Section 1.1). The pulse shaper here gives us access

to the biphoton spectrum in the frequency range from 191.250 to 196.275 THz (∼

5 THz bandwidth) with a specified resolution of 10 GHz. It also applies additional

phase to compensate for the dispersion from the optical fibers connecting the colli-

mators to the pulse shaper. Another PPLN waveguide, the phase-matching peak of

which is aligned with the first waveguide through temperature control, is then used

to perform sum-frequency generation (SFG) on the spectrally shaped biphotons. Un-

like correlation measurements with a pair of single-photon detectors, SFG permits

direct measurement of the temporal correlations with a single detector and on an

ultrafast timescale [13,14], necessary to resolve the picosecond delay shifts in this ex-

periment. After filtering out the unconverted biphotons, we detect the SFG photons
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on a silicon single-photon avalanche diode (PicoQuant τ -SPAD). The second-order

correlation function G(2)(τ) = |ψ(τ)|2 can then be measured by sweeping additional

linear spectral-phase terms (equivalent to delay in time) on the pulse shaper and

recording the SFG rate at each step [13,18]. Since we send both photons through the

same fiber and recombine them via SFG for detection, this proof-of-concept exper-

iment is in some sense “local,” rather than an example of truly nonlocal dispersion

cancellation. However, whereas background-free classical analogues of dispersion can-

cellation [49] require local nonlinear detection to realize the effect, in our case we use

SFG only as a tool to achieve the necessary subpicosecond timing resolution. The

proposed concept applies just as well to truly nonlocal systems such as the schematic

in Fig. 2.1, and we will realize this in Section 2.3.2.

In the proposed arrangement above, we assume fixed dispersion and a tunable

pump laser; this is most compatible with previous classical approaches and rapid

switching capabilities. Yet the basic physics is based only on modulation of the

relative frequency spacing between the dispersion and the SPDC center frequency,

so in our first demonstration, the dispersion profile on the pulse shaper is shifted

relative to a fixed pump frequency, as shown in Fig. 2.3(a). In this case, we do not

require a nonlinear medium phase-matched for SPDC at multiple pump wavelengths,

and so we can employ a PPLN waveguide with a uniform poling pattern to give

maximum efficiency, generating biphotons with a center wavelength of 1547.20 nm

(193.9 THz). Figure 2.3(b) shows the phase-matching curve of such PPLN waveguide

(measured second-harmonic-generation conversion efficiency as a function of pump

frequency and normalized to the input power [32]). From this measurement, we glean

that pump wavelengths in a narrow band around 773.6 nm should be phase-matched

for parametric downconversion. We mention, though, that the bandwidth of the

generated biphotons—i.e., the spectral width of φ(Ω) [Fig. 1.2(b)]—is much wider

than that of the curve in Fig. 2.3(b), since the signal and idler fields need not have

the same frequency, only a fixed sum. Accordingly, an accurate classical measure of

the SPDC bandwidth is instead that of difference-frequency mixing [33].
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Fig. 2.3. Experiments with fixed pump. (a) Schematic of a fixed pump
with shifts in the antisymmetric dispersion curve displayed over 3 THz
of the 5 THz pulse shaper window. (b) Phase-matching curve for PPLN
waveguide with a uniform poling pattern. (c) Theoretical and (d) experi-
mental results showing delay control of the biphoton correlation function.
The numbers [−2 −1 0 1 2] correspond to the amount the dispersion curve
is shifted in each case, in units of 250 GHz.

Setting the dispersion constant at A = 3/π ps2 and the center of the antisym-

metric quadratic dispersion curve (zero-crossing) at 193.9 THz, we measure a single

correlation peak around zero delay as expected for perfect dispersion cancellation

[peak labeled “0” in Fig. 2.3(d)]. Subsequently, when we move the center of the anti-

symmetric curve by integer multiples of 250 GHz, we obtain the results shown in Fig.

2.3(d)—temporal delays of −6, −3, 3, and 6 ps are measured for −500, −250, 250,

and 500 GHz shifts in the center of the antisymmetric curve, respectively. Our exper-

imental results [Fig. 2.3(d)] are in excellent agreement with theory [Fig. 2.3(c)]. We

point out that the reduction in the peak number of counts for our delayed correlations
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is a consequence of designating our signal and idler photons by frequency. Thus, when

we shift the antisymmetric dispersion, there is a portion of the biphoton spectrum (in

a 2δω-wide bandwidth) where the signal and idler photons both experience the same

sign of dispersion. The result of this uncompensated dispersion is evident in tails that

develop in the shifted correlations, particularly visible in the two exterior curves in

Figs. 2.3(c) and 2.3(d). Nonetheless, the displaced peaks themselves show minimal

temporal spreading, confirming our ability to shift and compensate nearly the entire

biphoton. Moreover, we emphasize that these nonidealities stem only from the nature

of the entangled photons here, which can only be distinguished by frequency, and is

not inherent to the method itself. For example, in situations where it is possible to

spatially separate signal and idler for all pump frequencies (e.g., in noncollinear or

type-II downconversion), one could ensure that the entire spectrum of each photon

sees the desired dispersion, giving perfect cancellation—in terms of both width and

shape—at all delay shifts.

We now move on to our main technique for biphoton tunable delay: by tuning the

pump frequency relative to a fixed antisymmetric dispersion profile. PPLN waveg-

uides with uniform quasi-phase-matched (QPM) patterns offer exceptionally high

conversion efficiency but, for lengths of several centimeters, accept only a small range

of pump wavelengths (∼0.1 nm) for phase-matched down-conversion. So in order to

permit a series of discrete pump frequencies with wider separations, we utilize a QPM

grating with a phase-modulated poling pattern designed to give roughly equal down-

conversion efficiency and bandwidth at five distinct pump wavelengths [50]. Figure

2.4(b) shows the measured SHG phase-matching curve of such grating, suggesting

comparable down-converted power at each frequency. Therefore, we replace the uni-

formly poled lithium niobate waveguides in our setup, for both SPDC and SFG, with

ones that have such a modulated poling pattern. Our pump wavelength is set to 774

nm (193.8 THz), corresponding to the middle peak of the phase-matching curve, in

order to generate biphotons with a center wavelength at 1548 nm, and we position

the center of the antisymmetric quadratic dispersion to match this wavelength with
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Fig. 2.4. Experiments with fixed dispersion. (a) Schematic of a fixed anti-
symmetric dispersion curve with shifts in pump frequency displayed over
3 THz of the 5 THz pulse shaper window. (b) Phase-matching curve for
PPLN waveguide with a non-uniform poling pattern. (c) Theoretical and
(d) experimental results showing delay control of the biphoton correlation
function. The numbers [−2 −1 0 1 2] correspond to the amount the center
frequency of the biphoton is shifted in each case, in units of 250 GHz.

A = 3/π ps2. As anticipated, there is a sharp correlation peak at zero delay due to

dispersion cancellation [Fig. 2.4(d)]. Detuning the wavelength of our laser by 2, 1,

−1, and −2 nm—giving rise to −500, −250, 250, and 500 GHz shifts in the bipho-

ton center frequency—we are able to measure correlation functions with single peaks

around −6, −3, 3, and 6 ps, respectively, as shown in Fig. 2.4(d). Again, our ex-

perimental results [Fig. 2.4(d)] are in very good agreement with theory [Fig. 2.4(c)].

The total count rate is reduced by a factor of about 10 compared to the results of

Fig. 2.3(d) due to the reduced efficiency of the phase-modulated waveguides. We also

note that there is an additional drop in the relative peak amplitude for our delayed
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correlations in this demonstration compared to the first. Recall that our pulse shaper

can only access frequencies between 191.250 and 196.725 THz and hence, as we move

the center frequency of the biphotons, we decrease the fraction of the biphoton spec-

trum transmitted through the pulse shaper—an effect also included in simulation to

obtain Fig. 2.4(c). This explains the additional reduction in the delayed coincidence

counts, over and above that caused by biphotons that experience the same sign of

dispersion (mentioned earlier).

An ideal delay line should have a capacity for high-speed switching over a wide

range of delays. Next, we will show that delay tuning can be achieved over a much

longer range by using dispersive elements possessing significantly larger values of the

constant A, and implement a high-speed biphoton delay switch.

2.3.2 ns-scale Delay Control

Here we target much longer delays which are resolvable even with high-jitter single-

photon detectors, thus allowing for truly nonlocal measurements, unlike the delays

in the previous experiment that were limited to a few picoseconds and relied on a

local detection scheme to measure the correlation function. Using chirped fiber Bragg

gratings (CFBGs) to supply the dispersion in our experiment, we can produce a delay

range spanning several tens of nanoseconds, five orders of magnitude longer than the

initial biphoton correlation width and two orders of magnitude beyond the jitter-

limited temporal resolution. Additionally, we report the largest observed spreading-

to-despreading factor for a stretched and compressed biphoton temporal correlation

time (> 100).

The general framework of this experiment is presented in Fig. 2.5. A pump

beam—either from a single tunable CW laser or a wavelength switch between two

CW lasers operating around 1550 nm—is coupled into a 67-mm-long QPM lithium

niobate waveguide for frequency doubling. Again, we make use of a QPM grating with

continuous phase modulated poling to yield roughly equal up-conversion at five dis-
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tinct bands. Unconverted pump photons are filtered out and the frequency-doubled

beam is coupled into another QPM waveguide for SPDC, producing entangled pho-

tons with a center frequency equal to that of the pump laser. The phase-matching

peaks of the first waveguide are spectrally aligned with those of the second waveguide

through temperature control. After filtering the residual frequency-doubled beam,

the biphotons are coupled into optical fiber and then separated into two arms with a

50/50 beamsplitter; 50% of the time, the photons will exit along different paths and

can contribute to coincident arrivals. (As mentioned previously, such postselection

could be avoided, e.g., with a type-II or noncollinear source; our delay method applies

equally well to any spectrally entangled source, regardless of preparation.)

One of the output arms of the beamsplitter is linked to CFBG 1 with a dispersion

parameter of +2 ns/nm (A = 2580 ps2), while the other output arm is connected to
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Fig. 2.5. Experimental setup. Boxes at the input show two types of pump
sources—a single tunable CW laser and a rapid wavelength switch (two
lasers with intensity modulators, M1 and M2, driven synchronously). The
input beam is first upconverted in the second-harmonic-generation (SHG)
waveguide and then down-converted in the SPDC waveguide. The chirped
fiber Bragg gratings (CFBGs) apply dispersion to the separated signal and
idler photons, which are measured by a pair of single-photon detectors.
The timing electronics tag the arrival time of each photon, as well as the
clock signal from the waveform generators.
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CFBG 2 with a dispersion parameter of−2 ns/nm (A = −2580 ps2); each CFBG has a

loss of only 3 dB, compared to the 24 dB expected from an SMF-28e fiber link with the

same dispersion. In addition to their large dispersion, these CFBGs also have a 40-nm-

wide acceptance bandwidth that matches the 1530-1570 nm lightwave C-band. A pair

of internally triggered gated InGaAs single-photon detectors (Aurea SPD AT M2)

and time-tagging electronics (PicoQuant HydraHarp 400) are then used to retrieve the

arrival-time correlations of the biphotons. We note that since these CFBGs are factory

components designed to mimic (CFBG 1) and exactly cancel (CFBG 2) 120 km of

SMF-28e, they intentionally impart higher-order phase terms: CFBG 1 introduces a

cubic phase coefficient of −16.3 ps3 and CFBG 2 of 15.4 ps3. Because opposite signs

of cubic phase add rather than cancel for spectrally anticorrelated photons [18], these

high-order terms introduce slight distortion in the measured correlation functions

below. We emphasize this distortion would be removed entirely by custom-built

CFBGs contributing only second-order phase.

To begin, we show the extent to which we can spread and compress the biphoton

temporal correlation. Our pump here is a single tunable CW laser (Option 1 in Fig.

2.5) with wavelength set to 1541 nm. Figure 2.6(a) shows the resulting coincidence
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peak directly after the 50/50 splitter (after subtracting the background accidentals)

with a detector-jitter-limited full-width at half-maximum (FWHM) of 350 ps; a bin

size of 256 ps was used for the plot, and we normalize such that the sum over all

bins adds up to 1. To see the effect of dispersion, we place CFBG 1 in the path of

the entangled photons before splitting them into separate arms and detecting them—

this is equivalent to sending the signal and idler photons through separate CFBGs

with equal dispersion. Since the CFBG cuts off the 1541-nm-centered biphoton at

1530 nm, only signal and idler photons within 1530-1552 nm (a 22 nm bandwidth)

contribute to coincidence counts. The broadened correlation is given in Fig. 2.6(b),

showing biphoton wavepacket spreading up to 90 ns. However, when we send the

signal photons through CFBG 1 and the idler photons through CFBG 2, we are able

to observe nonlocal dispersion cancellation as evidenced by Fig. 2.6(c). A FWHM of

700 ps is measured for the compressed correlation peak, limited by the residual cubic

dispersion of the CFBGs. Our spreading-to-despreading factor of 129 is the largest

ever observed for nonlocal detection of dispersion cancellation, completely eclipsing

the single-digit factors in previous examples [26,46].

Next, keeping the configuration for nonlocal dispersion cancellation, we show the

range of reconfigurable signal-idler delays attainable with this setup. Using the phase-
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matching curve (shown in Fig. 2.5) as a guide, we tune the pump wavelength from

1541 nm to {1543, 1545, 1547, 1549} nm for shifts of {−250,−500,−750,−1000}

GHz in the biphoton center frequency. The coincidence patterns are given in Fig.

2.7, showing temporal shifts of {0, 8, 16, 24, 32} ns; the error bars represent the stan-

dard deviation over five acquisitions. Excellent agreement can be seen between our

experimental results [Fig. 2.7(a)] and the theoretical predictions [Fig. 2.7(b)]. The

correlation peaks broaden as the center wavelength approaches 1550 nm due to a

combination of the cubic dispersion and transmission response of our CFBGs (both

effects were accounted for in the numerical simulations). The closer the biphoton

center wavelength is to 1550 nm, the larger the biphoton bandwidth transmitted

through the CFBG, which yields a more pronounced effect of the uncompensated

cubic spectral phase on the temporal correlation.

2.3.3 High-Speed Delay Switching

Lastly, we demonstrate rapid delay modulation of different signal-idler delay com-

binations by implementing a wavelength switch which consists of two electro-optic

intensity modulators (EOSpace) and two tunable CW lasers operating at distinct

wavelengths—Option 2 in Fig. 2.5. The modulators are driven with a pair of syn-

chronized waveform generators, both outputting 50%-duty-cycle square pulses with

a period of 400 ns (2.5 MHz frequency), but one phase-shifted from the other by half

a period, as shown in Fig. 2.5; when M1 is high, M2 is low, and vice versa. The

detectors are again triggered by an independent 1.25 MHz clock which, because of its

asynchronicity with these modulation patterns, allows the detectors to evenly sample

the full switching period. In addition to tagging the signal and idler arrival times, we

also record the clock signal from the wavelength switch, enabling us to experimentally

corroborate the pump wavelength responsible for each coincidence event.

The result for modulating the pump wavelength between 1547 nm and 1549 nm

is presented in Fig. 2.8(a)—we plot photon coincidences as a function of both signal-
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idler delay (ts − ti) and signal-clock delay (ts − tc). On the signal-idler delay axis,

the coincidences cluster at 24 ns and 32 ns , respectively. Moreover, as expected from

the wavelength modulation at 2.5 MHz, we see that the coincidences due to the 1547

nm-pump appear between 200 and 400 ns on the signal-clock delay axis while the

coincidences due to the 1549 nm-pump turn out between 0 and 200 ns. Similarly, we

obtain the results for wavelength modulation between 1545 nm and 1549 nm [Fig.

2.8(b)], 1543 nm and 1549 nm [Fig. 2.8(c)], and 1541 nm and 1549 nm [Fig. 2.8(d)]; as

expected, the signal-idler delays corresponding to the two different wavelengths again

appear in separate halves of the signal-clock delay axis. The slight overlap between

coincidence events recorded in the first and second halves of the clock period [in Figs.

2.8(a)–2.8(d)] only occurs because our group delay spread is starting to approach

the pump gate period. And so our results show the first high-speed modulation of

biphoton delays.

2.4 Outlook and Conclusion

Our delay control mechanism has the potential to positively impact several appli-

cations. For example, it could be used for on-the-fly delay correction and mitigating

delay fluctuations in quantum networks—including clock synchronization and quan-

tum communication networks. In the case of single-photon sources, this approach

could be applied toward fast temporal multiplexing. For although our demonstra-

tion here concentrated on pump frequency tuning, one could also employ frequency

shifting of heralded narrowband single photons directly. In this way, one dispersive

medium—rather than active switches and fixed delay lines [51–53]—would impart the

tunable delay required in temporally multiplexed single-photon sources. A second

frequency converter at the output can then be used to remove the initial wavelength

shift, thereby making our approach fully compatible with the need for frequency

indistinguishability while simultaneously exploiting spectrally dependent delay.
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In summary, we have demonstrated delay tuning of biphotons from the picosec-

ond scale to several nanoseconds through pump frequency tuning. We also presented

our results on modulating biphoton arrival times at a rate of 2.5 MHz. Moreover,

the technique applies well to essentially any desired switching speed, so long as the

modulated pump remains within the acceptance bandwidth of the nonlinear process.

For example, GHz switching speeds could be reached in our setup with faster elec-

tronics and reduced total dispersion: this would effectively rescale the temporal axis

but otherwise preserve performance. Such flexibility implies an assortment of design

opportunities, so that it would also be interesting to examine this technique as a pos-

sible degree of freedom in novel quantum key distribution protocols, such as quantum

analogues of pulse position modulation. Furthermore, continuous delay control would

be realizable with only minor modifications to the present configuration. In our case,

the permissible pump frequencies—and hence biphoton delays—are fixed to discrete

values by the waveguide phase matching. Yet nonlinear media offering a broadband

region of low phase mismatch would instead permit delay control over a continuum

of pump wavelengths. Such would be the case with, e.g., a short nonlinear crystal

or a QPM waveguide with a chirped poling pattern (see Appendix), where in general

one compromises between peak nonlinear efficiency and total bandwidth [54].
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3. ARBITRARY SHAPING OF BIPHOTON

CORRELATIONS USING NEAR-FIELD

FREQUENCY-TO-TIME MAPPING

3.1 Background

As discussed in the previous chapters, developing techniques to control the tem-

poral correlations of biphotons has received significant attention in recent times. In

this regard, we have already introduced a scheme based on dispersion to enable re-

configurable delay between a pair of entangled photons. Using dispersion, another

method for manipulating the temporal correlations of entangled photons, in a manner

similar to classical ultrashort pulses, is frequency-to-time mapping (FTM), whereby

a considerable amount of dispersion allows the temporal correlation function to take

on the shape of the biphoton spectrum [9, 56]. To achieve proper mapping of the

spectrum into the temporal domain, the so-called temporal far-field condition has to

be met; i.e., the second-order spectral phase constant has to be much larger than the

square of the Fourier-limited temporal duration of the biphoton wavepacket [9,57,58].

But what if for a given spectral shape and desired temporal duration, the far-field

limit is beyond reach?

In this chapter, we describe a technique adopted from classical photonics, termed

near-field FTM [59], to demonstrate arbitrary shaping of the temporal correlations of

broadband biphotons. Here successful FTM is achieved through spectral amplitude

and phase pre-adjustment along with smaller amounts of dispersion (compared with

the far-field approach). Moreover, unlike far-field FTM which leads to spreading of

the correlations over a large temporal window, typically on the ns-scale, the near-field

The results of this chapter have been published in Ref. [55].
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technique can be used to address a narrower temporal range (a few ps) as it does not

require substantial dispersion.

3.2 Theory

Recall from Section 1.1 that the biphoton temporal correlation is the square-

modulus of the wavepacket. Prior to any manipulation, the input temporal wavepacket

ψin(τ) can simply be written in the form

ψin(τ) ∝
∫
dΩφin(Ω) e−iΩτ (3.1)

φin(Ω) is the spectral amplitude of the input biphotons and conversely, can be written

as the inverse-Fourier transform of the temporal wavepacket:

φin(Ω) ∝
∫
dτ ψin(τ) eiΩτ (3.2)

In the presence of group velocity dispersion with a net quadratic spectral phase

constant of A (the sum of second order spectral phase constants in the signal and

idler paths), the biphoton wavepacket is modified as follows:

ψout(τ) ∝
∫
dΩφin(Ω) eiAΩ2/2 e−iΩτ (3.3)

which we can formulate to yield a Fresnel integral:

ψout(τ) ∝
∫
dτ ′ ψin(τ ′) e−iτ

′2/2A eiττ
′/A (3.4)

The expression of the biphoton wavepacket (Eq. 3.4) bears a resemblance to the

complex envelope of a classical pulse propagating through dispersion; it is on this

account that we can adopt the mathematical procedure in [59].

Far-field frequency-to-time mapping

If A � ∆τ 2 (∼ ∆f−2)—where ∆τ is the temporal duration of |ψin(τ)| and is

inversely proportional to ∆f , its finest spectral feature—then the first complex ex-
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ponential term under the integral in Eq. 3.4 can be dropped as an approximation.

Consequently, it would be possible to write the resulting wavepacket as

ψout(τ) ∝
∫
dτ ′ ψin(τ ′) eiττ

′/A, (3.5)

which, when compared to Eq. 3.2, implies that ψout(τ) is identical to φin(Ω = τ/A).

Therefore, we arrive at G
(2)
out(τ) = |φin(Ω = τ/A)|2, meaning that the temporal corre-

lation is now essentially a scaled-replica of the biphoton spectrum.

Demonstrations of far-field FTM have already been shown using biphotons from

different sources. The earliest work in this regard [9] reported examples in which the

authors implemented far-field mapping (using dispersion from long fiber spools) to

measure the continuous broadband spectra of type-I and type-II spontaneous para-

metric downconversion (SPDC) sources. While in some other experiments, we used

strong dispersion from a chirped fiber Bragg grating to demonstrate FTM for a rel-

atively flat-top spectrum obtained from type-0 SPDC [Fig. 2.6(b)], and a biphoton

comb structure from a microring resonator [56]. To add to this body of work, we fur-

ther show far-field FTM after spectral-amplitude shaping of SPDC biphotons. Using

a pulse shaper, we program three rectangular filters with bandwidths of 50, 100 and
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Fig. 3.1. Experimental example of far-field frequency-to-time mapping.
(a) Biphoton spectrum measured after three rectangular filters are applied
on both signal and idler sides. (b) The measured temporal correlation after
biphotons propagate through a chirped fiber Bragg grating with A of 5200
ps2. The measured temporal correlation (blue markers) agrees well with
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150 GHz, on both signal and idler photons, as can be seen in Fig. 3.1(a). After am-

plitude shaping of the biphotons, we propagate them through our chirped fiber Bragg

grating with a net dispersion constant of 5200 ps2, which easily meets the require-

ment for far-field FTM. A measure of the temporal correlation [3.1(b)] now shows a

structure that resembles the biphoton spectrum [Fig. 3.1(a)].

Near-field frequency-to-time mapping

If A is not large enough to meet the far-field FTM requirement (i.e., operation is

in the near-field regime), we can still obtain the expression in Eq. 3.5 using a different

approach. This time, we will eliminate the first complex exponential term under the

integral in Eq. 3.4 by replacing the input wavepacket with a modified version,

ψnf(τ
′) = ψin(τ ′)× eiτ ′2/2A (3.6)

after which propagating through dispersion allows us to attain a wavepacket given by

ψout(τ) ∝
∫
dτ ′ ψnf(τ

′) eiττ
′/A (3.7)

Therefore, irrespective of the amount of dispersion available, we are able to map

a target shape to the temporal domain by pre-adjusting the biphoton wavepacket

before propagating it through dispersion. Indeed the expression in Eq. 3.6 points to

the utilization of quadratic temporal phase (a time lens) [60–62] for pre-adjustment.

However, in our experiments, we realize the functionality of the time lens by applying

the frequency-domain equivalent of the expression in Eq. 3.6 using a programmable

pulse shaper—this Fourier approach is termed virtual time lensing [59]. Hence our

near-field shaping procedure is as follows:

1. Compute ψnf(τ
′) = ψin(τ ′)× exp(iτ ′2/2A).

2. Fourier transform ψnf(τ
′) to its frequency-domain equivalent, φnf(Ω).

3. Apply the near-field frequency-domain mask to the biphoton using a pulse

shaper.
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4. Propagate biphoton through dispersive medium with net dispersion constant A.

As will be observed in our experiments, it is also worth noting that the spec-

tral intensity for a near-field mask is identical in shape to the distorted temporal

correlation. The spectral mask applied to the biphotons for near-field FTM is the

frequency-domain counterpart of ψnf(τ
′) in Eq. 3.6, which can be written as

φnf(Ω) =

∫
dτ ′ ψin(τ ′) eiτ

′2/2A eiΩτ
′
. (3.8)

Thus, we we identify a one-to-one correspondence when we compare the form of φnf(Ω)

to that of ψout(τ) in Eq. 3.3.

3.3 Experimental Demonstration

The experimental setup we utilize is identical to that in Fig. 2.2. We couple type-

0 SPDC biphotons into a programmable pulse shaper (Finisar WaveShaper 1000S)

capable of independent amplitude and phase control at a 10-GHz specified resolution

over the band from 191.250 to 196.275 THz. The pulse shaper is used to apply ampli-

tude and spectral phase filters, in addition to the quadratic spectral phase required

for our FTM demonstrations. Upon leaving the pulse shaper, we use sum-frequency

generation (SFG) along with a single-photon detector for sub-picosecond resolution

measurements of the biphoton temporal correlations (see Section 2.3.1 for more details

on using SFG for high-resolution temporal correlation measurements).

To perform FTM, we start with programming the desired spectral shapes on the

biphoton spectrum via the pulse shaper. Since frequency entanglement ensures that

the net transfer function on the biphoton is the product of the complex filters applied

to the signal and idler photons (see Section 1.2), we choose to shape only signal

photons and always leave the idlers untouched in the following experiments.
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3.3.1 Series of Gaussian Filters

For our first demonstration, we implement a series of Gaussian filters, each with a

full-width at half-maximum (FWHM) linewidth of 210 GHz, spaced by 600 GHz. Fig-

ure 3.2(a) shows the biphoton spectrum acquired with an optical spectrum analyzer

(OSA) after applying the filters to the signal-half while leaving the idler-half un-

touched. The temporal correlation is subsequently stretched by a quadratic spectral

phase (A = 0.6 ps2) programmed on the shaper, which emulates a 30-m-long Corning

SMF-28e fiber. Noticeably, the output stretched temporal correlation, shown in Fig.
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Fig. 3.2. (a) Biphoton spectrum measured with an optical spectrum an-
alyzer (OSA) after three Gaussian passbands, each with a full-width at
half-maximum (FWHM) of 210 GHz, spaced by 600 GHz, are applied
to the signal. (b) The temporal correlation measured after a quadratic
spectral phase(A = 0.6 ps2) is applied on the spectrum in (a). (c) Pre-
adjusted biphoton spectrum (solid; acquired with an OSA) and extra
spectral phases (dashed; programmed on the pulse shaper) needed to fa-
cilitate near-field FTM. (d) The measured temporal correlation utilizing
the near-field FTM method is in good accordance with theoretical predic-
tion.
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3.2(b), is seriously distorted as the far-field FTM requirement is strongly violated; in

this case, since the smallest biphoton spectral feature is 210 GHz, the stipulation for

far-field FTM is satisfied only for a quadratic spectral phase constant larger than 23

ps2. However, we can circumvent the far-field condition by utilizing the near-field ap-

proach. We use the pulse shaper to apply the frequency-domain equivalent of ψnf(τ
′)

to the biphotons. Figure 3.2(c) shows the new biphoton spectrum—amplitude- and

phase-shaped based on the absolute value squared and the phase of φnf(Ω), respec-

tively. The output temporal correlation, in Fig. 3.2(d), now shows clearly mapped

Gaussian peaks after being stretched again by quadratic spectral phase (A = 0.6ps2).

3.3.2 Pair of Triangular Filters

To show another example of the near-field FTM method, we implement a pair of

triangular shapes (FWHM of each triangle is 300 GHz) [Fig. 3.3(a)] and apply group

velocity dispersion to the biphotons. The measured temporal correlation is distorted

[Fig. 3.3(b)] once again after being stretched by the same amount of quadratic spectral

phase (A = 0.6 ps2); successful far-field FTM requires A � 11 ps2. However, clear

mapping is achieved [Fig. 3.3(d)] once the specific complex filter is computed in

advance and applied to the biphotons [Fig. 3.3(c)] before they experience dispersion.

A closer look at the results also reveals that the orientation of the triangles in the

correlation plot [Fig. 3.3(d)] is flipped when compared to the applied masks [Fig.

3.3(a)]. This is due to the sign of A; the oppositely signed dispersion constant will

ensure that the orientation of the triangles in the temporal measurement is identical

to that of the initial spectral masks.

Here we would like to emphasize that the near-field mask is complex, composed of

not only an amplitude but also a phase which varies depending on the specifications

of the target temporal correlation. As can be seen, the applied spectral phase in Fig.

3.3(c) is distinct from that applied in Fig. 3.2(c). And even though the phases here

are only a few radians, they are vital for successful implementation of this technique—
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Fig. 3.3. (a) Biphoton spectrum and (b) the temporal correlation mea-
sured after amplitude filtering and quadratic spectral phase (A = 0.6 ps2)
are applied via the pulse shaper. (c) Pre-adjusted biphoton spectrum
and (d) the measured temporal correlation utilizing the near-field FTM
method.

whereas in the far-field limit, the correlation is insensitive to such additional small

input spectral phases.

3.3.3 Flat-Top Waveform with Tunable Duration

Lastly, we show that for a target shape, the near-field FTM method possesses

strong tunability in controlling the temporal correlation width, while maintaining the

total photon flux. Although the pre-adjusted complex biphoton spectrum, φnf(Ω),

is dependent on the amount of dispersion available (Eq. 3.8), the spectral energy

remains constant. This can be understood through Parseval’s theorem,

1

2π

∫
dΩ |φnf(Ω)|2 =

∫
dτ ′ |ψnf(τ

′)|2, (3.9)
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Fig. 3.4. (a) Biphoton spectrum measured after a rectangular filter, with
a FWHM of 1 THz, is applied on the signal side. The measured temporal
correlations after a quadratic spectral phase with (b) A = 0.8 ps2 (c) A =
1.2 ps2 and (d) A = 1.6 ps2 is applied (after the near-field FTM correction)
shows good agreement with the theoretical curves. The measured FWHM
are 4.4, 6.7 and 8.9 ps, respectively

which allows us to compute the spectral energy of the biphoton in the temporal

domain. Since, using Eq. 3.6, |ψnf(τ
′)|2 = |ψin(τ ′)|2, we can infer that the spectral

energy of the near-field corrected biphoton is always equal to the energy of the input

wavepacket, and does not change as a function of dispersion.

Experimentally, we illustrate this property of strong tunability by using different

dispersion values to obtain a rectangular target shape. Figure 3.4(a) provides the

biphoton spectrum after applying a rectangular filter with a FWHM of 1 THz. We

then compute and pre-adjust the biphoton spectrum to explore near-field FTM for

three different dispersion constants, A = 0.8, 1.2 and 1.6 ps2, emulating a 40-, 60-

and 80-meter-long Corning SMF-28e, respectively—these quadratic spectral phases

do not satisfy the criteria for far-field FTM. The corresponding measured temporal
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Fig. 3.5. Near-field correction masks (amplitude and phase) for (a) A =
0.8 ps2 (b) A = 1.2 ps2 and (c) A = 1.6 ps2.

correlations shown in Figs. 3.4(b), 3.4(c) and 3.4(d) demonstrate excellent mapping

to the target waveform with a FWHM of 4.4, 6.7 and 8.9 ps, respectively, in close

agreement with theoretical predictions. Moreover, the maximum coincidence counts

recorded in Figs. 3.4(b)–3.4(d) are ∼1400, ∼930 and ∼700 per 5 s, respectively, from

which we obtain a correlation width-height product of 6160, 6231, and 6230 counts per

5 s, respectively. This suggests that the total photon-pair flux stays almost constant

even in the presence of different values of A. We also highlight the fact that the near-

field correction masks applied to obtain the flat-top temporal correlations in Fig. 3.4

are different for the chosen dispersion values; Figs. 3.5(a), 3.5(b) and 3.5(c) show the

amplitude and phase masks implemented to obtain the results in Figs. 3.4(b), 3.4(c)

and 3.4(d), respectively.

3.4 Outlook and Conclusion

In summary, we have shown that the near-field frequency-to-time mapping tech-

nique can be implemented to create arbitrary temporal correlation functions in the

picosecond region. By pre-adjusting the complex biphoton spectrum with a Fourier-

transform pulse shaper, the target shape can be mapped onto the biphoton tem-

poral waveform after propagating through a small amount of dispersion. And unlike

amplitude-only filtering which results in a reduction of biphoton flux to achieve longer
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temporal correlations, this near-field mapping approach synthesizes both amplitude

and phase filtering for efficient shaping of biphotons. Lastly, near-field frequency-to-

time mapping of biphotons could play a role in modifying dispersion requirements for

time-frequency quanturm key distribution protocols.
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4. GENERATION OF BIPHOTON CORRELATION

TRAINS THROUGH PROGRAMMABLE SPECTRAL

FILTERING

4.1 Background

Biphoton frequency combs—entangled photons occurring in a superposition of

discrete spectral mode pairs [64–73]—offer much promise, as such biphotons have the

potential to combine the unique characteristics of quantum entanglement [4,74] with

the precision of classical optical frequency comb metrology [75,76], in addition to serv-

ing as high-dimensional states for quantum information processing [77]. Other names

used in place of biphoton frequency combs include two-photon frequency combs, quan-

tum frequency combs and frequency-bin entangled photons. Several configurations

generating such photonic states have been implemented, including spontaneous four-

wave mixing in microresonators [56,73,78–83], cavity-enhanced spontaneous paramet-

ric downconversion (SPDC) [65–68, 72, 84], and direct filtering of broadband bipho-

tons [70,71]. Assuming phase locking of the constituent spectral modes, the temporal

correlation function of these biphoton frequency combs consists of a train of peaks,

the number of which is approximately equal to the spectral mode spacing divided by

the linewidth. Indirect measurements based on Hong-Ou-Mandel interference have

revealed periodic coincidence dips indicative of such correlation trains [65, 70, 71],

and with sufficiently low repetition rates, direct correlation measurements have been

made possible as well [66,68,72,85]. Moreover, it has been predicted theoretically [86]

that propagation of these two-photon frequency combs through dispersive media will

produce revivals of the temporal correlation function at discrete dispersion values,

through an extension of the classical temporal Talbot effect [41, 87].

The results of this chapter have been published in Ref. [63].
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In this chapter, we experimentally examine a new method for generating biphoton

correlation trains based on optical filtering with spatial light modulators [48, 57, 88].

Our technique permits the creation of extremely high-repetition-rate (∼THz) trains,

with programmable control of peak number and spacing. We explore both ampli-

tude and phase filtering approaches, each with its own advantages. With amplitude

filtering, we create coherent biphoton frequency combs with tunable properties and

experimentally demonstrate the two-photon temporal Talbot effect for the first time.

Alternatively, when the temporal phase of the biphoton wavepacket is unimportant,

we show that spectral phase-only filtering can yield correlation trains with much

greater efficiency, even though the filtered spectrum does not contain a series of a dis-

crete frequencies—i.e., it is not comb-like. Our results therefore not only contribute

to the development of two-photon frequency combs, but also show that for some ap-

plications it may be possible to remove the requirement of a true frequency comb in

favor of a low-loss spectral phase filter.

4.2 Experimental Demonstration

The experimental setup we implement is identical to that shown in Figure 2.2.

Broadband entangled photons are generated through type-0 SPDC and then coupled

into a pulse shaper (Finisar WaveShaper 1000S). We use the pulse shaper to apply

spectral amplitude and/or phase to the signal-idler spectrum, after which we use

sum-frequency generation for ultrafast coincidence detection. Detailed description of

the setup can be found in Section 2.3.1. Again, we define the signal (idler) photon

as having frequency greater (less) than one-half that of the pump. To aid compar-

ison with subsequent measurements, we first show the biphoton spectrum and its

corresponding singly peaked correlation function generated without any additional

spectral modulation in Figs. 4.1(a) and (b), respectively.
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Fig. 4.1. (a) Biphoton spectrum showing flat-top signal and idler bands.
(b) Measured correlation function with pulse shaper compensating setup
dispersion. The full-width at half-maximum of the correlation peak is
about 370 fs. Error bars represent the standard deviation of five 1-s
measurements, and the dotted curve gives the theoretical result.

4.2.1 Amplitude Filtering

In the case of amplitude filtering, we first note that there exists a fundamental

tradeoff between overall flux and the number of peaks generated. Defining ωc as the

bandwidth of a given spectral passband and ωFSR as the spacing between passbands,

the total number of peaks in the train is proportional to the ratio ωFSR/ωc, whereas the

total power transmissivity is inversely proportional to this quantity [89]. Combined

with the fact that the optical energy is now distributed among many peaks, the

maximum count rate actually decreases quadratically with the number of correlation

peaks. Therefore to remain comfortably above the background, we program on the

signal spectrum three passbands spaced at 650 GHz, each with the fractionally broad

bandwidth of 250 GHz, and leave the idler untouched. The measured signal spectrum

is given in Fig. 4.2(a), acquired with an optical spectrum analyzer at a resolution of

62.5 GHz. The spacing-to-passband ratio predicts about three temporal peaks, and

this is precisely what we find for the filtered biphoton correlation function, as shown

in Fig. 4.2(b). The result is in excellent agreement with theory, confirming the ability
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Fig. 4.2. Amplitude filtering. (a) Signal spectrum measured after the
pulse shaper (with idler blocked). The nearly flat spectrum of Fig. 4.1(a)
is converted to a set of three passbands, spaced by 650 GHz and each
of width 250 GHz. (b) Measured temporal correlation function for the
spectrum in (a), but with the low-frequency idler passed. A 650-GHz cor-
relation train with three peaks is generated, in accordance with theoretical
predictions.

to produce correlation trains through straightforward amplitude filtering by our pulse

shaper.

4.2.2 Biphoton temporal Talbot effect

The biphoton comb generated in the previous section lends itself well to the exam-

ination of the temporal Talbot effect. The spatial Talbot phenomenon—first reported

by Henry Talbot in 1836 [90]—describes the revival of spatial interference patterns at

discrete distances away from a periodic grating [91, 92], an effect which has recently

been observed for entangled photons as well [93,94]. The temporal counterpart which

we consider here derives from the formal mathematical equivalence between paraxial

diffraction and narrowband dispersion, known as space-time duality [60, 95]. In this

dual version, a periodic electric field envelope is exactly replicated after propagation

through multiples of the so-called Talbot dispersion [41,87].
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The origin of this effect for biphoton frequency combs can be understood most

simply by considering the ideal case of a series of comb lines with infinitely narrow

linewidths followed by second-order dispersion. Specifically, in Eq. 1.11 we take

Hs(ω0 + Ω) =
N−1∑
n=0

anδ(Ω− nωFSR)eiAsΩ2/2 (4.1)

and

Hi(ω0 − Ω) = eiAiΩ
2/2 (4.2)

which yields the final biphoton amplitude

ψ(τ) ∝
N−1∑
n=0

φ(nωFSR)ane
iAeffn

2ω2
FSR/2e−inωFSRτ (4.3)

where Aeff = As + Ai, with the familiar Franson dispersion cancellation condition

resulting when As = −Ai. Again, we note that the entanglement shared between

signal and idler photons allows the same expression to be obtained when applying

all narrowband filters on the idler instead, for it is only the product of signal-idler

spectral filters which enters in Eq. 1.11. Returning to Eq. 4.3 we readily observe that

the periodic wavepacket completely replicates itself for values of Aeff that are integer

multiples of the Talbot dispersion AT, where

AT =
4π

ω2
FSR

(4.4)

as this ensures that the dispersion factor in Eq. 4.3 evaluates to unity for all n [86].

Taking the limit of infinitesimal linewidth for the signal spectrum shown in Fig. 4.2(a)

gives the theoretical Talbot carpet shown in Fig. 4.3(a). At integer multiples of

AT, perfect reconstruction of the biphoton train is realized; at half-integer multiples,

revivals with a half-period delay shift are obtained.

For real biphoton combs, the temporal train is not perfectly periodic, but damped

by an envelope with duration inversely proportional to the non-vanishing linewidth,

a well-known effect in classical pulse shaping [88]; therefore only approximate coher-

ence revivals are possible. In particular, dispersion eventually spreads out the entire

wavepacket, meaning that the self-imaging phenomenon is discernible only up to a
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Fig. 4.3. Simulated Talbot carpets. (a) Theoretical temporal correlation
as a function of applied dispersion, for our three-peak signal spectrum but
with infinitely narrow linewidth. Perfect revivals are observed at integer
multiples of the Talbot dispersion. (b) Corresponding correlation function
when the linewidth is 250 GHz, as in Fig. 4.2(a). Dashed horizontal lines
indicate the values of dispersion considered in Fig. 4.4. Imperfect—but
still clear—self-imaging is obtained over the first Talbot length, limited
by dispersive spreading. (An overall delay shift has been subtracted off
for clarity.)

finite multiple of AT [86]. With the fractionally large linewidth in our experiments

(ωFSR/ωc = 2.6), chosen to minimize loss, measurable Talbot interference is limited to

approximately the dispersion regime 0 < |Aeff| < AT. This is nevertheless sufficient

to observe the basic effect. Figure 4.3(b) presents the theoretical Talbot carpet for

our filtered biphoton source, plotting the temporal two-photon correlation function

G(2)(τ) as a function of net dispersion; horizontal lines mark the specific dispersions

which we consider experimentally below. At each value of the dispersion, we have

shifted the wavepacket center to zero delay, in much the same way as retarded time

is calculated for classical pulses [57]. For in general, the applied dispersion intro-

duces a frequency-dependent delay given by τ(Ω) = AeffΩ, and since the mean signal

frequency offset 〈Ω〉 6= 0, the mean signal-idler delay varies with applied dispersion.

Intuitively, the fact that signal and idler are separated by frequency implies that group
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Fig. 4.4. Examples of Talbot interference. Biphoton correlation functions
measured for dispersion Aeff equal to (a) 0.25AT, (b) 0.35AT, (c) 0.5AT,
and (d) AT.

velocity dispersion forces them to travel at different mean speeds; therefore their av-

erage temporal separation increases as they propagate through greater amounts of

dispersion.

Experimentally, we explore the temporal Talbot effect by programming the optical

dispersion directly on the pulse shaper and observing the change to the biphoton

correlation function of Fig. 4.2(b). For our 650-GHz correlation trains, the Talbot

dispersion parameter AT is 0.753 ps2, and we apply net dispersions satisfying

Aeff = 0.25AT, 0.35AT, 0.5AT, AT (4.5)

The result for the quarter-Talbot case is presented in Fig. 4.4(a). The correlation

train has doubled in repetition rate to 1.3 THz and matches theory well. Similar

quarter-Talbot-based repetition-rate multiplication has been used to generate classical

pulse trains as well [96–98]. In Fig. 4.4(b), the dispersion is now 35% of the Talbot

value, with the odd peaks increasing in relative magnitude and the even ones falling
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off, a transition which is made complete at the half-Talbot mark, as highlighted in

Fig. 4.4(c). High-extinction peaks at 650 GHz are again clearly evident, shifted

under the envelope by half a period with respect to the zero-dispersion case. Finally,

the function is returned to its original state at a full Talbot dispersion [Fig. 4.4(d)],

although the effects of finite linewidth are taking their toll as the train spreads out,

resulting in a lower maximum count rate and the formation of extra satellite peaks.

For direct comparison of the coherence revivals, we numerically correct for the

temporal offset due to signal-idler group velocity difference and overlay the zero-,

half-, and full-Talbot correlation functions in Fig. 4.5(a), which clearly shows resur-

gence of the 650-GHz train due to temporal Talbot interference. In likewise fashion,

we superpose the quarter- and zero-Talbot results in Fig. 4.5(b), highlighting the

repetition-rate doubling. Such rate multiplication through the temporal Talbot effect

is particularly advantageous in that it is achieved without removing spectral lines,

which would instead reduce overall flux by an amount equal to the frequency mul-
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Fig. 4.5. Coherence revival comparison. (a) Overlay of the zero-, half-,
and full-Talbot cases, after delay correction to center all at zero delay.
650-GHz trains are seen in all cases, with the finite linewidth responsible
for overall spreading. (b) Overlay of the zero- and quarter-Talbot cases,
again shifted so both are centered at zero delay. The original 650-GHz
train is doubled to 1.3 THz at the quarter-Talbot dispersion, as expected
from theory. (In both plots, error bars have been omitted for clarity.)
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tiplication factor [99–101]. And our results fully confirm the theory of Ref. [86] in

extending the temporal Talbot effect to biphotons.

4.2.3 Phase-only Filtering

For circumstances in which the temporal biphoton phase is unimportant, and one

is concerned only with the correlation function itself, an alternative method based

on spectral phase-only filtering can be used to produce correlation trains much more

efficiently than amplitude filtering, utilizing a technique developed early in the history

of classical femtosecond pulse shaping [89] and applied to, e.g., control of molecular

motion [102]. To understand this approach, consider the modulus squared of Eq.

1.11, where we define K(Ω) = φ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω) for simplicity. This allows

us to write the temporal correlation function as

G(2)(τ) =

∫
dΩ

∫
dΩ′K∗(Ω)K(Ω′)ei(Ω−Ω′)τ (4.6)

Redefining a new integration variable ∆ according to ∆ = Ω′ − Ω and replacing Ω′

gives

G(2)(τ) =

∫
d∆ e−i∆τ

∫
dΩK∗(Ω)K(Ω + ∆) (4.7)

Thus the measured correlation function is given by the inverse Fourier transform

of the autocorrelation of the filtered biphoton spectrum, and so the condition for a

periodic train requires only that this autocorrelation consist of discrete peaks—K(Ω)

itself need not be comb-like. In our case, we achieve the desired spectral peaks by

taking Hi(ω) = 1 and choosing Hs(ω) to be a periodic repetition of a maximal-length

binary phase sequence (M-sequence) [103], which indeed possesses discrete spikes in

its autocorrelation. Since the input biphoton spectrum is essentially flat over the

pulse-shaper passband, no additional amplitude equalization is required, and so the

spectral filtering is ideally lossless. In stark contrast to the amplitude filtering of

Section 4.2.1, the maximum count rate drops only linearly with the number of peaks

generated by phase filtering—instead of quadratically—thereby offering the potential

for significantly longer biphoton trains at a given flux. However, we emphasize that
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temporal interference effects, such as the Talbot phenomenon, do not carry over to

these non-comb-like states, since the inter-peak temporal phase varies widely.

We first consider the length-7 M-sequence [0 1 1 1 0 1 0], where we map the

zeros to phase 0 and the ones to phase π. Each element is programmed to cover a

bandwidth of 115 GHz, giving a total of three repetitions of the M-sequence over the

2.415-THz signal passband set on the pulse shaper here. The measured correlation

train is presented in Fig. 4.6(a), again showing good agreement with theory. The

missing peak at zero delay results from destructive interference between the 0- and

π-phase elements [89]. We can restore the central peak by changing the binary phase

shift; taking 0.78π for the shift instead of the original π, we obtain the blue curve in

Fig. 4.6(b). A high-contrast train at 805 GHz is generated under a smooth envelope,

without any amplitude filtering of the biphoton spectrum.

To directly compare the flux improvement over the equivalent amplitude filter,

we also program three repetitions of the amplitude sequence [1 0 0 0 0 0 0] over the

same bandwidth, which gives the desired 805-GHz train but at the cost of removing
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Fig. 4.6. M-sequence filtering. (a) Measured correlation function for
length-7 M-sequence with a π phase shift. (b) Correlation function for
the same M-sequence but with a 0.78π phase shift (blue), compared to an
amplitude filter at the same repetition rate (red). (c) Correlation func-
tion for a length-3 M-sequence with a 0.65π phase shift (blue) and the
corresponding amplitude filter. In both (b) and (c), phase filtering yields
a flux improvement roughly equal to the number of peaks.
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much of the original biphoton spectrum. This result (red curve) is compared to the

phase-only approach in Fig. 4.6(b); the amplitude case is reduced approximately

7-fold in integrated flux and is barely visible above the noise. We run a similar

comparison for length-3 sequences as well, giving each symbol a bandwidth of 160

GHz and replicating the sequence five times over a 2.4-THz total signal bandwidth.

For the phase filter, we use the M-sequence [1 0 1], where ones now map to a phase

shift of 0.65π; for the amplitude filter, we take the transmission sequence of [1 0 0].

Both results are compared in Fig. 4.6(c), and a count rate improvement of about

3:1 is observed for the phase-only sequence. These results stress the substantial flux

increases facilitated by pure phase filtering, which—coupled with the programmable

control of peak number and spacing—make such states valuable tools for future work

with high-repetition-rate biphotons.

4.2.4 Resolution Limitations with Shaper-Assisted Correlation Train

We have discussed how to use a pulse shaper to generate correlation trains through

amplitude filtering, and how flux reduction resulting from amplitude filtering can be

mitigated through phase-only filtering. However, there still remains a separate restric-

tion imposed by the finite pulse-shaper resolution: time aperture. The time aperture,

or the maximum temporal duration over which the shaped waveform will accurately

reproduce that of the ideal infinite-resolution mask, is fixed by the resolvable fre-

quency spacing [48,57,88]. If we model this temporal window as a Gaussian function

with an intensity full-width at half-maximum (FWHM), TFWHM = (2 ln 2)1/2T , the

effect of finite resolution is to yield the impulse response h(t) (the inverse Fourier

transform of the transfer function H(ω))

h(t) = h(0)(t)e−t
2/T 2

(4.8)

where h(0)(t) is the impulse response corresponding to an infinite-resolution pulse

shaper. Therefore the generated trains are restricted to a time window roughly equal

to the inverse of the spectral resolution. Now when the characteristic frequency scale
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δω over which the ideal mask H(0)(ω) varies satisfies 1/δω � T , h(t) ≈ h(0)(t),

and the effects of finite resolution are negligible (which was the case in our results

up to now). However, to explicitly examine the limits of our biphoton correlation

train generator, now we choose filter functions that are significantly modified by the

time aperture. Moreover, because we use the pulse shaper not only for generation

but also for imposing the relative signal-idler delay, we suffer on two counts: first in

the creation of the correlation train, and second in its measurement. Letting ψ̃(τ)

denote the measured wavepacket under the effects of finite pulse-shaper resolution,

to best reflect the experimental conditions of our measurement, the expression of the

biphoton wavepacket must be modified to

ψ̃(τ) =

∫
dΩφ(Ω)H̃s(ω0 + Ω, τ/2)H̃i(ω0 − Ω,−τ/2) (4.9)

where the delay τ is explicitly imposed by the filters, with the signal temporally shifted

by τ/2 and the idler by −τ/2 [13]. The corresponding infinite-resolution filters are

thus

H̃(0)
s (ω0 + Ω, τ/2) = C(Ω)e−iΩτ/2 (4.10)

and

H̃
(0)
i (ω0 − Ω,−τ/2) = e−iΩτ/2 (4.11)

where C(Ω) is the ideal spectral code applied to the signal photon. The finite-

resolution filters H̃s(ω, τ) and H̃i(ω, τ) are obtained by convolving H̃
(0)
s (ω, τ) and

H̃
(0)
i (ω, τ) with the Fourier transform of the time aperture function e−t

2/T 2
. In this

way we can incorporate the effect of finite resolution on both the spectral code and

imposition of signal-idler delay.

Experimentally, we take the same periodically repeated length-3 phase sequence

as in one of our phase-only filtering results [Fig. 4.6(c)], but this time consider very

narrow spectral chips. In order to correct for count-rate reduction due to alignment

drift, we normalize each correlation function to a peak value of unity; since the time

aperture term is equal to one at zero signal-idler delay, such renormalization has

no effect on examination of aperture effects. In the first case, we program a chip
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bandwidth of 16 GHz, for a total of 50 repetitions of the fundamental sequence over

the 2.4-THz signal bandwidth; the measured correlation function is given in Fig.

4.7(a). Compared to the 160-GHz chip case in Fig. 4.6(c), the peak separation has

been pushed from 2.1 to 21 ps, and the two side peaks are lowered slightly in relative

intensity by the pulse-shaper time aperture. Further reductions are evident for even

smaller chips; Fig. 4.7(b) shows the results for 9-GHz chips (total signal bandwidth

2.403 THz), while Fig. 4.7(c) shows those for 5-GHz chips (2.4-THz total signal

bandwidth). We find that a value for T of 50 ps (TFWHM = 58.9 ps) gives good

agreement with the observed peak reduction, as evident by the dotted theoretical

curves in Fig. 4.7. This experimentally measured time aperture corresponds to a

3-dB spectral resolution of about 7.5 GHz, slightly better than the 10 GHz specified

for the WaveShaper 1000S. From these results, it is clear that pulse-shaper resolution
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Fig. 4.7. Examination of pulse-shaper time aperture. Normalized co-
incidence rate for periodic repetitions of length-3 M-sequences with (a)
16-GHz chips, (b) 9-GHz chips, and (c) 5-GHz chips. The theoretical
curves are obtained with T = 50 ps in Eq. (4.8).
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limits the overall duration of the generated biphoton correlation function to a window

of around 50 ps.

4.3 Outlook and Conclusion

We have experimentally implemented several techniques based on programmable

spectral filtering with spatial light modulators for the generation of biphoton correla-

tion trains. Amplitude filtering was first used to create an approximately comb-like

spectrum, and accompanying this filter with appropriate quadratic spectral phase, we

were able to demonstrate for the first time coherence revivals and repetition-rate mul-

tiplication through the biphoton temporal Talbot effect. Using a pulse shaper along

with the continuous broadband spectrum from downconversion gives us the ability to

programmably carve out combs with a wide range of linewidths and spacings, unlike

those generated through cavity-based filtering. Subsequently we explored phase-only

filtering to generate correlation trains with much greater efficiency over the amplitude

filtering approach, useful when the temporal biphoton phase is of no concern. These

demonstrated spectral filtering tactics could prove quite valuable in future work on

periodic biphotons, especially where high speeds and tunability are advantageous.

In particular, we will adopt the amplitude filtering approach for studies on phase

coherence of biphoton frequency combs (see Chapter 5).
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5. CHARACTERIZATION OF COHERENT BIPHOTON

FREQUENCY COMBS USING ELECTRO-OPTIC PHASE

MODULATION

5.1 Background

Defined earlier in Chapter 4, a biphoton frequency comb (BFC) or frequency-bin

entangled photon pair is an entangled photon state occuring in a coherent superpo-

sition of discrete spectral mode pairs. In this context, coherent superposition implies

that there is a fixed relationship between both amplitude and phase of the different

comb line pairs [Fig. 5.1(a)]. To examine the coherence of a BFC, a straightforward

approach would be through temporal correlation measurements: if the two-photon

spectrum is a coherent comb with a flat spectral phase, the temporal correlation

would consist of a train of evenly spaced narrow peaks [see Fig. 5.1(b)], which can be

manipulated by adjusting the phase of different comb line pairs. In order to observe

these features with a pair of single-photon detectors, the period of the correlation

train would have to exceed the timing-jitter of the detectors; for example, a detection

resolution of ∼ 100 ps can only resolve the temporal structure of BFCs with a free

spectral range (FSR) smaller than 10 GHz. And while nonlinear mixing techniques

can be used for sub-picosecond resolution in coincidence measurements [13, 63, 105],

diminishing nonlinear efficiency makes this approach impractical for narrow-linewidth

entangled photons—the comb lines examined with sum-frequency generation in Chap-

ter 4 had a linewidth of 250 GHz.

An alternative method to investigate the coherence of BFCs is by employing

electro-optic phase modulation to mix comb lines, which can then reveal spectral

phase sensitivity even with slow single-photon detectors. In Ref. [106], the authors

The results of this chapter have been published in Ref. [104].
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𝛿𝜔 𝛿𝜔−1

Fig. 5.1. Depiction of a biphoton frequency comb (BFC). (a) BFC spec-
trum; solid black lines represent frequency-mode correlations while dot-
ted arrows portray fixed phase relationships between comb line pairs. (b)
Time correlation function, with fast substructure arising from coherent
interference between the different biphoton frequency components. If the
phase between different biphoton frequency components is random, there
will be no time-average interference, and we would get only the longer
envelope.

used a pair of phase-modulators along with control of their modulation depths and rel-

ative phases to interfere biphotons, from which frequency entanglement was inferred;

however, the input states to the “two-photon interferometer” had a continuous broad-

band spectrum and the notion of frequency bins was only implied from the application

of narrow band spectral filters right before detection.

In this Chapter, we implement another phase-modulation scheme to demonstrate

a proof-of-concept experiment, wherein our input states are BFCs obtained through

spectral amplitude shaping of broadband biphotons; phase modulation in addition

to spectral phase control enable us to observe high contrast interference fringes, a

confirmation that the biphotons are indeed in a coherent superposition of frequency

modes. Our frequency domain scheme is in close analogy with Franson interferometry

[107], which has been widely applied in experiments on time-bin entangled photons

[108–110].
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5.2 Theory

The state of a BFC can be written as

|Ψ〉 =
d∑

k=1

αk|k〉s|k〉i

|k〉s|k〉i =

∫
dΩφ(Ω− k∆ω,Ω + k∆ω) |ω0 + Ω〉s|ω0 − Ω〉i

(5.1)

where |k〉s|k〉i indicates the kth comb line pair of the signal and idler spectrum, αk is

a complex number representing the joint amplitude and phase of the kth comb line

pair, φ(ωs, ωi) is the lineshape of an energy-matched comb tooth pair, ∆ω is the FSR,

d is the number of comb tooth pairs, and ω0 = 2πf0 is the center frequency of the

biphoton spectrum.

Applying phase modulation of the form eiδ sinωmt (ωm is the modulation frequency

and δ is the modulation depth) to a comb line projects it into sidebands offset from

the original comb line by integer multiples of ωm [111]—the positive-integer multiples

correspond to upshifts in frequency while those of the negative-integers correspond to

frequency downshifts. Thus, for a single comb line, we choose to describe the effect

of phase modulation on the the kth frequency mode if in the signal or idler spectrum

by

m̂s|k〉s =
∞∑

n=−∞

Cn

∣∣∣∣k +
nωm

∆ω

〉
s

(5.2)

or

m̂i|k〉i =
∞∑

m=−∞

Cm

∣∣∣∣k − mωm

∆ω

〉
i

(5.3)

respectively, where Cn,m = Jn,m(δ) is the Bessel function of the first kind and J−n =

einπJn. When normalized, Cn represents the probability amplitude of the nth sideband

after phase modulation. Consequently, the projection state of the kth biphoton mode

after phase modulation of the signal and idler can be written as:

m̂sm̂i|k〉s|k〉i =
∞∑

n=−∞

∞∑
m=−∞

CnCm

∣∣∣∣k +
nωm

∆ω

〉
s

∣∣∣∣k − mωm

∆ω

〉
i

(5.4)
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From this we glean that the phase modulation process on the biphoton comb intro-

duces new spectral correlations. Therefore, if we project different comb line pairs

into sidebands and select only overlapping sideband modes in the signal and idler

spectrum, the emerging two-photon state would be in a superposition of indistin-

guishable frequency mode pairs. We can then examine the coherence of the biphoton

comb through the second-order cross-spectral density, which gives the probability of

detecting the signal photon in mode k and the idler photon in mode k′ [31, 112]

Θ(2)(ks, ki
′) = |〈vac|âks ˆaki

′|Ψ〉|2 (5.5)

As an example, let us consider entangled photons consisting of two comb line

pairs:

|Ψ〉 = αk|k〉s|k〉i + αk+1|k + 1〉s|k + 1〉i (5.6)

If we apply phase modulation with ωm = ∆ω/2 and consider just the first modulation

sidebands (n,m = ±1), the biphoton state would be modified as follows:

m̂sm̂i|Ψ〉 = αkC1C1

∣∣∣k +
1

2

〉
s

∣∣∣k − 1

2

〉
i
+ αkC1C−1

∣∣∣k +
1

2

〉
s

∣∣∣k +
1

2

〉
i

+αkC−1C1

∣∣∣k − 1

2

〉
s

∣∣∣k − 1

2

〉
i
+ αkC−1C−1

∣∣∣k − 1

2

〉
s

∣∣∣k +
1

2

〉
i

+αk+1C1C1

∣∣∣k +
3

2

〉
s

∣∣∣k +
1

2

〉
i
+ αk+1C1C−1

∣∣∣k +
3

2

〉
s

∣∣∣k +
3

2

〉
i

+αk+1C−1C1

∣∣∣k +
1

2

〉
s

∣∣∣k +
1

2

〉
i
+ αk+1C−1C−1

∣∣∣k +
1

2

〉
s

∣∣∣k +
3

2

〉
i

(5.7)

Now when we select only the sidebands that are in-between k and k + 1, the output

biphoton state will become a superposition of identical frequency modes:

|Ψout〉 =
(
αkC1C−1 + αk+1C−1C1

)∣∣∣k +
1

2

〉
s

∣∣∣k +
1

2

〉
i

(5.8)

Yet if the biphoton comb is coherent, there will be two-photon interference in the

second-order cross-spectral density,

Θ(2)
(
k +

1

2
, k +

1

2

)
=
∣∣∣C1C−1

(
αk + αk+1

)∣∣∣2 (5.9)

which we can observe by manipulating the phases of αk and αk+1.
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5.3 Experimental Demonstration

Our experimental setup is presented in Fig. 5.2(a). We pump a 67-mm-long pe-

riodically poled lithium niobate waveguide with a continuous-wave laser at 771 nm

in order to generate broadband biphotons centered around 1542 nm (194.55 THz).

Figure 5.2(b) shows a conceptual picture of the broadband biphoton spectrum gen-

erated through spontaneous parametric downconversion; the signals are defined as

photons in the higher frequency band while the lower-frequency photons are called

idlers. After filtering out the pump photons, we couple the signal and idler photons

into a commercial pulse shaper (pulse shaper 1, Finisar WaveShaper 1000S). Using

pulse shaper 1, we carve the continuous broadband spectrum into a BFC with a

linewidth of 12 GHz and an FSR of 36 GHz (∆ω/2π) [Fig. 5.2(c)]. Pulse shaper 1 is

also used to attenuate comb lines when necessary to ensure the amplitude equaliza-

tion required for maximally entangled states [16], as well as applying spectral phase

patterns to the signal and idler comb lines during measurements. Next, the BFC

is sent into a phase modulator (EOSpace PM-5K4-20-PFU-PFU-UV) driven by an

18-GHz sinusoidal waveform from a radio frequency (rf) oscillator (Agilent Technolo-

gies E8257D) to create sidebands at integer multiples of 18 GHz [Fig. 5.2(d)]—18

GHz is chosen for the phase modulator as it is one-half the FSR of the BFC—and

we can adjust the magnitude of each sideband projection by tuning the rf power to

control the modulation depth. We then send the phase-modulated BFC into another

pulse shaper (pulse shaper 2, Finisar WaveShaper 4000s), with which we pick out

only overlapped sidebands that consist of projections from different signal and idler

comb lines [Fig. 5.2(e)]. The selected sidebands from the signal and idler halves are

sent to a pair of gated InGaAs single-photon detectors (Aurea SPD AT M2) and an

event timer (PicoQuant HydraHarp 400) is used to record coincidences occuring in a

0.5 ns window—we chose 0.5 ns to speed up our measurement acquisition time while

maintaining sufficient coincidence-to-accidental ratios.
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Fig. 5.2. Basic schematic for phase coherence measurements and illustra-
tion of biphoton spectral progression at different steps. (a) Experimen-
tal setup. (b) Broadband continuous biphoton spectrum. (c) Biphoton
frequency comb after carving continuous spectrum with pulse shaper 1.
The blocked frequencies were attenuated by 60 dB, making contamina-
tion from undesired frequencies negligible. (d) Sidebands projected from
phase modulation of comb lines. (e) Using pulse shaper 2, selected side-
bands are routed to a pair of single-photon detectors. SPDC: spontaneous
parametric downconversion; PM: phase modulator; rf: radio frequency.
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5.3.1 Two-Dimensional Frequency-Bin Entanglement

For our first demonstration, we create two comb line pairs, S1I1 and S2I2, while

ensuring that the pairs contribute equal amplitudes (|α1|2 = |α2|2) by measuring

coincidences between S1 and I1, and S2 and I2. We also apply a phase of ϕ/2 to

both S2 and I2, giving a total relative phase of ϕ on S2I2 with respect to S1I1—see

illustration in Fig. 5.3(a). Then we drive the phase modulator with an rf power

such that the frequency projection is mostly dominated by the first phase modulation

sidebands, giving us |C±1|2 = 0.32 (the amplitude of each sideband is obtained by
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Fig. 5.3. Frequency-bin entanglement with 2 comb line pairs. Illustration
of selected sidebands originating from phase modulation of parent comb
line pairs (a) S1I1 and S2I2, (c) S2I2 and S3I3. The two-photon interference
as a result of applying (b) ϕ relative phase on S2I2 with respect to S1I1,
(d) ϕ relative phase on S3I3 with respect to S2I2. The red error bars are
the standard deviation of three measurements for each phase value and
the blue curves indicate the theoretical predictions taking into account the
visibility calculated from the maximum and minimum data points. The
coincidence-to-accidental ratio in our measurements was 3, but accidentals
were subtracted here and in subsequent plots.
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sending a continuous-wave laser through the phase modulator and measuring the

output using an optical spectrum analyzer). After phase modulation, we pick out

the overlapped sidebands—S12 halfway between S1 and S2, and I12 in the middle of

I1 and I2. Sweeping ϕ from 0 to 2π and recording the coincidence rates, we obtain a

sinusoidal interference pattern with a visibility of 95% ± 7%, shown in Fig. 5.3(b).

The pattern matches our expectation from theory, Θ(2)(3
2
, 3

2
) ∼ 1 + cosϕ, using Eq.

5.9 with α2 = eiϕα1.

Similarly, we repeated the experiment using comb line pairs S2I2 and S3I3, and

picked out the overlapped sidebands in-between them (S23I23) [Fig. 5.3(c)]; the re-

sulting interference pattern with a visibility of 91% ± 9% is shown in Fig. 5.3(d).

Thus we can confirm frequency-bin entanglement for the utilized d = 2 states since

the visibilities exceed 71% [109]. Here we also note that the constructive and de-

structive interference points occur at ϕ = 0 and ϕ = π respectively, suggesting that

α1 ≈ α2 ≈ α3.

5.3.2 Three-Dimensional Frequency-Bin Entanglement

To explore d = 3 frequency-bin entanglement, we utilize all three of the comb line

pairs, S1I1, S2I2, and S3I3 (setting |α1|2 = |α2|2 = |α3|2). After phase modulation, we

again pick out the sidebands S12 and I12, but in this case, S12 consists of the sideband

projections n = 1, −1, −3 from S1, S2, S3, and m = −1, 1, 3 from I1, I2, I3,

respectively, as shown in Fig. 5.4(a). We ensure that the magnitude of the first and

third sidebands are equal by adjusting the rf power to give us C1 = −C−1 = C3 =

−C3, and we measured |C1|2 to be 0.16. Now by applying a phase of 0 to comb

line pair S1I1, ϕ to S2I2, and 2ϕ to S3I3, the cross-spectral density for the selected

sidebands (S12 and I12) can be written as:

Θ(2)
(3

2
,
3

2

)
=
∣∣∣α1C1C−1 + α2C−1C1eiϕ + α3C−3C3ei2ϕ

∣∣∣2 (5.10)

and if α1 = α2 = α3, Eq. 5.10 can be simplified further to give

Θ(2)
(3

2
,
3

2

)
=
∣∣∣α1C1

2
(

1 + eiϕ + ei2ϕ
)∣∣∣2 (5.11)
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The result obtained after sweeping ϕ from 0 to 2π is presented in Fig. 5.4(b). Since

we have contributions from three pairs of comb lines, the features of the interference

pattern are now sharper compared to those observed in the Figs. 5.3(b) and 5.3(d);

this sharpening is analogous to the sharpening of the pulses in a mode-locked laser

as more frequency lines are added. We calculate a visibility of 90% ± 6%, which is

sufficient to prove entanglement between our entangled qutrits (d = 3) since it is

higher than the three-dimensional classical visibility threshold of 77.5% [109].
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Fig. 5.4. Frequency-bin entanglement with 3 comb line pairs. (a) and (c)
Illustration of selected sidebands arising from phase modulation of parent
comb line pairs S1I1, S2I2 and S3I3. In (c), the sideband amplitudes are

set with the phase modulator such that |C3| = |C1|
2

. The two-photon
interference as a result of applying (b) ϕ phase on S2I2 and 2ϕ on S3I3, with
respect to S1I1, (d) ϕ relative phase on S2I2 with respect to S1I2 and S1I2.
The red error bars are the standard deviation of three measurements for
each phase and the blue curves indicate the theoretical predictions taking
into account the visibility calculated from the maximum and minimum
data points.
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We can also manipulate the coincidence pattern resulting from the interference of

three comb line pairs by looking at sidebands projected to other frequency locations

as well as applying different phase configurations to the comb lines. Here we examine

asymmetric sidebands, S12 and I23, containing contributions from the n = 1, −1, −3

sidebands of S1, S2, S3, and m = −3, −1, 1 sidebands of I1, I2, I3, respectively—see

Fig. 5.4(c). Again, we set α1 = α2 = α3, but now we tune the rf power such that

|C3| = |C1|
2

and then we apply a phase of ϕ to S2I2. The cross-spectral density for the

selected state is

Θ(2)
(3

2
,
5

2

)
=
∣∣∣α1C1C−3 + α2C−1C−1eiϕ + α3C−3C1

∣∣∣2 (5.12)

which can be reduced to

Θ(2)
(3

2
,
5

2

)
=
∣∣∣α1C1

2
(1

2
− eiϕ +

1

2

)∣∣∣2 (5.13)

since C−1 = −C1 and C−3 = −C3. Yet again we observe a sinusoidal interference

pattern [Fig. 5.4(d)] when we sweep ϕ from 0 to 2π, in agreement with theory—using

Eq. 5.13, Θ(2)(3
2
, 5

2
) ∼ 1− cosϕ.

5.3.3 Dispersion Measurement

The versatility of our experimental technique facilitates the measurement of dis-

persion using entangled photons. We insert some SMF-28e fiber before pulse shaper

1 to induce dispersion on the biphotons [Fig. 5.2(a)]—the dispersion of this fiber

around 1550 nm (extracted from the datasheet) is D = 16.2 ps/(nm km) and β2 =

−Dλ2/2πc = −2.06× 10−2 ps2/m [57]. Now we revisit the d = 2 interference results

shown in Fig 5.3, and described by Eq. (5.9). Fiber dispersion will impart an addi-

tional relative phase on the (k + 1)th bin with respect to the kth, and this will lead

to a phase shift in the interference pattern. The phase shift is given by

ϕshift = −(2π)2β2l[(fos + ∆f)2 − f 2
os]

= −(2π)2β2l∆f(2fos + ∆f)
(5.14)
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where l is the fiber length, ∆f = ∆ω/2π is the FSR in Hz, fos = k∆f is the

frequency difference between the kth frequency bin and the center frequency, and we

have assumed the dominant dispersion is the quadratic spectral phase term. (Unlike

the classical term, a factor of 1/2 is dropped in Eq. 5.14 since the total phase shift is

equal to the sum of relative phase shifts in the signal and idler comb lines.)

As an initial experimental test, we use a fiber length of 200 m and select comb

line pairs S5I5 and S6I6. Similar to previous measurements, after phase modulation,

we pick out the sidebands S56 between S5 and S6, and I56 between I5 and I6, and then

record the second-order cross-spectral density as we sweep the applied ϕ phase on

S5I5 from 0 to 2π. The result, given in Fig. 5.5(a), shows a sinuosidal interference

pattern albeit shifted by a phase of 0.74π, in excellent agreement with theory (using

Eq. 5.14 with k = 5 and ∆f = 36 GHz).
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Fig. 5.5. (a) Shift in the interference pattern as a result of added disper-
sion from a 200-m-long fiber; the dashed vertical line indicates a relative
shift of ϕ = 0.74π. The blue curve indicates the theoretical prediction
taking into account the visibility calculated from the maximum and mini-
mum data points.(b) Coincidences as a function of fos when a 1.1-km-long
fiber is introduced into the setup, while the pulse shaper does not apply
any relative phase between frequency bin pairs. The blue curve is the
theoretical prediction normalized to the maximum number of coincidence
counts. (c) Deduced phase shift as a function of fos. The blue line is the
linear fit to the data points. The red error bars are the standard deviation
of three measurements.
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For a complete frequency-dependent phase shift measurement, we replace the

200-m-long fiber with another fiber, 1.1 km long. However, rather than sweep ϕ for

various frequency bin pairs, we set it to zero and only register the coincidence counts

as a function of fos [Fig. 5.5(b)]. We then compute the phase shift for each fos

by comparing its corresponding coincidence counts C(fos) to the expected maximum

number of coincidences Cmax. (By measuring identical single photon count rates

in the selected frequency bins, we ensured that Cmax was constant as a function of

fos.) The phase shift will be given by C(fos) = Cmax

2
[1 + cos(ϕshift)], which we can

unwrap to obtain the linear plot in Fig. 5.5(c). From Fig. 5.5(c), β2 can be retrieved

by calculating the slope of the curve (derivative of ϕshift with respect to fos in Eq.

5.14). We obtain a value of β2 = (−2.030 ± 0.013) × 10−2 ps2/m, not far off the

−2.06× 10−2 ps2/m expected for SMF-28e fiber.

5.4 Outlook and Conclusion

In conclusion, we have demonstrated a technique for verifying phase coherence in

BFCs. The attributes of this approach, in which we mix adjacent frequency bins,

are analogous to those of Franson interferometry, which mixes entangled photon time

bins. Equivalently, our approach provides a straightforward path to prove frequency-

bin entanglement; we presented interference patterns with visibilities higher than the

classical threshold for entangled qubit and qutrit states. Additionally, our disper-

sion measurements suggest the potential of low-light dispersion measurement with

biphoton frequency combs.

While the work discussed in this chapter was conducted using relatively wide fre-

quency bins (12 GHz) carved out of a continuous-broadband spontaneous parametric

downconversion spectra, we have also explored a similar experimental setup for nar-

row linewidth comb line pairs generated through spontaneous four-wave mixing in

an on-chip silicon nitride microring resonator [113]. In parallel, Kues et al. [83] con-

ducted similar studies using a microring resonator fabricated from a high refractive
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index glass. These two works were the first reported verification of high-dimensional

frequency-bin entanglement from an on-chip source, showing the potential of chip-

scale devices for quantum information processing. Our results in conjunction with

those based on spontaneous four-wave mixing signify the universality of this approach

for characterizing frequency-bin entanglement.
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6. MODULATION TECHNIQUE FOR IMPROVING

TEMPORAL RESOLUTION IN BIPHOTON

COINCIDENCE MEASUREMENTS

6.1 Background

In the previous chapters, we highlighted that the relative timing between a pair

of broadband entangled photons can be useful for a variety of quantum informa-

tion technologies, and all of our experiments so far have involved temporal correla-

tion measurements. The most straightforward method used to obtain the temporal

correlation of entangled photons involves coincidence measurements between a pair

of single-photon detectors. However, standard single-photon avalanche photodiodes

(SPADs) suffer from large timing jitters—typically on the order of several hundreds

of picoseconds. Even at best, jitters only around a few tens of picoseconds have

been realized, either with optimized Si photon counters for visible light [115] or su-

perconducting nanowire detectors at telecom wavelengths [116, 117]. If well chosen,

microwave solutions can furnish substantial speed improvements over direct detec-

tion with standard SPADs. While not as fast as nonlinear optical techniques such

as entangled-photon mixing [13,18,118–120], short-pulse upconversion [105,121], and

time-to-frequency conversion [122, 123], electronics does benefit from robustness and

simplicity, providing a bridge between slow (but straightforward) direct detection and

ultrafast (but elaborate) nonlinear optical processing.

A concrete example of such intermediary microwave processing of quantum light

was developed [111] and demonstrated [21] by Harris and colleagues. Each photon

from an entangled pair is separately propagated through sinusoidal intensity modula-

tion; then coincidences between the two outputs are measured with slow integrating

The results of this chapter have been published in Ref. [114].
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detectors. By maintaining phase synchronization as the modulation frequency is

swept, it is possible to extract the Fourier spectrum of the Glauber correlation func-

tion G(2)(τ). The maximum measurable bandwidth is then limited not by detector

jitter, but rather the speed of the electro-optic modulators. Although the first proof-

of-principle experiment considered frequencies up to only 30 MHz [21], state-of-the

art 100-GHz modulators [124] could in theory resolve temporal features shorter than

5 ps. And unlike Hong-Ou-Mandel interference—which can indeed provide a measure

of ultrafast biphoton synchronization without nonlinear optics [albeit not of G(2)(τ)

directly] [125]—the photons need not mix spatially, making this approach consistent

with nonlocal detection as well.

We extend on Harris’s work, proposing and experimentally demonstrating a new

technique for biphoton measurement based on high-speed electro-optic intensity mod-

ulation with arbitrary microwave waveforms. Our measurements are found to be

related to the modulators’ temporal cross-correlation, with periodic revivals con-

trolled by the repetition rate. Moreover, by propagating the biphoton through various

lengths of optical fiber, we demonstrate sensitivity to temporal spreading and shift-

ing beyond the capabilities of our SPADs. Thus our approach makes use of temporal

cross-correlation rather than Fourier transformation to resolve fast features, and we

expect the idea to contribute in characterization of high-speed quantum information-

processing systems.

6.2 Theory

To theoretically describe our modulation procedure, we consider an input corre-

lation function G
(2)
in (t2, t1) = G

(2)
0 (t2 − t1), which when properly normalized gives the

probability density for joint detection of the signal photon at time t1 and the idler

at time t2. We have assumed a monochromatic pump, so that the temporal correla-

tions depend only on the difference t2− t1. Applying T -periodic intensity modulation

functions, Ms(t1 + τ) = |ms(t + τ)|2 to the signal and Mi(t2) = |mi(t2)|2 to the idler
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photons, where τ is a tunable time shift, modifies the biphoton wavepacket (as de-

scribed in Section 1.3) such that the resulting temporal correlation can be written

as

G
(2)
out(t2, t1) = G

(2)
in (t2, t1)Ms(t1 + τ)Mi(t2). (6.1)

The measured coincidence rate follows by summing all joint photon detections within

some time window ∆. Integrating Eq. 6.1, we arrive at the coincidence rate,

Rc(τ) =

∫ ∞
−∞

dt1

∫ t1+∆

t1−∆

dt2G
(2)
0 (t1 − t2)Ms(t1 + τ)Mi(t2). (6.2)

Following a development similar to that in [21], we can simplify further to arrive at

the final coincidence rate:

Rc(τ) = K

∫ ∞
−∞

dtG
(2)
0 (t)γsi(t+ τ), (6.3)

where K is a constant, and

γsi(t) =

∫ t0+T

t0

dxMs(x+ t)Mi(x) (6.4)

is the circular intensity correlation between the two modulators. In this way we

see that the modulator cross-correlation supplants any detector characteristics in the

overall temporal response function, and we observe two important limiting cases.

1. When the initial correlation function G
(2)
0 (t) is much narrower than γsi(t), we

recover Rc(τ) ∝ γsi(τ); that is, the coincidence pattern reflects the modulator

cross-correlation.

2. On the other hand, when the modulators are much faster than G
(2)
0 (t), the coin-

cidence rate becomes Rc(τ) ∝ G
(2)
0 (−τ) for τ ∈ (−T

2
, T

2
), assuming a modulator

period much longer than the biphoton correlation time.

This second case is the motivation for our method, revealing how electro-optic modu-

lation can recover photon correlations too fast for the available SPADs. Both extremes

are considered in the experiments below, although we employ the more precise Eq.

6.3 in all theoretical curves rather than these approximations.
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6.3 Experimental Demonstration

To explore these ideas experimentally, we utilize the setup in Fig. 6.1. We generate

entangled photons with a photon flux estimated as ∼108/s, corresponding to a pair

occupation probability of about 0.1 per 1-ns coincidence window used below; this

reduces the effects of multipair emission and ensures we are operating in the single-

photon detection regime. The biphotons are coupled into fiber and separated using

a 50/50 fiber beam splitter; with 50% probability, the photons in a given pair will

exit along separate paths and can contribute to coincident arrivals. An electronic

arbitrary waveform generator (Tektronix AWG7122B) provides the desired 20-GS/s

microwave drive signal, which is then split, amplified, and applied to each intensity

modulator (EOSpace AX-0K5-10-PFU-PFU-UL). A series of microwave delay stages

precedes the electrical input of the signal modulator in order to control the relative

delay τ . The modulated photons are then detected by a pair of gated InGaAs SPADs

(Aurea SPD AT M2), and coincidences within a 1-ns window are determined by an

event timer. The modulation speed is limited by the bandwidths of the waveform

generator (7.5 GHz) and the modulators themselves (10 GHz). Although sufficient

for an initial experiment, significantly faster modulation could be realized with, e.g.,

100-GHz modulators and photonically generated drive signals [126,127].

As a first test, we drive each modulator with a length-4 sequence consisting of one

high and three low voltages. In practice, imperfections in the waveform generator

limit the purity of the applied modulation, and the modulator bandwidth reduces

the extinction ratio. Figure 6.2(a) shows the experimental modulator functions Ms(t)

(signal) and Mi(t) (idler), obtained by sending a continuous-wave laser through each

and measuring the temporal response with an analog photodiode and sampling os-

cilloscope. In order to give the most accurate measure of the optical throughput, we

average 2000 traces and remove the combined impulse response of the photodiode

and oscilloscope through deconvolution. (The exact form of the impulse response

was previously obtained by exciting the diode with ∼100-fs laser pulses and record-
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1x2 

Coupler 
Ms 

Mi 

∫ dt Rc(τ) 

AWG 

PPLN 

Pump 

Filters 
SMF 

τ 

Fig. 1 

dt 

Fig. 6.1. Experimental setup. Entangled photons are generated in the
process of SPDC in a PPLN waveguide, coupled into optical fiber, and sep-
arated with a fiber beam splitter. Signal and idler then experience inten-
sity modulation, and coincidences are recorded as the timing of the signal
modulation is swept. SMF: single-mode fiber; AWG: arbitrary waveform
generator.

ing the electrical output, showing a full-width at half-maximum of 18.2 ps.) With

these patterns applied, we then send entangled photons through each modulator and

measure the coincidence rate as the delay of the drive signal to Ms is shifted. The

precise value of the delay τ (apart from an unimportant overall offset) is determined

by tapping off a portion of the time-shifted signal and observing its relative position

on an oscilloscope. The coincidence results are presented in Fig. 6.2(b), normalized

to idler detections in order to partially compensate for power fluctuations over the

course of the measurement; thus the values along the y-axis provide an estimate of

the linear transmissivity of the system, including coupling and detection efficiencies.

Each data point is the mean of five 120-s acquisitions, with error bars giving the

standard deviation. Accidentals are determined by measuring coincidences when the

two detector gates are temporally mismatched; these are subtracted off in the results
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Fig. 6.2. Coincidence measurements with pulse-like modulation. (a) Mod-
ulation functions and (b) corresponding coincidence rate when a 25%-
duty-cycle sequence is applied by waveform generator. (c) Intensity mod-
ulation and (d) associated coincidence rate for 12.5%-duty-cycle pattern.
For comparison, the red dotted curve in (d) gives the measured coincidence
spread when the modulators are bypassed and the photons are detected
directly, binned into 32-ps time slots. For the modulation results in (b)
and (d) (left axis), error bars show experimental results; solid curves give
theoretical predictions.

of Fig. 6.2(b). The solid curve gives the theoretical prediction utilizing the measured

modulator functions and accounting for dispersive spreading of the biphoton in the

short fiber leads, with the time origin and amplitude as the only adjustable parame-

ters. Excellent agreement between theory and experiment is observed. The full width

at half maximum (FWHM)—after removing the background—is 73.4 ps, dominated

by the modulator correlation time rather than that of the biphoton itself, which for

the ∼7 m of fiber used is estimated at around 10 ps.

The contrast of 2.7:1 in Fig. 6.2(b) is limited by both the modulation bandwidth

and imperfect extinction. So for improved visibility, we increase the sequence length
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to eight by adding four more zero samples; this doubles the period while maintaining

the same pulse width as before. These new modulation functions are plotted in Fig.

6.2(c), and the results of a coincidence measurement in Fig. 6.2(d) (left axis). We

have again subtracted accidentals and included the theoretical prediction as a solid

line. Sharp 73.5-ps correlation peaks repeating at the 400-ps period are observed,

but now the contrast has increased to 6.7:1. The fluctuations between peaks derive

from the oscillations present in the modulator functions of Fig. 6.2(c) and could be

eliminated with higher-bandwidth electronics. These results highlight a key advantage

of this technique: the ability to arbitrarily extend the periodicity and ensure temporal

separation of the measured correlation peaks. As reference, also included in Fig.

6.2(d) (right axis) is the correlation pattern measured via direct electronic coincidence

detection with our InGaAs SPADs and without any modulation, delay-shifted for

visual comparison with the modulated case; at 353 ps, the jitter-limited FWHM is

approximately five times wider than that obtained from our new technique.

In the previous examples the biphoton correlation time is significantly less than

the modulator correlation width, so that G
(2)
0 (t) is effectively sampling γsi(t) in Eq.

6.3. Accordingly, the measurements in Figs. 6.2(b) and (d) provide upper bounds

on the width of the input temporal correlations, but not a direct measure thereof.

So in order to confirm that this modulation approach is indeed sensitive to modifi-

cations of G
(2)
0 (t), we next consider additional fiber links optimized for two different

cases: in the first, we make use of long links to show the method’s ability to resolve

dispersive spreading (second-order spectral phase); in the second, a series of shorter

patch cords are inserted into the idler path to demonstrate sensitivity to linear delay

shifts (first-order spectral phase). For the dispersion tests, we insert optical fiber

after the collimator and before the coupler in Fig. 6.1; the results for 50 and 200

m of additional fiber for the length-8 sequence in Fig. 6.2(c) are presented in Figs.

6.3(a) and (b), respectively. The photonic correlations spread in good agreement with

theory, with the extra dispersion significantly modifying the coincidence peak widths.

At 50 m, the background-subtracted FWHM has increased to around 100 ps; for
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Fig. 6.3. Additional tests. Coincidence rate vs. time shift for (a) 50
m and (b) 200 m of single-mode fiber added before the coupler in Fig.
6.1. The background-subtracted FWHMs for each are 97.5 ps and 269 ps,
compared to the 73.5 ps in Fig. 6.2(d). (c) Results for fiber added instead
in the idler arm of Fig. 6.1. The solid blue, dotted black, and dashed red
cases correspond to 41.9-, 43.7-, and 46.0-cm links, respectively.

200 m of fiber, it has spread nearly beyond recognition, with a theoretical duration

of about 270 ps. Proceeding to the delay tests, we remove the long fiber links and

add short fiber patches in the idler arm prior to modulator Mi in Fig. 6.1. Figure

6.3(c) shows the coincidence rates for added lengths of 41.9 cm (solid blue), 43.7 cm

(dotted black), and 46.0 cm (dashed red). The correlation peaks are shifted by about

100 ps and are clearly separated. Combined with the observed dispersive spreading

in Figs. 6.3(a) and (b), these results verify sensitivity to biphoton transformations

significantly smaller than the combined ∼350-ps resolution of our electronic detectors.

The modulation functions considered thus far consist of low-duty-cycle return-

to-zero pulses, a natural choice for obtaining well-resolved correlation peaks. Yet

alternative patterns with more sophisticated properties can also furnish useful char-
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acteristics. For the single-pulse examples earlier, the complexity of the measured

biphoton correlation function is related to the duty cycle; the period specifies the

longest discernible features (anything longer overlaps with the next peak), and the

modulation width gives the sharpest observable correlations. To increase the ratio

of the two—i.e., the maximum time-bandwidth product the system can resolve—one

necessarily must reduce the duty cycle, which in turn lowers the transmitted flux.

A binary pattern which can ideally decouple loss and resolution is the M-sequence

(previously described in Section 4.2.3). The circular autocorrelation of one such

length-(2N−1) phase sequence (with N an integer and elements equal to ±1) produces

a peak value of 2N − 1 at every multiple of 2N − 1, while at every other offset,

−1 is obtained. Since temporal phase modulation is unobservable in our detection

scheme, we must consider an amplitude-only version, in which any minus-ones are

replaced by transmissivities of zero. Defining the sequences so that 2N−1 bits are high

transmission and 2N−1 − 1 are low, one predicts an ideal autocorrelation contrast of

2:1 between matched and mismatched delays. While reduced from the theoretically

infinite contrast in the low-duty-cycle case, the fact that over half of the bits pass

incoming photons implies minimal reduction in flux as the resolution is improved.
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Fig. 6.4. M-sequence tests. (a) Modulation of a single-frequency laser for
a length-15 sequence, shown over one full period. (b) Biphoton coinci-
dence rate as the voltage applied to the signal modulator is temporally
shifted. Error bars show experimental uncertainty, and solid lines provide
theoretical predictions.
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As N increases, the probability for transmitting a photon asymptotically approaches

1/2, rather than zero as in the single-pulse case. Experimentally, we consider the

length-15 M-sequence [0 1 0 1 1 0 0 1 0 0 0 1 1 1 1], which at our 20-GS/s sampling

rate corresponds to a period of 750 ps [Fig. 6.4(a)]. The measured coincidence rate

under this modulation follows in Fig. 6.4(b); the peak-to-background contrast is near

the ideal value of 2:1, and the background-subtracted FWHM is 83.6 ps, comparable

to the values obtained in our low-duty-cycle experiments.

6.4 Outlook and Conclusion

In conclusion, we have realized an approach for temporal biphoton measurement

based on high-speed electro-optic intensity modulation and tunable electronic de-

lay. Our proof-of-principle experiment attains a timing resolution of 75 ps, showing

sensitivity to both temporal spreading and delay. Moreover, with pseudorandom M-

sequence codes, we provide a means by which the time-bandwidth product of the

measurement can be increased without significantly lowering throughput. Either

technique can improve the temporal sensitivity of a given pair of avalanche photodi-

odes, and—more excitingly—could reduce timing uncertainty well beyond even the

fastest photon detectors, by employing state-of-the-art >100-GHz intensity modula-

tors. More generally, our results provide yet another example of the value afforded

by high-speed classical technologies in quantum information.
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7. SUMMARY

There is a surging interest in studying quantum states of light as they provide a route

for developing unprecedented technologies, such as quantum computation, quantum

communication and quantum metrology. One particular quantum state of light ca-

pable of displaying correlations in both time and frequency measurements, a feature

unattainable with classical light, is the time-frequency entangled photon or biphoton.

This quantum state of light is already being exploited for quantum key distribution,

as well as for processing quantum information. In this dissertation, we have utilized

tools from ultrafast photonics to provide additional insight into the manipulation and

characterization of time-frequency entangled photons, in ways that could be beneficial

for the improvement of quantum technologies. Our schemes were aided by devices able

to perform spectral amplitude and phase control (Fourier-transform pulse shapers and

dispersive media), and temporal amplitude and phase control (electro-optic intensity

and phase modulators).

In Chapter 2, we described and demonstrated a scheme for adjusting the relative

delay between a pair of entangled photons with fixed dispersive media and in a manner

compatible with high-speed delay switching. An apparent impact of this work would

be in the aspect of high-speed delay correction in quantum networks. It would also

be interesting to introduce this delay control idea to temporally-multiplexed single-

photon sources for generating single-photons on demand.

In Chapter 3, we implemented near-field frequency-to-time mapping (FTM) to

achieve arbitrary shaping of entangled photons, thereby circumventing the need for

very large dispersion values typically required for conventional FTM. An avenue for

further research could be examining the near-field approach for quantum key distri-

bution, especially since the conventional FTM method is already being used to serve

as a conjugate-basis in time-frequency quantum key distribution.
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We began our studies on biphoton combs in Chapter 4. The distinguishing fea-

ture of a biphoton frequency comb is that its spectrum consists of a superposition

of discretized frequency-bin pairs, hence the potential for high-dimensional entan-

glement. We examined the time-domain correlation trains that coherent biphoton

combs display due to interference. Moreover, we also used this opportunity to verify

the temporal self-imaging (Talbot) effect using entangled photons for the first time,

in addition to exploring spectral phase-only filtering for generating more efficient

correlation trains.

Our measurements in Chapter 4 relied on sum-frequency generation for sub-

picosecond resolution, since standard single-photon detectors only resolve down to

∼ 100 ps; however, for narrower linewidth biphoton combs, such measurement tech-

niques become impractical due to diminishing nonlinear efficiency. In Chapter 5, we

discussed a technique for studying coherent biphoton frequency combs even with slow

detectors. Using electro-optic phase modulators to mix comb lines, we were able to

observe interference from two and three comb line pairs, and subsequently measured

the dispersion in a single-mode fiber. It will be interesting to investigate this method

beyond single-digit comb line pairs in order to characterize larger-dimensional entan-

glement.

Lastly, in Chapter 6, we discussed our realization of a high-speed modulation

setup for improving the temporal resolution coincidence measurements. We were

able attain a timing resolution of 75 ps, five-times better than the resolution in

regular measurements with our InGaAs single-photon detectors. While not as fast

as nonlinear mixing techniques, state-of-the-art intensity modulators can offer speeds

faster than 100 GHz, thus alluding to the potential of improving the timing resolution

of our scheme less than 10 ps.
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Nature Photonics, vol. 3, no. 12, pp. 687–695, 2009.

[9] A. Valencia, M. V. Chekhova, A. Trifonov, and Y. Shih, “Entangled two-photon
wave packet in a dispersive medium,” Phys. Rev. Lett., vol. 88, p. 183601, Apr
2002.

[10] S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Nonlocal dispersion control of a single-
photon waveform,” Phys. Rev. A, vol. 78, p. 013816, Jul 2008.

[11] ——, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev.
A, vol. 77, p. 013829, Jan. 2008.

[12] M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted
single-photon spectrograph,” Opt. Lett., vol. 34, no. 18, pp. 2873–2875, Sep
2009.

[13] A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of
entangled photons,” Phys. Rev. Lett., vol. 94, p. 073601, Feb. 2005.

[14] B. Dayan, “Theory of two-photon interactions with broadband down-converted
light and entangled photons,” Phys. Rev. A, vol. 76, p. 043813, Oct 2007.



76

[15] F. Zäh, M. Halder, and T. Feurer, “Amplitude and phase modulation of time-
energy entangled two-photon states,” Opt. Express, vol. 16, no. 21, pp. 16 452–
16 458, Oct. 2008.

[16] C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-
entangled qudits,” Phys. Rev. A, vol. 88, p. 032322, Sep 2013.

[17] J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and
A. M. Weiner, “Biphoton manipulation with a fiber-based pulse shaper,” Opt.
Lett., vol. 38, pp. 4652–4655, 2013.

[18] ——, “Demonstration of high-order dispersion cancellation with an ultrahigh-
efficiency sum-frequency correlator,” Phys. Rev. Lett., vol. 111, p. 193603, Nov
2013.

[19] ——, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett., vol.
112, p. 133602, Apr 2014.

[20] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic
modulation of single photons,” Phys. Rev. Lett., vol. 101, p. 103601, Sep. 2008.

[21] C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, “Modulation
and measurement of time-energy entangled photons,” Phys. Rev. A, vol. 80, p.
031803, Sep. 2009.

[22] S. Sensarn, G. Y. Yin, and S. E. Harris, “Observation of nonlocal modulation
with entangled photons,” Phys. Rev. Lett., vol. 103, p. 163601, Oct 2009.

[23] C. Belthangady, C.-S. Chuu, I. A. Yu, G. Y. Yin, J. M. Kahn, and S. E. Harris,
“Hiding single photons with spread spectrum technology,” Phys. Rev. Lett., vol.
104, p. 223601, Jun. 2010.

[24] S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi,
“Temporal and spectral manipulations of correlated photons using a time lens,”
Phys. Rev. A, vol. 96, p. 043807, Oct 2017.

[25] J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund,
“High-dimensional quantum key distribution using dispersive optics,” Phys.
Rev. A, vol. 87, p. 062322, Jun 2013.

[26] C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang,
X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili,
M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and
D. Englund, “Entanglement-based quantum communication secured by nonlo-
cal dispersion cancellation,” Phys. Rev. A, vol. 90, p. 062331, Dec 2014.
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A. COMPILATION OF PHASE MATCHING CURVES

The quasi-phase matched (QPM) waveguides used for our biphoton work were ob-

tained through a collaboration with Prof. Martin Fejer’s group at Stanford University.

In this appendix, we provide a record of the phase matching curves we measured for

two chips comprising of 50 waveguides each. The phase matching curve shows a mea-

sure of the second-harmonic generation (SHG) conversion efficiency as a function of

the pump frequency:

Conversion efficiency =
PSHG

P 2
in

× 100% (A.1)

On each chip, the waveguides are grouped into sections based on quasi-phase-

matching structures.

Section 1: Uniform QPM (Single Phase Matching Peak)

Section 2: Phase-modulated QPM (5 peaks with 2-nm spacing)

Section 3: Linearly-chirped QPM (10-nm broad bandwidth)

Section 4: Phase-modulated QPM (5 peaks with 1-nm spacing)

Section 5: Linearly-chirped QPM (5-nm broad bandwidth)

For the experiments discussed in this dissertation, we opted for waveguides with

high photon-conversion efficiencies while also taking the pump-acceptance bandwidth

into consideration.

In Chapter 2, we implemented our experimental setups with Chips 4 and 6. For

the first demonstration of ps-delay control (Fig. 2.2) with a fixed pump along with

shifts in the dispersion curve, we used Chip 4–Section 1–Waveguide 4 for spontaneous

parametric downconversion (SPDC) while Chip 6–Section 1–Waveguide 8 was used

for sum-frequency generation (SFG); the other ps-delay control experiment required
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QPM waveguides that could accommodate multiple pump frequencies, so we used

Chip 4–Section 2–Waveguide 5 for SPDC and Chip 6–Section 2–Waveguide 8 for SFG.

The experiments on ns-delay control and high-speed delay switching also depended

on pump frequency modulation (Fig. 2.5), so we used Chip 4–Section 2–Waveguide

4 for SHG and Chip 6–Section 2–Waveguide 8 for SPDC.

In Chapter 3, Chip 4–Section 1–Waveguide 3 was used for SPDC while Chip 6–

Section 1–Waveguide 8 was used for SFG. A similar waveguide pair was also used

for the experiment in Chapter 4, while the experiments in Chapters 5 and 6 utilized

Chip 4–Section 1–Waveguide 9 for SPDC.
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Section 01 – Waveguide 01
BAD

Section 01 – Waveguide 06
BAD

CHIP 4 – SECTION 1
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Section 01 – Waveguide 06
BAD

CHIP 4 – SECTION 2
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