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ABSTRACT

Kong, Ziyun M.S.E.C.E, Purdue University, May 2017. All-linear Phase Retrieval
of Optical Frequency Combs via Electric Field Cross-correlation. Major Professor:
Andrew M. Weiner.

Since the invention of optical frequency combs(OFCs), full optical waveform char-

acterization has always been an important topic in ultrafast optics. Traditional mea-

surements either provide only partial information of the waveform(auto-correlation)

or require high power and low duty cycle of the waveform for nonlinear effects (FROG

and SPIDER). In this thesis, we introduce an all-linear method for the phase retrieval

of optical frequency combs. Through the dual-comb electric field cross-correlation

between the signal comb and a pre-characterized reference comb, the beat signal is

captured by real time oscilloscope in milliseconds. Post digital signal processing could

retrieve phase from the sampled signal. The stability and precision of this method are

discussed and phase retrieval from different combs generated through microresonators

is performed.
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1. INTRODUCTION

Optical waveform characterization is always an important topic in ultrafast optics.

While the common intensity autocorrelation only gives a partial information about

the measured field, a measurement for the complex field E(t) is needed for full char-

acterization.

Conventional methods for ultrafast waveform reconstruction, such as frequency-

resolved optical gating(FROG, [1]) and spectral phase interferometry for direct elec-

tric field reconstruction (SPIDER, [2]) are all capable of recovering phase profile of

input pulse. But due to the nonlinearity involved, these methods are often applied

to waveforms with high peak power and low duty cycle.

In this thesis we’ll introduce an all-linear phase retrieval method via dual-comb

electric field cross-correlation(EFXC) [3, 4], which greatly lowers the power limit for

phase retrieval of optical frequency combs.

1.1 Optical Frequency Comb

Ultrashort laser pulse widths were brought into femtosecond regime in the 1980s

[5]. And now, optical frequency combs based on ultrafast lasers have already been a

fundamental instrument for many research fields [6], like optical frequency measure-

ment, high speed asynchronous optical sampling(ASOPS), absolute distance measure-

ment and so on [7,8]. In recent years, optical frequency combs(OFC) and ultrastable

lasers have made great contributions to precision spectroscopy [9]. Now a spectral

purity transfer based on narrow line-width OFC has reached a precision of 10−18 [10].

The Nobel Prize in Physics 2005 was divided, one half awarded to Roy J. Glauber

”for his contribution to the quantum theory of optical coherence”, the other half

jointly to John L. Hall and Theodor W. Hänsch ”for their contributions to the devel-
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opment of laser-based precision spectroscopy, including the optical frequency comb

technique” [11].

The output of a frequency comb in time domain is a pulse train with a regular

period and a well-defined relative phase from pulse to pulse. In frequency domain, as

shown in Fig 1.1, it is composed of multiple evenly spaced frequency components [12]:

fN = N × fr + fceo (1.1)

Fig. 1.1. Optical frequency comb(OFC) in frequency domain

Where fr stands for the repetition rate of the laser and fceo is the carrier envelope

offset frequency. The difference between group velocity and phase velocity within the

cavity causes a carrier envelope offset. In the time domain it occurs as the relative

phase difference between adjacent pulses, see Fig 1.2. In frequency domain it becomes

a fceo signal [13]:

fceo = fr
∆φ

2π
(1.2)

A mode-locked laser with both fr and fceo stabilized could be considered as a stable

frequency comb system and can be used as a frequency standard.
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Fig. 1.2. Carrier envelope offset between pulses [14]

1.1.1 OFC generation from a Mode-locked laser

Due to its high efficiency and high output power, OFC based on a mode-locked

laser is getting increasing attention [15, 16].Fig 1.3 shows a Yb: fiber ring laser with

the highest rep rate (1 GHz) among fiber ring lasers so far.

It uses nonlinear polarization evolution (NPE) for passive mode-locking [18] and

introduces a grating pair into the cavity so that the laser can work in the stretched

pulse regime [19] with a close-to-zero net dispersion. Due to high rep rate, a high

input power is needed, where they use four laser diodes to pump and acquired nearly

1W input on each side. The output of this laser is coupled into a tapered photonic-

crystal fiber(PCF) for spectrum broadening. The broadened spectrum shown in Fig

1.4(b) right is octave-spanning. Then the output is coupled into an interferometer for

f − 2f beating to acquire the fceo signal, see schematic on Fig 1.4(a). The 1200nm

part goes through the dichroic mirror and the 600nm part was reflected. Thus the

second harmonic of 1200nm beats with the 600nm part and shows the fceo signal.
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Fig. 1.3. Setup for 1 GHz Ytterbium-doped fiber ring laser. LD,
laser diode; YDF, Ytterbium-doped fiber; WDM, wavelength division
multiplexing; λ

2
,λ

4
, half/quarter-wave plate [17]

The fceo signal is acquired by a SHG of an original comb line with frequency

fn = nfr + fceo (1.3)

After SHG, the comb line has its frequency doubled to

2fn = 2nfr + 2fceo (1.4)

And meanwhile, a comb line formed by spectrum broadening has a frequency of

f2n = 2nfr + fceo (1.5)

Thus results in a beating signal of

∆f = 2fn − f2n = fceo (1.6)
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(a) (b)

Fig. 1.4. (a) Setup of the supercontinuum generation through tapered
PCF and f − 2f beating. DM, dichronic mirror; APD, avalanche
photodiode; PCF, photonic-crystal fiber; PPLN, periodically poled
lithium niobate(LiNbO3). (b) Supercontinuum spectrum generated
from the tapered PCF. The blue and red dotted lines show the octave-
spanning spectrum from 600nm to 1200nm. [17]

The f − 2f detection of fceo provides a precise active stabilization of fceo if the

detected signal is then compared with a RF frequency standard to generate an error

signal. The error signal is fed back to the pump laser in order to finally stabilize

fceo [20]. The frequency comb with both fr and fceo well defined now serves as a

precise optical frequency standard.

Another approach to generate OFCs with well defined fceo is through difference-

frequency generation(DFG) [21]. In this method, a comb with more than octave-

spanning spectrum is generated for a DFG comb with the same center frequency.

The DFG signal between highest and lowest frequency components cancels the fceo,

resulting in an offset-free comb:

fhigh = 2nfr + fceo

flow = nfr + fceo

fDFG = nfr

(1.7)
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If carefully characterize the wavelength of the broadened comb, the DFG signal

could also be centered at the pump frequency. This method is now applied to combs

with repetition rate from tens of MHz to 1 GHz [22,23].

One of the advantages of a mode-locked laser based OFC is that the laser is self-

referenced, which means it could be easily locked to an atomic clock or similar RF

standards to provide an absolute, wide-band frequency standard with high stability.

Its high output power also makes it good for super-continuum generation, which leads

to many applications including Astro-Comb [24].

But the fr of this laser is dominantly limited by the ring cavity structure, where

this limitation leads to a relatively small mode spacing(fr) incapable with many other

applications. As seen in Fig 1.3, the cavity is mainly filled up with a Faraday rotator

and Yb gain fiber. As these two are the real essentials for this cavity where one

provides the gain and the other ensures the pulse goes around the cavity in a specific

direction, the fr of this cavity is already near its limit as 1 GHz.

1.1.2 Electro-optic comb

Efforts have been made for a simple and direct OFC generation without compli-

cated instrumental process. And the outcome is electro-optic comb, EO comb for

short, which is obtained through direct modulation of a CW laser.

The principle of EO comb is that strong sinusoidal phase modulation of a CW

laser creates multiple sidebands, leading to generation of a frequency comb. As shown

in Fig 1.5, CW light with a narrow spectrum emitted from the laser is converted

to phase-modulated light with ultrawide optical sidebands in the frequency domain

(∼THz). In time domain we could see that its converted to repeatedly chirped light.

After compression or further modulation we retrieve a directly modulated EO comb.

Phase modulation of a CW laser can be achieved through electro-optic modulators

based on Pockels cells, namely phase modulators(PM). Within a Pockels cell, the
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Fig. 1.5. Basic setup of comb generation through direct electro-optic
modulation of CW laser [25]

birefringence of the nonlinear crystal is proportional to the input electric field, which

is known as the Pockels effect or the linear electro-optic effect [26].

Fig. 1.6. Basic scheme of a phase modulator. Figure adapted from [26]
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As shown in Fig 1.6, the input of a phase modulator is polarized parallel to

one of the birefringent axes of the electrooptic crystal to avoid possible rotation of

polarization. Thus the crystal now acts as a voltage-controlled wave-plate. A driving

voltage of frequency ω will then apply a time-dependent phase ∆φ sin(Ωt) to the

input field Aeiωt, resulting in output of

Aeiωt+i∆φ sin(Ωt) (1.8)

Taking the assumption that ∆φ� 1, the output is approximated to

Aeiωt(1 + i∆φ sin(Ωt)) = Aeiωt
(

1 +
∆φ

2
(eiΩt − e−iΩt)

)
= A

(
eiωt +

∆φ

2
ei(ω+Ω)t − ∆φ

2
ei(ω−Ω)t

) (1.9)

by taking only the first term in Taylor expansion. This gives the sideband at ω + Ω

and ω − Ω. Deriving the whole series gives the amplitude of any sideband.

Here ∆φ is known as the modulation depth of the PM. The Carson bandwidth

rule for phase modulation gives the bandwidth of the generated sidebands [25]:

∆ν = 2f∆φ (1.10)

Example specifications of a commercial lithium niobate(LiNbO3) phase modulator

is listed in table 1.1. If we take 1 W as the maximum RF input power, a single PM

can generate sidebands of bandwidth ∼ 200 GHz at a typical modulation frequency

of 10 GHz (∼ 20 lines). For a compressed pulse with bandwidth ∆ν, the pulse width

τ is given by

τ ≈ 0.7

∆ν
(1.11)

Similarly for the amplitude modulation, where the modulation term is not on the

exponential, only two sidebands at ω + Ω and ω − Ω are acquired:

Aeiωt(1 + ∆φ sin(Ωt)) = Aeiωt +
A∆φ

2i

(
ei(ω+Ω)t − ei(ω−Ω)t

)
(1.12)

Advantages of this technique include the ability to create large mode spacing

combs with stable but tunable optical center frequencies given by the source laser and
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Table 1.1.
Specification of phase modulator - Avanex IM10-P

Operating Wavelength C+L-Band

Insertion Loss 2.5 dB

RF Vπ(1 kHz) 3.5 V

RF Vπ(10 GHz) 5 V

convenient tuning of the repetition rate given by modulation frequency. Combined

with multiple stage modulation, one can achieve broadly tunable frequency combs.

Fig 1.7 shows an EO comb with broadly tunable line spacing ranging from 6 GHz

to 18 GHz. A comb with large mode spacing can also be combined with line by line

pulse shaping to help with arbitrary waveform generation [27].

Fig. 1.7. (a) Layout of a broadly(6-18 GHz) tunable EO-comb. PM,
phase modulator, IM,intensity modulator. (b) Example of output
spectrum at fr = 10 GHz [28]

.
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1.1.3 Comb Generation through Microring Resonators

The methods for comb generation mentioned above provide frequency combs with

repetition rate from several tens of MHz to ∼ 20 GHz. But still, optical frequency

combs with even higher fr are in great demand. Since 2007, frequency combs gen-

erated via Kerr effect in a microresonator with high quality factor(Q) have drawn

people’s attention for its compactness and potential for high repetition rate [29].

The comb generation is based on four-wave mixing (FWM). Two pump photons are

annihilated to generate another pair of photons in this parametric frequency conver-

sion [30],

2ωp = ωs + ωi (1.13)

Where ωp is the pump photon frequency; ωs is the signal with higher frequency and ωi

is the idler with lower frequency. The conservation of energy restricts the signal and

idler to be equidistant from the pump(ωs = ωp + Ω, ωi = ωp−Ω). One can efficiently

generate sidebands once ωs and ωi coincides with modes of microresonator. The total

bandwidth is further increased through both degenerate and non-degenerate FWM,

resulting in a broadband, equally-spaced optical spectrum, as shown in Fig 1.8.

The repetition rate of these combs ranges from several GHz to THz, which is far

beyond what is achieved through mode-locked lasers. Octave Spanning spectrum from

a sub-THz frequency comb is presented [31], and f − 2f self-referenced microcomb is

also realized [32].



11

Fig. 1.8. Formation of frequency comb through FWM. (1)Degener-
ate FWM where two photons of the same frequency is converted(e.g.
2ωp = (ωp + Ω) + (ωp − Ω)).(2) Non-degenerate FWM where two
photons of different frequency is converted(e.g. ωp + (ωp + Ω) =
(ωp − Ω) + (ωp + 2Ω)). Figure adopted from [30]

1.2 Organization of Thesis

The remainder of this thesis is organized as follows. Section 2.0 will present the

dual-comb electric field cross-correlation process and the physics involved. Section 3.0

will show the DSP method and algorithms used in phase retrieval process. In Section

4.0, Retrieved phases of different combs under different conditions are presented in

comparison with phase from simulation or other techniques. And section 5.0 will

briefly summarize the thesis.
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2. ELECTRIC FIELD CROSS-CORRELATION

2.1 Mathematical Description of Phase Retrieval

Given two input fields with amplitude E1, E2, frequency ω1, ω2 and phase φ1, φ2,

we could describe the fields as:

E1 cos(ω1t+ φ1), E2 cos(ω2t+ φ2) (2.1)

Through coupling the two fields, we have a input field of

E = E1 cos(ω1t+ φ1) + E2 cos(ω2t+ φ2) (2.2)

A photodetector(PD) measures the intensity of the field

I ∝|E1 cos(ω1t+ φ1) + E2 cos(ω2t+ φ2)|2

=E2
1 cos2(ω1t+ φ1) + E2

2 cos2(ω2t+ φ2) + 2E1E2 cos(ω1t+ φ1) cos(ω2t+ φ2)

(2.3)

For a slow detector, both E2
1 cos2(ω1t+φ1) and E2

2 cos2(iω2t+φ2) are DC terms, thus

I ∝2E1E2 cos(ω1t+ φ1) cos(ω2t+ φ2)

=E1E2{cos[(ω1 − ω2)t+ (φ1 − φ2)] + cos[(ω1 + ω2)t+ (φ1 + φ2)]}
(2.4)

Still, the term cos[(ω1 +ω2)t+ (φ1 +φ2)] is DC for a slow detector, so the beat signal

is

IBeat ∝ E1E2 cos[(ω1 − ω2)t+ (φ1 − φ2)]

or IBeat ∝ E1E2e
i[(ω1−ω2)t+(φ1−φ2)]

(2.5)

with frequency ωbeat = ω1 − ω2. Here the phase of the beat signal φbeat = φ1 − φ2 is

the phase difference between two input fields. If we characterize the input fields in

a way that φ2 is known to us (e.g. let φ2 = 0), then φ1 can be reversely retrieved

through:

φ1 = φbeat + φ2 (2.6)
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with φ2 already known.

In our case both ω1 and ω2 are optical frequencies. If we carefully choose the

frequency of input fields so that ωbeat is in radio frequency(RF) band, using a slow

detector will only capture the signal at beat frequency ωbeat = ω2 − ω1. Thus the

phase of input optical field can be retrieved from a RF signal, whose phase is easy to

get through Fourier analysis.

Now we extend equation 2.5 to the beat signal between two combs. Suppose two

combs A and B are represented by Dirac comb in frequency domain as

N1∑
N=N0

δ[f − (N × fA + fceoA)]

M1∑
M=M0

δ[f − (M × fB + fceoB)]

(2.7)

Let fAj = j × fA + fceoA be the jth line in comb A and fBk = k × fB + fceoB be the

kth line in comb B. The field then is described as

N1∑
j=N0

Aje
2πifAjt+iφj

M1∑
k=M0

Bke
2πifBkt+iφk

(2.8)

where Aj, φj are amplitude and phase for the jth line in comb A and Bk, φk are

amplitude and phase for the kth line in comb B. The beat signal between these two

combs that appears pairwise between lines is

fAj>fBk∑
N0≤j≤N1,M0≤k≤M1

Cjke
2πi(fAj−fBk)t+i(φAj−φBk)+

fAj<fBk∑
N0≤j≤N1,M0≤k≤M1

Cjke
2πi(fBk−fAj)t+i(φBk−φAj)

(2.9)

Following assumptions are made for simplicity:

• Comb B is broader than comb A (i.e. f2M1 > f − 1N1 and f2M0 < f − 1N0)

• fB < fA so that fA = nfB + ∆frep where n is an integer and ∆frep is the least

positive remainder between fB and fA.
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• There exists a line s from comb B that fBs < fAN0 and the difference

fmin = fAN0 − fBs is minimized.

• Comb B has a pre-characterized phase profile where φBk = 0 for all M0 ≤ k ≤

M1.

Then the beat signal can be represented by

N1−N0∑
j=0

Cje
2πi(fmin+j∆frep)t+iφAj +

N1−N0∑
j=0

Cje
2πi(fB−fmin−j∆frep)t−iφAj (2.10)

which serves as a down-converted spectrum of comb A. Illustration of equation 2.10

will be discussed in sec. 2.2.

2.2 Experimental View

To help with better understanding of the notation, we name the comb with pre-

characterized phase the reference comb with line spacing fref ; and the comb with

unknown phase the signal comb with line spacing fsig. Then the frequency of lines

from the signal comb are N × fsig + fceo1 and lines from the reference comb are

N × fref + fceo2, where N is an integer.

We assume that fsig = n×fref +∆frep, where n is an integer and ∆frep is the least

positive remainder between fsig and fref . Here we call ∆frep the rep-rate difference

between the signal and reference comb.

Also we assume that the beating process described in Sec 2.1 begins at a fre-

quency difference of fmin, namely the lines beating with each other are at least of

fmin difference in frequency. If we care only the beating between lines and their clos-

est neighbor, it would result in a down converted signal comb spectrum in RF band

from 0 to fref with spacing ∆frep, as the yellow lines shown in Fig 2.1. Since the

remainder between fsig and fref is ∆frep, the next pair of lines beating would occur

at a frequency difference of fmin + ∆frep, and the next beat signal with frequency

fmin + 2∆frep etc.
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Fig. 2.1. Generation of down converted spectrum and mirror of signal comb

It’s worth noting that for every signal line beating with its low frequency neighbor

in reference comb with frequency difference f , it’s also beating with its high frequency

neighbor in reference comb with frequency difference fref−f . This generates a mirror

of the RF spectrum traveling backwards from fref −fmin with spacing −∆frep, as the

red lines shown in Fig 2.1.

In order to perform a robust measurement, the down converted spectrum needs

to be separated from its own mirror, meaning that the spectrum should stay within

the range of either 0− fref
2

or
fref

2
− fref . Also if ∆frep is set too large, the spectrum

will spread beyond fref to beat with the next n + 1th line instead of the nth, which

would cause a wrapping of the RF spectrum, as shown in Fig 2.2.
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Fig. 2.2. Illustration of the overlapping(top) and wrapping(bottom)
of the down converted spectrum.

Assume the numbers of total comblines resolved is Nline, for a simple scheme where

the down converted spectrum stays within the range of 0− fref
2

, the limitation above

gives:

fmin +Nline∆frep <
fref

2
(2.11)

for a distinguishable spectrum. In an experimental point of view, we can change fmin

by tuning fceo of the reference comb and ∆frep by tuning the repetition rate of the

reference comb fref to meet the requirement above.

To further illustrate the beating process, a simulation through MATLAB is shown

in Fig 2.3. In this simulation, we have a reference comb with rep-rate fref = 250 MHz

to beat with a signal comb with rep-rate fsig =200 GHz +1.5 MHz, which gives us

a rep-rate difference ∆frep =1.5 MHz. Both combs have a hyperbolic secant shaped

spectrum and the signal comb has a strong pump line at 1550 nm. We also set the

starting frequency fmin = 20 MHz.
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(a) (b)

(c) (d)

Fig. 2.3. Optical and RF spectrum acquired in simulation. (a) Spec-
trum of the reference comb. (b) Spectrum of the signal comb. (c)
RF spectrum of the beating signal. (d) Fig (c) enlarged to show the
down-converted spectrum of the signal comb in RF domain

2.3 Relation to conventional EFXC

Traditional electric field cross-correlation measures cross-correlational fringes with

respect to the delay between signal and reference fields through a interferometer. The

delay time is controlled by a mechanical translation stage. The fringes recorded by a

slow detector can be written as a function of delay τ [27]:

〈Pout(τ)〉 =
1

2
{Us + Ur +

∫
{as(t)a∗r(t− τ)ejω0τ + c.c.}dt} (2.12)
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Where Us and Ur are DC terms introduced by signal and reference pulse energy and

ω0 is the carrier frequency for both signal and reference field. Then through Fourier

analysis of the captured fringes one can recover the input field with knowledge of a

well-defined reference field [33].

The reason for our method to be named after electric field cross-correlation is

because that in traditional EFXC setup, the delay τ is controlled by a moving stage,

while in our setup, the delay is introduced by the rep rate difference ∆frep between

the signal and reference comb, causing them to automatically sweep through each

other in time without mechanical moving parts in setup, as shown in Fig 2.4.

Fig. 2.4. Illustration of reference comb field(green) automatically
sweeps through signal comb field(blue) in time due to ∆frep differ-
ence in FSR.
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3. DIGITAL SIGNAL PROCESSING

3.1 Discrete Fourier Transform

As from equation 2.5, the beat signal between signal and reference comb is given

by:

IBeat ∝ E1E2e
i[(ω1−ω2)t+(φ1−φ2)] (3.1)

If given the FSR difference between signal and reference comb ∆frep and starting

frequency fmin, the down-converted spectrum shown in Fig 2.1 can be described as

E(t) =
n∑
j=0

aje
i(2πfjt+φj) (3.2)

wherefj = fmin + j∆frep, and ak is the intensity of the beat signal, proportional to

the product between corresponding lines (E1E2).

Fig. 3.1. Basic scheme for the phase retrieval experiment

Assuming reference comb has a pre-characterized phase of φref = 0, then φk would

be the phase of corresponding lines of the signal comb. Fig 3.1 shows the basic scheme

for this process.

The signal from photodetector is sampled by oscilloscope into a sequence of

equally-spaced samples of finite length. Then the discrete Fourier transform(DFT)
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converts the sequence into samples of its discrete-time Fourier transform(DTFT),

giving the result in frequency domain.

The definition of DFT is given by

Xk
def
=

N−1∑
n=0

xn · e−2πikn/N , k ∈ Z (3.3)

or in its trigonometric form

Xk
def
=

N−1∑
n=0

xn · (cos(−2πk
n

N
) + i sin(−2πk

n

N
)), k ∈ Z (3.4)

where N is the number of sampled points.

The input field E(t) from equation 3.2 is sampled by a sample frequency fs into

a equally spaced sequence E(n). The sequence after DFT is

F(E(t)) = E(fk) =
n∑
j=0

aje
iφj · δ(fj − fk) (3.5)

Note that here we already mapped the DFT sequence onto distinct frequency values

fk = k fs
n

. δ is the Dirac delta function, meaning that the input time series is converted

into distinct complex values in frequency domain with argument φk.

3.2 Spectral Analysis

Considering the RF spectrum after DFT, it consists not only the beat signal, but

also its mirror with respect to fr
2

and the fr component from the reference comb with

lower line spacing. Thus equation 3.5 changes into

E(fk) ∝
n∑
j=0

aj
[
eiφj · δ(fj − fk) + e−iφj · δ(fr − fj − fk)

]
+ eiφr · δ(2πfr − fk) (3.6)

wherefk = fmin+k∆frep, and ak is the intensity of the beat signal. Fig 3.2 illustrates

the RF spectrum after DFT.
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Fig. 3.2. Illustration of RF spectrum(with positive frequency) after DFT

3.2.1 Aliasing

Note that in Fig 3.2, the highest frequency component we are interested in is fr.

To minimize the possible aliasing effect, the Nyquist–Shannon sampling theorem [34]

shows that for the sampling rate fs of the oscilloscope,

fs > 2fr (3.7)

A sampling rate lower than 2fr would fail to resolve the fr component, causing

aliasing. In experimental point of view, oversampling of the signal would eliminate

aliasing. And also for a time series sampled with sampling rate fs, the Fourier trans-

formed spectrum has a frequency range of [−fs/2, fs/2] assuming using a 2N+1 points

FFT(fast Fourier transform) algorithm, causing the intensity noise to be spread out

in frequency domain and increase signal-to-noise ratio(SNR). In practical setup we

choose to use fs ≈ 4fr.

3.2.2 Spectral leakage

For a N points series sampled by rate of fs, the DFT spectrum has a frequency

resolution of fs
N

, which means two adjacent points in frequency domain has a frequency
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difference of fs
N

. Assuming the beat signal has a narrow linewidth compared to spectral

resolution fs
N

, the spectrum can be seen as a Dirac comb in frequency:

∞∑
k=−∞

δ(fmin − k∆frep) (3.8)

where ∆frep is the period in frequency. For a DFT sequence of finite length N , DFT

assumes that its input sequence is a N-periodic sequence in time. Thus a rectangular

window of length N is applied to the original sequence. And we know that

F(f(n) · g(n)) = F(f(n)) ∗ F(g(n)) = F (k) ∗G(k) (3.9)

here the ∗ symbol is convolution. And the Fourier transform of a rectangular window

is sinc(πf): ∫ ∞
−∞

rect(t) · e−i2πft =
sin(πf)

πf
= sinc(πf) (3.10)

the window function rect(t) is defined as

rect(t) =


0 if |t| > 1

2
1

2
if |t| = 1

2

1 if |t| < 1

2

(3.11)

The DFT of the N -points series with mapped frequency is

|E(fk)|2 =
∞∑

k=−∞

|δ(fmin + k∆frep − fk) ∗ sinc(fmin + k∆frep − fk)|2 (3.12)

An example of the amplitude spectrum of sinc function is shown in Fig 3.3(b)

Note that in Fig 3.3(b), the sinc function has minimum at integer bin N and peak

at N + 0.5. This means that if the frequency of the sine wave is at integer bin N ,

then a Fourier transformed spectrum would have minimized sideband amplitude(We

name it ”on-grid”); on the other hand, if the sine wave has a frequency of N + 0.5,

the sideband amplitude is then maximized(”off-grid”), as shown in Fig 3.4.

This phenomena is named ”spectral leakage” as the sidebands greatly broadens

the off-grid sample of the spectrum. Sometimes it’s referred as ”scalloping loss” for

the flattened shape of the peak [35].
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(a) (b)

Fig. 3.3. (a) a sine wave truncated by a rectangular window. (b)
DFT of the truncated waveform, showing a sinc function in frequency
domain.

In our experiment, the RF spectrum is a sequence of comblines with frequency

fmin + k∆frep . To minimize spectral leakage, the comblines should be close to an

integer DFT bin, which means that the spacing between lines ∆frep should equal to

some integer multiple of spectral resolution fs
N

:

∆frep = n× fs
N
, n ∈ Z+ (3.13)

so we could tune the number of points sampled N such that

n =
N∆frep
fs

(3.14)

is a integer. As the time domain envelope also varies at frequency ∆frep, this ef-

fectively means that the N that satisfied equation 3.13 in frequency domain also

truncated integer multiple of envelope cycles in time domain. The conclusion pro-

vides a simple method when selecting suitable N in experiment, which we’ll discuss

in chapter 4.

Another problem involved by spectral leakage is if n has a small offset from a

certain integer, then the actual DFT bin spacing would also be slightly off from

∆frep. Instead of a total leakage, a walk-off of leakage would occur where the extent

of leakage ripples throughout the spectrum, as shown in Fig 3.5.
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(a)

(b) (c)

Fig. 3.4. (a)Illustration of a sinc shaped spectrum sampled at N
points and at N + 0.5 points. (b)An actual example of ”on-grid”
sample. (c)An actual example of ”off-grid” sample

An approach to solve this problem is increasing N to improve spectral resolution

fs
N

, thus reveal details of the spectrum sidebands to get rid of possible leakage. But

due to the stability limitation of the beat signal, N can’t be made infinitely large.

Thus zero-padding the captured sequence has a effect in revealing sidebands without

actually extending the measurment time.
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Fig. 3.5. Intensity ripple from spectral leakage.

3.2.3 Time shift

As equation 3.2 shows, the sampled signal can be represented by

E(t) =
n∑
k=0

ake
i(2πfkt+φk)

For the accuracy of measurement, phase result from different time windows are

averaged. But when capturing different time windows, a time shift with respect to

the envelope is introduced, thus introduced a linear phase shift:

E(t+ ∆t) =
n∑
k=0

ake
i[2πfk(t+∆t)+φk]

=
n∑
k=0

ake
i[2πfkt+(φk+fk∆t)]

(3.15)

if we apply fk = fmin + k∆frep to equation 3.15

E(t+ ∆t) =
n∑
k=0

ake
i[2πfkt+fmin∆t+(φk+k∆frep∆t)] (3.16)

Thus a linear term φ(∆frep) = k∆frep∆t + fmin∆t is applied to each φk. This term

should be removed before trying to average phase result from different time windows.
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A zero-phase reference is need between different measurements, which method will

be discussed in chapter 4.
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4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

The experiment setup is shown in Fig 4.1. The beating signal is generated by

a 2 × 2 50/50 coupler for maximum power efficiency. Balanced detector is used for

common mode suppression to maximize SNR. The polarization controller in line is

used to ensure that reference comb and signal comb have the same polarization, thus

maximizing power of the beat signal.

Fig. 4.1. Basic experimental setup. PC, polarization controller.

The RF output is then sampled by a digital oscilloscope. As in our experiments the

useful signal has a frequency range of [0,
fref

2
], so the fref signal from the reference

comb and signal with frequency higher than
fref

2
is suppressed using low-pass RF

filters before sampling. Properties of the low-pass filter are listed in Table 4.1. The

sampled sequence is then sent to a DFT algorithm for phase retrieval, as shown in

Fig 4.2. Properties of the balanced detector and 2 × 2 coupler is listed in Table 4.2

and Table 4.3.
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Fig. 4.2. Digital signal processing(DSP) of the sampled signal

Table 4.1.
Electrical specifications of low-pass filter - Mini-Circuits BLP-150+ / BLP-250+

BLP-150+ BLP-250+

Passband (loss < 1 dB) DC-140 MHz DC-225 MHz

fco (loss = 3 dB) 155 MHz 250 MHz

Stopband (loss > 20 dB) 210-300 MHz 320-400 MHz

Stopband (loss > 40 dB) 300-600 MHz 400-1200 MHz

Table 4.2.
Technical data of balanced detector - Thorlabs PDB460C

Detector Material / Type InGaAs / Pin

Operate Wavelength 800− 1700 nm

Max. Responsivity 1.0 A/W

RF Output Bandwidth (-3dB) DC - 200 MHz

CMRR > 25dB

CW Saturation Power 120µW @ 1550 nm

Overall Output Voltage Noise 2.3 mVRMS

4.1.1 Stability limit

As we discussed in Chapter 3, the sampling time can’t be infinitely large due to

the instability of the beat signal. Drift in repetition rate and pump laser frequency of
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Table 4.3.
Data sheet of 50/50 optical coupler

Operate Wavelength 1550± 40nm

Fiber Type SMF-28e fiber with 900µm loose tube

Splitting Ratio 50:50

Connector FC/UPC

the combs can cause the beat signal to jitter. A stable measurement can only be made

in a time window where jittering of the beat signal is much smaller than the spectral

frequency resolution fr
N

. An example of multiple peaks in spectrum introduced by

longer time window is shown in Fig 4.3.

(a) (b)

Fig. 4.3. (a) Dual-peaks appear at 40 µs time window. (b) Multiple
peaks due to jittering at 100 µs time window.

Unless otherwise specified, the reference comb we used is a mode-locked laser

based optical frequency comb by MenloSystems, with free spectral range fref = 250

MHz. Sampling rate of the oscilloscope is fs = 4fref = 1 GHz. And a time window

used for DFT is ≈ 10 µs (≈ 10, 000 sampled points). Properties of the reference comb

are listed in Table 4.4.
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Table 4.4.
Technical data of MenloSystem Comb

Comb spacing 250 MHz

Accuracy 10−14 or same as reference

Stability 5 · 10−13 in 1 sec. or same as reference

Tuning Range of Spacing > 2 MHz

Tuning Range of fCEO ≈ 250 MHz

Central Wavelength 1560 nm

Spectral Range > 35 nm

4.1.2 Phase retrieval algorithm

The phase retrieval algorithm is done through peak detection of the DFT spec-

trum. To illustrate the phase retrieval process, an example experiment on a Kerr

comb (fsig = 227 GHz) is performed. The DFT spectrum is shown in Fig 4.4.

(a) (b)

Fig. 4.4. (a) RF spectrum of beat signal between Menlo reference
comb and a Kerr comb. (b) Fig 4.4(a) enlarged to show details of the
down-converted spectrum.
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Discussions in section 3.2 ensure the spectrum has minimum spectral leakage and

only one pixel at each of the peaks. A simple peak detection algorithm would locate

the peaks and corresponding phase of each line. Then phase data from different sets

are averaged after removing constant and linear phase difference between sets. This

is done through the following procedure:

1. Select a certain line as zero-phase reference, often the line with the highest

power for stability of the algorithm. The phase difference between the reference

line and zero is the constant difference φc.

2. Subtract the φc from every set of phases. Then the constant difference is re-

moved.

3. For each phase set, select the next line from the zero-phase reference. The phase

difference between the next line and zero is the linear difference for this set φl.

4. Label each measured line with a index ki = i, where the zero reference selected

in step 1 is labeled k0 = 0.

5. Apply a linear phase −kiφl to each line ki. Then the linear phase difference is

removed.

6. We can repeat step 3 to 5 by selecting a linear reference line N lines away from

the zero reference to avoid accumulated error by the linear fit. Note that now

the linear coefficient is φN
N

instead of φN .
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(a) (b) (c)

Fig. 4.5. (a) Spectrum of Kerr comb. (b) Spectrum of the reference
comb. (c) Line-by-line product between signal and reference comb

Then the averaged phase of each RF line is applied to the optical combline to

show the phase of each line. Fig 4.5 shows the spectrum of signal and reference comb

(4.5(a), 4.5(b)), and also the product between the signal and reference comb (4.5(c)).

Notice the similarity between Fig 4.4(b) and 4.5(c), giving evidence that the beat

signal serves as a down-converted optical spectrum as derived in equation 2.5.

The reference comb is first compressed to near transform-limited to meet the

condition of φref ≈ 0. An example of measured phase with constant and linear

difference removed is shown in Fig 4.6. Note the quadratic phase introduced by extra

fiber link in the setup. The length of the link is measured and corresponding phase

is removed to get actual phase of the comb.

In the example shown in Fig 4.6, the power the signal and reference comb is listed

in table 4.5 as a reference for sensitivity limit of the measurement. Actual sensitivity

can be improved by using longer time window and larger frequency offset ∆frep, which

are limited by the FSR of the reference comb fref and stability of the beat signal.
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Fig. 4.6. Example of measured phase over 10 different time windows.
Average error-bar of the measured phase is 0.02 radian

Table 4.5.
Power limit of measurement in Fig 4.6

Signal comb Reference comb

Total power 20 µW 0.5 mW

Average line power 1 µW 15 nW

Minimum line power 250 nW 1.3 nW

4.1.3 Choosing ∆frep

As derived in chapter 2, the offset frequency ∆frep = fsig − nfref represents

not only the spacing between lines of RF spectrum, but also the frequency of the
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envelope in time domain. For a time window of given length limited by signal stability,

larger ∆frep would increase the number of envelope cycles captured, thus increase

resolvability of the RF spectrum. But meanwhile, equation 2.11 sets the upper bound

for ∆frep. In practical setup, as fref = 250 MHz, Nline ≈ 25, we often choose

∆frep = 3− 4 MHz for best result.

4.2 EO-comb phase measurement

Electrooptic comb, EO-comb for short, as discussed in section 1.1.2, has a broadly

tunable FSR controlled by the driving RF frequency. It also has a easily tunable fceo

as well as center wavelength controlled by input CW laser frequency.

The basic scheme is shown in Fig 4.7. First measurement measures the phase

difference between EO and reference comb φ0 = φEO − φref . Then EO-comb is

sent through a pre-characterized component with phase response ∆φ. The second

measurement measures the phase between the reference comb and EO-comb after the

medium φ1 = (φEO + ∆φ) − φref . Then we compare the two results with the phase

response of the component to see whether φ1 − φ0 = ∆φ to test the accuracy of the

measurement.

Fig. 4.7. Scheme of phase measurement between EO-comb and reference comb

In this section, the reference comb is the 250 MHz mode-locked laser described in

Table 4.4. The signal comb is an EO-comb with ∼ 20 lines and repetition rate of 10

GHz.



35

4.2.1 π shift step function

In this experiment the phase shift component is a conventional pulse shaper based

on spatial light modulators [36]. The principle of shaping is shown in Fig 4.8. Differ-

ent frequency components from the input light are spread and collimated in space by

a combination of grating and lens. Then a programmable mask applies different phase

on these spatially separated frequencies. And another lens-grating combination re-

assemble these frequencies to a collimated beam with shifted phase. The specification

of the pulse shaper we used is listed in table 4.6.

Table 4.6.
Specification of pulse shaper - Finisar 1000S

Operating Frequency 191.250 THz - 196.275 THz

Operating Wavelength 1527.4 nm - 1567.5 nm

Filter bandwidth 10 GHz - 5 THz

Frequency Setting Resolution ±1 GHz

Settling Time 500 ms

Fig. 4.8. Scheme of pulse shaping [36]
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The phase difference we applied is a gate function with height π. The comparison

between applied phase ∆φ and measured difference φ1 − φ0 is shown in Fig 4.9. The

standard variation between different sets of data is less than 5 · 10−3.

Fig. 4.9. Comparison between dual-comb measured phase and step
function applied.
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4.2.2 Quadratic phase

Using the same signal and reference comb from section 4.2.1, We apply a quadratic

phase with respect to frequency to simulate a single-mode fiber (SMF) link. The pulse

shaper described in Table 4.6 has 5025 programmable pixels, each with frequency

f(i) = (191.250 + i/1000) THz (4.1)

The phase applied on the ith pixel is

φ(i) = 3 · 10−5 × (i− 2012)2(radian) (4.2)

thus in frequency, the quadratic phase can be written as

φ(f) = 3 · 10−5 × [
f − f(2012)

1 GHz
]2 = 3 · 10−5 × [

f − 193.262 THz

1 GHz
]2 (4.3)

The comparison between applied and measured phase is shown in Fig 4.10.

Fig. 4.10. Comparison between dual-comb measured phase and
quadratic phase applied. Average error is less than 0.02 radian

.
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4.3 Kerr comb phase measurement

With accuracy of the measurement proved in section 4.2, we now apply this

method to combs generated through a microresonator. To measure the absolute

phase of these combs, a reference with known phase is needed.

Fig. 4.11. Setup for Kerr-comb phase measurement. PC, polarization
controller; LPF, RF low-pass filter

In Fig 4.11, we first characterize the reference comb using a pulse shaper. The

output from the pulse shaper is sent into a autocorrelator to measure its autocorrela-

tion trace. Second and third order phase is compensated by the pulse shaper in order

to acquire a transform limited pulse from the reference comb. The specification of

the pulse shaper used is listed in table 4.7(which is almost twice the bandwidth of

listed in table 4.6).

An autocorrelation trace of 250 fs is captured by the autocorrelator, corresponding

to a ∼ 170 fs pulse assuming a Gaussian shaped pulse. The autocorrelation trace is

shown in Fig 4.12. As Fourier transform of the spectrum gives a ∼ 150 fs transform-

limited pulse. We can say that the 170 fs pulse is capable of serving as a reference

with approximately flat phase profile. Then with φref ≈ 0, the measured phase

φ0 = φsig − φref directly represent the phase from the signal comb.
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Table 4.7.
Specification of pulse shaper - Finisar 4000S

Operating Frequency 187.275 THz - 196.275 THz

Operating Wavelength 1527.4 nm - 1600.8 nm

Filter bandwidth 20 GHz - 9 THz

Frequency Setting Resolution ±1 GHz

Settling Time 500 ms

Fig. 4.12. Autocorrelation trace of the reference comb. FWHM is 250 fs

4.3.1 Single soliton comb

Following the setup in Fig 4.11, we measured the phase of a Kerr comb in single

soliton regime. The microring is the same with the one reported in [37] with quality

factor Q ≈ 3× 106, FSR = 228 GHz and dispersion β2 = −61 ps2km−1. As shown in

Fig 4.13, the phase profile consists of a flat background and a phase offset at pump

line.
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Fig. 4.13. Measured phase of a single soliton comb. The circled line
is the pump line of the comb. The measured phase profile shows a
phase offset of ∼ -1.5 radian from the flat background.

The measured phase have a bandwidth from 1540 nm to 1580 nm, which is limited

by the bandwidth of the reference comb we can generate using a pulse shaper. The

rising tail at ∼1545 nm might come from higher order phase term of the reference

comb.

Pump line phase offset is defined as the phase offset between pump line phase and

the flat soliton phase background. This offset has been a interesting topic in Kerr

comb researches as the offset describes the interference between CW background and

soliton phase [38]. As we further detune the pump laser, the phase offset of the pump

line changes with detuning as well, shown in Fig 4.14(b)

Earlier line-by-line measurement and simulation [37,38] shows possible offset from

−π/3 to -0.42 rad, as shown in Fig 4.15. Our dual-comb measurement acquired offset

phase from -1.54 rads to -0.4 rad, showing broader possible range.



41

(a) (b)

Fig. 4.14. (a) Microresonator used to generate single soliton comb. [37]
(b) Change of pump line phase offset with respect to pump wave-
length. The circled point is the case measured in Fig 4.13.

(a)

(b)

Fig. 4.15. (a) -0.42 rad offset phase measured by line-by-line phase
shaping [37] (b) −π/3 to −π/4 offset predicted by simulation from
LL-equation [38].
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4.3.2 Dark soliton comb

Repeating the experiment on a SiN microring demonstrated in [39]. The ring

has a a normal dispersion β2 = 190.7 ± 8.4 ps2km−1 with loaded quality factor Q

≈ 7.7 × 105 and FSR = 231.3 GHz. The measured phase is shown in Fig 4.16. As

seen from Fig 4.16(b), phase retrieved by dual-comb measurement matches closely to

result from line-by-line shaping.

(a) (b)

Fig. 4.16. (a) Structure of the microresonator for dark soliton genera-
tion. (b) Comparison between phase measured by dual-comb and by
line-by-line shaping [39].
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4.3.3 Multiple soliton comb

Using the same setup in Fig 4.11, phase from a multiple soliton comb is also

measured. An inverse Fourier transform using measured phase and spectrum from

OSA gives the time domain trace of the multi-soliton comb, shown in Fig 4.17.

(a) (b)

Fig. 4.17. (a) Spectrum of multiple soliton comb. The lines circled
are the lines with measured phase. (b) Retrieved time trace using
measured phase data, showing 4 solitons in a round trip cycle.

The circled lines in Fig 4.17(a) consists about 80% of the comb energy. As we

increase the number of lines involved in reverse Fourier transform, the relative position

between solitons stays the same but no solid conclusion can be made towards the

relationship between the amplitude and pulse-width of the solitons are identical or

not as unmeasured lines can still affect soliton power. The evolution of time trace

with change in line number is shown in Fig 4.18.

In order to have an estimation of the bandwidth needed to predict if the solitons

are of identical amplitude, we perform a numerical simulation using MATLAB. In this

simulation, we construct a optical spectrum corresponding to a time-domain trace of

4 solitons per round trip with equal amplitude. As we already knew the phase of

each line in the simulation, we can gradually reduce the number of lines involved in

the field reconstruction process to see whether the retrieved pulses are still of equal
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(a) (b)

(c) (d)

Fig. 4.18. The evolution of retrieved time trace using phase from
circled (a) 15 lines; (b) 21 lines; (c) 24 lines; (d) 28 lines, showing
relative position of each soliton

amplitude, as shown in Fig 4.19. The actual bandwidth requirement may differ from

different input spectrum, but typically for a power difference tolerance of 5%, the

result from the simulation shows that a measurement covering ∼ 8 THz bandwidth

or 90% of the total power is needed.
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(a) (b)

(c) (d)

Fig. 4.19. Simulation of bandwidth requirement of multiple soliton
field reconstruction (a) Example spectrum used in simulation; (b)
Reconstructed time-domain trace; (c) Change in retrieved soliton am-
plitude with respect to simulation bandwidth; (d) Change in retrieved
soliton amplitude with respect to covered power of input comb
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5. SUMMARY

In this thesis, we demonstrated a phase measurement method based on dual-comb

electric field cross-correlation(EFXC). This method provides a way towards full char-

acterization of optical frequency combs without nonlinear process, thus it greatly low-

ers the power requirement compared to conventional methods like frequency-resolved

optical gating(FROG). With a pre-characterized reference comb, optical phase of sig-

nal comb can be retrieved by simply measuring the phase of beat RF signal between

combs, and experimental results shows a measurement precision of ∼ 0.02 rad.

Using this method, phase data from a single soliton comb and dark soliton comb

are measured and matches closely to theoretical prediction or result from conventional

line-by-line shaping. Phase data from multiple soliton comb reveals the time trace

and relative position between multiple solitons. The phase response of a unknown

optical component can also be measured by using two comparative measurements.

Future works on dual-comb phase measurement will focus on pushing the limit

of this method. E.g. creating reference comb with broader spectrum would greatly

increase bandwidth limit of the measurement; removing higher order phase term

from reference would eliminate unexpected ’tails’ in retrieved phase. Using reference

with higher FSR would rise the upper bound of offset frequency ∆f , thus more

envelope cycles can be captured in the same time window, increasing stability of

the measurement. Applying this method to measurement of multi-mode fiber phase

response also has great potential in optical communications.

Due to the low power requirement of this method, it can be applied to low-power,

high duty cycle devices which phase has yet to be measured due to the limitation of

output power, thus a new way of optical waveform characterization has been discov-

ered, and revealed exciting opportunities for further exploration of optical frequency

combs.
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