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We generate ultrabroadband photon pairs entangled in both
polarization and frequency bins through an all-waveguided
Sagnac source covering the entire optical C- and L-bands
(1530–1625 nm). We perform comprehensive characteriza-
tion of high-fidelity states in multiple dense wavelength-
division multiplexed channels, achieving full tomography
of effective four-qubit systems. Additionally, leveraging the
inherent high dimensionality of frequency encoding and our
electro-optic measurement approach, we demonstrate the
scalability of our system to higher dimensions, reconstruct-
ing states in a 36-dimensional Hilbert space consisting of
two polarization qubits and two frequency-bin qutrits. Our
findings hold potential significance for quantum networking,
particularly dense coding and entanglement distillation in
wavelength-multiplexed quantum networks. © 2023 Optica
Publishing Group

https://doi.org/10.1364/OL.503127

Photonic hyperentanglement typically describes two-photon
states that exhibit simultaneous entanglement in multiple inde-
pendent degrees of freedom (DoFs), e.g., orbital angular
momentum, spatial mode, time–frequency, and polarization
[1–10]. The expansion of the Hilbert space enables deterministic
controlled operations between two DoFs within a single photon,
showcasing a significant potential for quantum communication
protocols including dense coding [3,4] and single-copy entan-
glement distillation [7,8,11,12]. Among the various exploitable
DoFs, the polarization DoF has historically received exten-
sive investigation, primarily due to readily available tools for
state manipulation. On the other hand, time–frequency encoding
stands out as a promising candidate due to its compatibility with
established fiber-optic networks. Specifically, discrete frequency
bins [13,14], a special case under the wider time–frequency
paradigm, offer practical advantages such as straightforward
multiplexing, parallel processing of multiple qubits, and the
absence of nested interferometers that typically require active
stabilization.

In this work, we present an all-waveguided, ultrabroadband
polarization–frequency hyperentangled source. We perform,

to the best of our knowledge, the first full quantum state
tomography (QST) of polarization and frequency-bin hyper-
entangled states, characterizing multiple pairs and triplets of
25 GHz-wide dense wavelength-division multiplexing channels
sampled across the optical C-band (1530–1565 nm) and L-band
(1565–1625 nm), corresponding to frequency-bin qubits and
qutrits, respectively. Through the serial application of polariza-
tion projections and electro-optic-based frequency mixing, our
scheme can probe arbitrary bases in the complete two-photon
polarization and frequency Hilbert space, thus facilitating full
state reconstruction with no constraints on the ground truth state.
Our procedure is experimentally demonstrated for up to 36-
dimensional hyperentangled systems yet is in principle scalable
to much higher dimensions. Our source design and character-
ization techniques open new avenues for hyperentanglement
generation and manipulation in these two important DoFs.

Figure 1(a) depicts the experimental setup, encompassing the
hyperentangled photon source and two stages of state analyzers
for each photon: one for polarization and one for frequency bins.
We operate a continuous-wave laser around 783 nm and pump a
12 mm-long type-0 periodically poled lithium niobate (PPLN)
ridge waveguide (AdvR) in a fiber Sagnac loop [15–18], result-
ing in the generation of energy-correlated photons spanning
about 18 THz [18]. We employ a combination of a liquid crystal
wave plate (WP; Thorlabs) and a fiber polarizing beam splitter
(PBS) to split the laser and coherently pump the waveguide from
both directions. Using a 90-degree rotated fiber in one of the
PBS outputs aligns pump photons and generated photon pairs
in both directions to vertical polarization while traversing the
PPLN waveguide [17,18]. Upon recombination at the PBS and
the 780/1560 nm wavelength-division multiplexer, the generated
photon pairs are in the form of a polarization-entangled state
|ΨP⟩ ∝ α |HH⟩ + β |VV⟩. The present source, which builds upon
the design presented in [18], has previously shown high-fidelity
polarization entanglement across 150 pairs of 25 GHz-wide
channels. In this work, we introduce a notable stability improve-
ment by tapping 1% of the light in the Sagnac loop for active
feedback of a WP, which maintains the counterclockwise pump
power to within ∼1% of its target value, countering the ∼20%
environmentally induced fluctuations observed previously from

0146-9592/23/226031-04 Journal © 2023 Optica Publishing Group

https://orcid.org/0000-0003-4009-0787
https://orcid.org/0000-0002-6429-3450
https://orcid.org/0000-0002-6736-340X
https://orcid.org/0000-0002-1334-8183
https://orcid.org/0000-0001-9650-4462
https://orcid.org/0000-0002-7215-9630
https://doi.org/10.1364/OL.503127
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.503127&amp;domain=pdf&amp;date_stamp=2023-11-14


6032 Vol. 48, No. 22 / 15 November 2023 / Optics Letters Letter

Fig. 1. (a) Experimental setup. (b) Conceptual diagram of the hyperentangled source. The background depicts the SPDC spectrum
experimentally measured on an optical spectrum analyzer, shown in a linear scale and truncated to the C/L shaper passband. The arrows
represent 18 GHz-wide frequency bins spaced by 25 GHz. The stars mark the centers of the five signal–idler channel pairs characterized in
this study. (CW: continuous-wave laser. WP: liquid crystal wave plate. WDM: 780/1560 nm wavelength-division multiplexer. PBS: polarizing
beam splitter. PPLN: periodically poled lithium niobate waveguide. EOM: electro-optic phase modulator. WSS: wavelength-selective switch.
SNSPD: superconducting nanowire detector.)

the PBS at 783 nm [18]. With this addition, 31 independent
polarization QST trials on the same 25 GHz-wide channel pair
were found to yield a mean fidelity of 98.6% with a standard
deviation of only 0.3% over the course of 18 hours.

The broadband spectral coherence and energy correla-
tion between signal and idler photons also provide a nat-
ural resource for investigating frequency-bin entanglement
and higher-dimensional Hilbert spaces [9,13,14,19,20]. Sev-
eral techniques have been explored to create discrete frequency
bins: one approach incorporates resonant structures into the pair-
generation process [5,6,20]; alternatively, continuous biphoton
spectra can be shaped into bins using external cavities [19,21]
or programmable frequency filters [9,22]. Here we adopt the last
configuration by introducing a Fourier transform pulse shaper
(Finisar Waveshaper 4000B) to carve out energy-correlated
frequency-bin pairs: Fig. 1(b) highlights a qubit example with
two bins in the L-band (I0 and I1) and two in the C-band (S0

and S1). Each bin is 18 GHz wide and spaced 25 GHz apart.
Additionally, the same pulse shaper splits the signal and idler
photons into separate optical fibers for subsequent state char-
acterization. Assuming entanglement in both DoFs, the ideal
entangled two-photon state can be expressed as follows:

|ΨPF⟩ = |ΨP⟩ ⊗ |ΨF⟩

= (α |HH⟩ + β |VV⟩) ⊗
d−1∑︂
k=0

γk |ω
(I)
k ω

(S)
d−1−k⟩,

(1)

where ω(I)
k = ω

(I)
0 + k∆ω and ω(I)

d−1−k = ω
(S)
d−1 − k∆ω denote fre-

quencies carrying photons chosen from the spectrum such that
ω(I)

0 + ω
(S)
d−1 = ωp (the pump). The broadband nature resulting

from the type-0 phase matching condition ideally yields |γk | ≈
1
√

d
for all bins of interest. Any nonuniformity can be rectified

via the pulse shaper [23] (not required in our experiments).
For a hyperentangled photon pair with N DoFs, each having

encoding levels d1, d2, . . . , dN , a complete state reconstruction
typically requires O

(︁∏︁N
i=1 d4

i

)︁
linearly independent local pro-

jections across these N DoFs, as the minimum number of
independent parameters describing a mixed state scales quadrat-
ically with the Hilbert space dimension [24]. For instance, a
total of 24 × 34 = 1296 measurements were performed in [2] to
achieve full tomography of a (d1 ⊗ d1) ⊗ (d2 ⊗ d2) = (2 ⊗ 2) ⊗
(3 ⊗ 3) system, which involved a pair of polarization qubits
and orbital angular momentum qutrits. An experimentally sim-
pler approach involves QST of each DoF independently, using
semidefinite programming to compute a lower bound on the
global state fidelity from information in reduced density matrices

[9,25,26]. This approach reduces the number of measurements to
O

(︁∑︁N
i=1 d4

i

)︁
(a sum over DoFs rather than a product), particularly

valuable when scaling to higher dimensions. While valuable
for tasks like entanglement certification, these measurements
alone do not grant access to the complete density matrix of the
hyperentangled state.

We follow the first approach by performing local projections
simultaneously in both DoFs. For polarization tomography, we
employ two motorized polarization analyzers comprising free-
space collimators, a quarter-wave plate, a half-wave plate, and
a polarizing beam splitter, with a total throughput of ∼70%.
Frequency measurement is a more intricate process. Previous
methods in the context of polarization–frequency hyperentan-
glement [9,10] have relied on Hong–Ou–Mandel interference to
verify frequency entanglement and then infer the density matrix
under specific state assumptions [27]. However, for slow (inte-
grating) detectors, this approach is sensitive to two-dimensional
frequency-bin entanglement only, where the signal and idler
photons also share identical spectra [28]. For more general
state analysis applicable to high-dimensional and nondegener-
ate photons, we utilize an electro-optic phase modulator (EOM;
EOspace) and wavelength-selective switch (WSS; Finisar) to
implement the necessary projective measurements [19–22] for
the frequency DoF. It is crucial to execute the frequency-bin
projection after the polarization analyzer due to the polariza-
tion sensitivity of the phase modulation; in this way, each EOM
receives a fixed physical polarization state throughout and can
provide consistent modulation and transmission efficiencies.

To achieve full reconstruction of the actual global state ρPF

with qubit frequency encoding [d = 2 in Eq. (1)], we employ a
total of 16 × 8 local projections across the two DoFs: i.e., 16
polarization projections (as listed in Table I of [29]) paired with
8 frequency-resolved measurements (4 projections in the Pauli
Z ⊗ Z basis and 4 in the X ⊗ X basis. Projections in the Z ⊗ Z
basis are essentially a 2 × 2 joint spectral intensity measure-
ment. For this measurement, we turn off the drive signals for
both EOMs and configure two WSSs—one for the signal photon
(C-band WSS) and one for the idler photon (L-band WSS)—to
demultiplex each photon by color, recording the coincidences
between specific signal and idler bins. The X ⊗ X measure-
ment is equivalent to preceding the Z ⊗ Z measurement with
two parallel, frequency-bin Hadamard operations, which we
implement probabilistically by driving the EOMs at the bin
spacing (25 GHz) with a modulation index of 1.435 rad (chosen
for equal mixing probability between two adjacent bins [21]).
While we could implement a more traditional tomographically
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Fig. 2. Bayesian mean density matrices (real parts) of the (2 ⊗

2)P ⊗ (2 ⊗ 2)F hyperentangled state [arrows in Fig. 1(b)] and its
reduced states in individual DoFs. The imaginary components (not
shown) are less than 0.005 for all density matrices.

complete measurement set in frequency bins, the strong corre-
lations observed in these two mutually unbiased bases (MUBs)
are sufficient to provide a clear entanglement witness [30] that,
when combined with Bayesian inference, can be used to estimate
the full quantum state with low uncertainty [19]. Significantly,
this situation is possible with a completely uniform prior dis-
tribution—i.e., with no a priori restrictions on the form of the
state itself—as Bayes’ theorem automatically extracts all the
information available in a given measurement set via its logical
framework [31–33].

Figure 2(a) presents the Bayesian mean density matrix ρPF

for a channel pair with signal and idler photons centered at
1554.2 nm and 1577.0 nm [arrows in Fig. 1(b)], respectively,
obtained from 128 projections with 60 s integration time per
point (totaling ∼104 counts in the dataset). Computing the
fidelity of 1024 density matrix samples with the target state
[Eq. (1) with α = β and γ0 = γ1], we find FPF = 94.4(6)%—a
value that simulations suggest is constrained by the number of
coincidence events, rather than the quality of the states. We
also evaluate the reduced states in polarization (ρP = TrFρPF)
and frequency (ρF = TrPρPF) by computing the respective par-
tial traces. The density matrices and fidelities with respect
to |ΨF⟩ and |ΨP⟩ in Eq. (1) are presented in Figs. 2(b) and
2(c). Quantitatively, we can lower- and upper-bound the distil-
lable entanglement per DoF with the coherent information IC

(maximized over one-way communication direction) [34] and
logarithmic negativity EN [35,36], respectively. From the QST
data, we obtain the intervals [IC, EN] = [0.69(3), 0.936(9)] ebits
for ρP and [IC, EN] = [0.76(2), 0.954(5)] ebits for ρF, confirm-
ing clear usable entanglement in both DoFs. Recognizing the
impracticality of performing tomography for every conceivable
channel, we choose to replicate the tomographic procedure for
four additional channel pairs spanning the spectrum, denoted by
stars in Fig. 1(b). We measure the following hyperentangled state
fidelities (counting outward from the spectral center), denoted
as ordered pairs (FPF,FP,FF): (93.3(7), 94.5(6), 95.9(4))%,
(93.3(7), 94.5(6), 96.1(4))%, (93.7(8), 94.8(7), 96.7(3))%, and
(91.3(9), 93.1(8), 94.8(5))%. With the exception of potential
variations in brightness, we do not anticipate any correlation
between the quality of entanglement and the specific channel
locations. Therefore, we believe that this sampling demon-
strates the persistence of genuine hyperentanglement across the
bandwidth, in accordance with our expectations.

Fig. 3. Bayesian mean density matrices (real parts) of the
(2 ⊗ 2)P ⊗ (3 ⊗ 3)F hyperentangled state and its reduced states in
individual DoFs. The imaginary components (not shown) are less
than 0.05 for all density matrices.

Given the broadband nature of the generated photon
pairs, expanding the frequency dimensions is straightfor-
ward. For instance, to create frequency qutrits (d = 3), we
can simply consider three pairs of 25 GHz-spaced, 18
GHz-wide bins, ideally resulting in the state |ΨPF⟩ = |ΨP⟩ ⊗

1
√

3

(︂
|ω(I)

0 ω
(S)
2 ⟩ + |ω(I)

1 ω
(S)
1 ⟩ + |ω(I)

2 ω
(S)
0 ⟩

)︂
. However, as the system’s

dimensionality increases, so does the number of measurements
required for QST. In the interests of speed, we take advantage
of the high degree of polarization entanglement and consider
measurements in the Z ⊗ Z and X ⊗ X MUBs only (the same
pair explored for frequency bins in the qubit example), thus
reducing the number of polarization measurements from 16 to 8.
To characterize high-dimensional frequency-bin entanglement,
we leverage a novel method based on random measurements.
This involves applying random phases with the pulse shaper
and random frequency mixing with the EOMs, followed by
computational-basis measurements [20]. We consider a total
of 720 measurements (60 s each): 8 polarization projections,
10 different random EOM and shaper settings (motivated by
findings in [20]), and d × d = 9 signal–idler frequency-bin com-
binations. Specifically, for each setting, the pulse shaper applies
2d = 6 random spectral phases between 0 and 2π to the afore-
mentioned frequency bins, and both EOMs receive a sinusoidal
voltage with amplitude δ chosen randomly between 0 and 2.32
radians [20]. The resulting mean density matrix for frequency-
bin qutrits centered at 1561.2 nm and 1569.8 nm [the two middle
stars in Fig. 1(b)] is plotted in Fig. 3(a) and shows a high-fidelity
hyperentanglement: FPF = 90.8(7)% in the (2 ⊗ 2)P ⊗ (3 ⊗ 3)F
system. We again compute the reduced states in both DoFs
[Fig. 3(b,c)], with measured distillable entanglement intervals of
[IC, EN] = [0.62(1), 0.915(3)] and [IC, EN] = [1.04(4), 1.48(1)]
ebits for the polarization and frequency DoFs, respectively, to
be compared with the maximum qubit limit of 1 ebit and qutrit
limit of 1.58 ebits.

Looking ahead, we see no immediate obstacles to generating
even higher-dimensional hyperentangled states by expanding
the frequency dimension, which in principle is capped only by
the ratio of total bandwidth to the bin spacing. Nevertheless,
introducing more spectral content may degrade polarization
entanglement due to increased sensitivity to polarization-
mode dispersion (PMD) [37], introducing undesired polar-
ization–frequency correlations that will ultimately depend on
the specific fiber channel. To augment dimensionality without
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increasing bandwidth (and hence protecting the state from PMD
impairments), narrower frequency spacings can be pursued
instead, yet it is important to note that commercial diffractive
pulse shapers and WSSs usually have resolutions ≳10 GHz.
Ultimately, the optimal solution could involve a fully integrated
version of the Sagnac source, supporting polarization diver-
sity and allowing direct definition of frequency bins through
the optical resonances of microrings. Such an integrated source
could eliminate post-generation filtering needs and minimize
potential losses. Importantly, in any case where PMD limits the
usable frequency-bin dimension for an individual state |ΨPF⟩, the
remaining bandwidth can still be leveraged for parallelization, in
which the output is sliced into subbands narrow enough to evade
PMD degradation but still collectively utilize the entire band.
Such a source could be used for wavelength-multiplexed entan-
glement distribution, but where the intra-channel frequency-bin
entanglement carries explicit quantum information along with
polarization DoF.

Finally, the ability to manipulate the expanded Hilbert space
is the key to fully harnessing the potential of hyperentangled
states. For example, controlled unitaries between polarization
and frequency DoFs [38] will be valuable for implementing
hyperentanglement-based versions of protocols such as dense
coding [3], superdense teleportation [39,40], and entanglement
distillation [7,8,11,12]. However, the EOMs utilized in our
scheme are polarization-sensitive, which limits their suitabil-
ity for certain applications in this context. While we can evade
this restriction in QST by placing the EOMs after polarization
projections, such a simplification will not be feasible for general
quantum operations in the joint Hilbert space. Further advances
in polarization-diverse/insensitive frequency modulation tech-
niques [22,41] will therefore prove valuable to fully utilize such
states in multidimensional quantum information processing.
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