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Spectral compression will be needed for efficient inter-
facing of broadband photons with narrowband quantum
memories for applications in quantum information and
networking. In this Letter, we propose spectral compression
via a time-varying, linear optical cavity. Unlike other recent
works on time-varying cavities based on modulation of
the intracavity phase, our spectral compression concept is
based on rapid switching of coupling into the cavity. We
analyze spectral compression performance metrics as a
function of mirror reflectivity, cavity loss, and switching
speed and discuss potential implementation in integrated
photonics. © 2020 Optical Society of America

https://doi.org/10.1364/OL.404891

Linear, time-invariant optical cavities are used widely as spectral
filters. However, several new phenomena arise when linear cavi-
ties are actively modulated. Dynamical tuning of the refractive
index has been exploited to experimentally demonstrate adia-
batic wavelength conversion in optical cavities [1,2], on-chip
nonreciprocal transmission of light [3], frequency comb genera-
tion in electro-optic cavities [4–6], and optical storage, retrieval,
and manipulation in active photonic molecule structures [7,8].
Numerical studies involving coupled cavities, subjected to
dynamic refractive index tuning, predict more novel phenom-
ena including stopping, coherent storage, and time reversal
of light [9]. Dynamically coupled nonlinear cavities have also
been proposed to achieve high fidelity deterministic quantum
gates for photonic qubits [10]. It is important to note that the
dynamical tuning of the cavity for such applications should be
achieved in a time scale much shorter than that of the photon
lifetime.

In this Letter, we propose and analyze the use of time-varying
cavities for spectral compression. Unlike the time-varying
cavities cited above, which are all based on modulation of the
intracavity phase, our spectral compression concept is based on
rapid switching of coupling into the cavity. In view of strong
interest in quantum information and quantum networking
[11], spectral compression is needed to efficiently interface
broadband photons, such as those from parametric down-
conversion sources, with narrowband nodes, such as quantum
dots, color centers, and atomic systems. Spectral compres-
sion has also been employed in classical applications such as
absorption spectroscopy [12] and nonlinear (especially Raman)

microscopy [13]. Prior approaches to spectral compression have
for the most part relied on nonlinear optical schemes, including
self-phase modulation of down-chirped pulses in conventional
optical fibers [13], soliton propagation in dispersion-increasing
fibers [12,14], sum frequency mixing of broadband pulses with
opposite chirps [15], and second-harmonic generation [16,17]
and sum frequency mixing [18] in thick nonlinear crystals with
phase matching characteristics dominated by group velocity
mismatch. Spectral compression has also been reported using
dispersive propagation followed by electro-optic phase modula-
tion, i.e., time lens operation [19–21]. Reference [21], in which
the bandwidth of single photons was compressed from 150 GHz
to 1.46 GHz, offers one of the most extreme experimental
examples. In this Letter, we propose a new route to spectral com-
pression, in which a relatively broadband pulse is captured into
a time-varying cavity via electro-optic switching of the input
coupling. By using low loss, high Q cavities, it should be possible
to realize spectral compression, potentially to well below 1 GHz,
limited only by the cavity linewidth. This concept is inspired
by previous work on the virtually imaged phase array (VIPA)
[22–24], a cavity that violates translational space invariance
resulting in compression of the spatial frequency spectrum. In
this work, we violate the time invariance of the cavity by switch-
ing the input reflectivity, which results in spectral compression
following space–time duality.

It is commonly known in the context of mode-locked lasers
and frequency combs that when multiple evenly spaced, phase-
locked frequency modes are present, the resultant temporal
pulse width decreases in inverse proportion to the number of
frequency modes [25]. As time and frequency obey the duality
property of Fourier transform, we expect that forming multiple,
phase-locked temporal copies of the same pulse should result
in a decrease in the spectral width. One of the most straight-
forward ways to obtain multiple temporal copies is to use an
optical cavity. Without loss of generality, for now we consider a
Fabry–Perot (FP) cavity, although our concept is applicable to
any generic cavity structure. As is well known, a pulse incident
on a FP cavity suffers strong reflection of frequencies that are sig-
nificantly detuned from the cavity resonance. Hence, even if the
cavity transmission is unity on resonance, an isolated input pulse
suffers strong insertion loss. We propose to avoid these losses by
rapidly switching the reflectivity of the input mirror from zero
to unity just after the pulse enters the cavity (Fig. 1). If there is
no loss, the entire power has to eventually then exit through the
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Fig. 1. Time-varying cavity with input mirror reflectivity rapidly
switched from zero to unity after the pulse enters the cavity. The output
mirror is partially reflecting (power reflectivity of 0.8 is chosen for
this illustration). In contrast to FP cavity, no reflection occurs onto
the input side. All the energy exits through the output mirror creating
an output pulse train with decreasing amplitude resulting in spectral
compression.

partially reflecting output mirror. The output contains multiple
copies of the input pulse with decreasing amplitude. They have
fixed relative delay (corresponding to cavity roundtrip time) and
are phase locked to each other. This effectively leads to spectral
compression (spectral narrowing along with increased peak
power spectral density), as energy conservation is ensured.

Consider a FP cavity with an input mirror (field reflection
and transmission coefficients given by r1 and t1, respectively)
and an output mirror (field reflection and transmission coeffi-
cients given by r2 and t2, respectively) of roundtrip time TR . The
relationship between the input (E in) and output (Eout) fields
of the FP cavity in time and frequency domains are given by
Eq. (1):

Eout(t)=
∞∑

m=0

t1t2(r1r2)
m E in

[
t −

(
mTR +

TR

2

)]
,

Eout(ω)=
t1t2e− jω

TR
2

1− r1r2e− jωTR
E in(ω). (1)

Now let us consider a time-varying cavity (Fig. 1) whose input
reflection coefficient r1 is rapidly switched from zero to one at
t = TR . For pulses of width lesser than that of TR that are input
within t = 0 and t = TR , the output of such a time-varying
cavity is given by Eq. (2). Here, we have essentially switched the
reflectivity after the entire pulse energy has been captured inside
the cavity. It can be seen that the given relationship is similar to
that of the FP cavity, except for terms r1 and t1 getting identically
replaced by one, as a result of rapid switching:

Eout(t)=
∞∑

m=0

t2(r2)
m E in

[
t −

(
mTR +

TR

2

)]
,

Eout(ω)=
t2e− jω

TR
2

1− r2e− jωTR
E in(ω). (2)

The ratio between the output and input power spectral densities
attains the maximum at the frequency locations correspond-
ing to the resonance modes for both the static FP cavity and
time-varying cavity; the corresponding maximum values are
given by Eq. (3). In the case of a passive FP cavity (no gain), the
output power spectral density is less than or equal to the input
at all frequencies (spectral filtering). However, interestingly in

the case of the time-varying cavity, the output power spectral
density exceeds that of the input at multiple frequency loca-
tions [ratio shown in inset of Fig. 2(c)]; this constitutes spectral
compression:

FP cavity:

Max

{∣∣∣∣ Eout(ω)

E in(ω)

∣∣∣∣2
}
= 1−

(
|r1| − |r2|

1− |r1||r2|

)2

≤ 1,

Time-varying cavity :

Max

{∣∣∣∣ Eout(ω)

E in(ω)

∣∣∣∣2
}
= 1+

(
2|r2|

1− |r2|

)
≥ 1. (3)

We present an example by considering a flat-topped pulse
of width TR , with sinusoidal leading and trailing edges that
together account for a net 25% of the pulse width [see inset
of Fig. 2(d)], at a carrier frequency coinciding with one of the
resonance modes of the cavity. Here, by pulse width, we refer
to the entire time window over which the intensity is nonzero.
The pulse is input into the cavity between t = 0 and t = TR . In
the case of the time-varying cavity, the input mirror reflectiv-
ity is switched from zero to one at t = TR . The output power
spectrum for both the FP cavity (r1 = r2 = 0.95) and the time-
varying cavity (r2 = 0.95) are plotted in Figs. 2(a) and 2(b),
respectively. This clearly illustrates the entirely different spectral
filtering and spectral compressing operations performed by
the FP cavity and the time-varying cavity, respectively. For a
similar pulse oscillating at the same resonance frequency but
with a pulse width of 0.5TR , the output of the time-varying
cavity is plotted in Fig. 2(c). The presence of multiple peaks,
of relatively higher power, can be explained by the fact that the
input power present at different cavity resonance frequencies
gets enhanced by the same factor [see inset of Fig. 2(c)]. Hence,
we would like to roughly match the width of the pulse with
the cavity roundtrip time TR so that the energy is compressed
mostly into a single spectral peak. Also if the carrier frequency
does not coincide with the cavity resonance, the spectral com-
pression peaks occur asymmetrically with respect to the input
spectral envelope. This is illustrated in Fig. 2(d) for an input
pulse of width TR , oscillating at a carrier frequency of 0.25 FSR
away from a cavity resonance. Similar results are expected for
other input pulse shapes, provided that the pulse duration is
appropriately matched to the cavity roundtrip time.

We define a spectral compression factor as the ratio between
the full width at half maximum (FWHM) of the input and
output power spectral densities. Equation (3) indicates that
enhancement in peak power spectral density at the output of
time-varying cavity increases if |r2| is increased. Hence, the spec-
tral compression factor that is proportional to the enhancement
in peak power also increases with |r2|. This can be explained
by the fact that for an increased value of |r2|, the pulse executes
more roundtrips within the cavity and hence generates more
copies of the input pulse. However in the case of cavities with
nonzero loss, this results in a trade-off between achievable spec-
tral compression and integrated loss. In the case of nonzero loss,
Eq. (2) assumes the following form, where 2αL represents the
loss per roundtrip:

Eout(ω)=
t2e−

αL
2 e− jω

TR
2

1− r2e−αL e− jωTR
E in(ω). (4)
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Fig. 2. Input and output power spectral densities (with respect to
a specific cavity resonance frequency). Input pulse has a rectangular
profile except for sinusoidal edges accounting totally for 25% of pulse
width [shown in inset of (d)]. Input reflectivity of time-varying cavity is
switched after the pulse enters the cavity. (a) FP cavity (r1 = r2 = 0.95)
and (b) time-varying cavity (r2 = 0.95) plots for a pulse of width
TR oscillating at a cavity resonance frequency. Time-varying cavity
plots for pulses of (c) same carrier frequency but a width of 0.5TR and
(d) width TR but at a carrier frequency 0.25 FSR away from a cavity
resonance. Plots are normalized to corresponding maximum input
power spectral density. Respective log scale plots are shown in insets
of (a) and (b) to highlight the presence of multiple peaks. Inset of
(c) depicts the multiplication factor between input and output power
spectra of time-varying cavity.

To illustrate this trade-off, we consider a pulse [inset of Fig. 2(d)]
of width TR at a carrier frequency coinciding with one of the res-
onance modes, which is input into the time-varying cavity. The
achievable spectral compression, integrated loss, and ratio of
peak output and input power spectral densities are analytically
calculated and plotted in Fig. 3 as a function of |r2|, for different
values of loss per roundtrip. Figure 3(a) illustrates the fact that
both the spectral compression and integrated loss increase with
|r2| in the case of nonzero cavity losses. However, the ratio of
output and input peak power spectral densities depends on both
spectral compression and integrated loss. Hence, it attains a
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Fig. 3. (a) Spectral compression (blue) and integrated loss (red)
and (b) ratio of peak output and input power spectral densities (black)
as a function of |r2| for different values of loss per roundtrip: 0 dB
(solid), 0.05 dB (dashed), and 0.1 dB (dotted) considering a pulse of
width TR and profile shown in inset of Fig. 2(d), which is input into the
time-varying cavity.

maximum at an optimal value of |r2|, depending on the cav-
ity loss parameter as shown in Fig. 3(b); the maximum ratio
decreases with the increase in cavity loss per roundtrip. This
clearly shows the limitations on achievable spectral compression
in a time-varying cavity with nonzero intracavity losses.

In the discussion so far, we have assumed rapid switch-
ing of the input mirror reflectivity. However, in practice, we
have to consider nonzero rise time for switching the input
mirror reflectivity. For any generic input mirror reflectivity
function r1(t)[t1(t)] and input pulse shape, the output and
input pulses can be related using a recursive relation, which
then can be expressed as a Fredholm integral that possesses a
Liouville–Neumann series solution [26,27] as shown in Eq. (5):

Eout(t)= t1

(
t −

TR

2

)
t2 E in

(
t −

TR

2

)
+ r1

(
t −

TR

2

)
r2 Eout (t − TR ),

Eout(t)=

{
∞∑

m=0

t1

[
t −

(
mTR +

TR

2

)]
t2

× E in

[
t −

(
mTR +

TR

2

)] m∏
n=0

bn

}
,

b0 = 1, bn = r1

[
t −

(
nTR −

TR

2

)]
r2 ∀ n ≥ 1.

(5)

In the case of nonzero rise time, a finite amount of power is
reflected back onto the input side, resulting in an insertion
loss. Also, the function r1(t) is going to change the temporal
waveform of the input pulse affecting the spectral purity of the
output. Here, we define spectral purity as the ratio between
the first and second highest peaks in the output power spectral
density. Ideally, we would prefer higher spectral purity and lower
insertion loss. Hence, spectral purity and insertion loss can be
viewed as performance metrics for spectral compression. The
arrival time of the input pulse for a given pulse width and r1(t)
can be optimized to realize either maximum spectral purity or
minimum insertion loss. The simulated spectral purity and
insertion loss, while optimizing for minimum insertion loss, are
plotted as a function of rise time of r1(t) in Fig. 4, for different
values of input pulse width. The input pulses are again as shown
in the inset of Fig. 2(d) and oscillating at one of the resonance
frequencies of the cavity. The cavity is assumed to have zero
intracavity loss and an r2 of 0.95. r1(t) is assumed to be a raised
cosine function, increasing from zero to one for the given rise
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Fig. 4. Simulated (a) spectral purity and (b) insertion loss while
optimizing for minimum insertion loss as a function of rise time of
r1(t). r1(t) is assumed to have raised cosine form as shown in inset of
(b), where the red arrow indicates the rise time. Trends are shown for
input pulses [profile as shown in inset of Fig. 2(d)] of three different
pulse widths.
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time, as shown in the inset of Fig. 4(b). The spectral purity can
be observed to have an overall decreasing trend with the increase
in rise time. The highest spectral purity is associated with the
case Tpulse = 1.2× TR , which can be explained by the relatively
lower input power spectral density at adjacent cavity resonance
frequencies. The insertion loss can be seen to monotonically
increase from zero with the rise time of r1(t) when Tpulse ≤ TR
and is within 0.5 dB for all values of considered rise time and
pulse widths. For the case Tpulse = 1.2× TR , the insertion loss is
non-zero for all values of rise time, and the minimum is around
0.002 dB. This discussion illustrates the effect of cavity losses
and reflectivity switching rise time on spectral compression
performance.

Practically, it will be desirable to demonstrate the spectral
compression in an integrated photonics platform. One of the
primary requirements to realize spectral compression is the rapid
switching of the input mirror reflectivity. With recent advances
in on-chip modulators, especially in thin film lithium niobate
(TFLN), it is possible to envision the practical demonstration
of this concept. Both low-loss (∼2.7 dB/m) high Q cavities
(∼107) and high modulation rates (∼100 GHz) have been
reported in the TFLN platform [28,29]. Even though our prior
discussion involved FP cavities, it can be extended to microring
resonators. We propose a ring resonator cavity that is config-
ured with a rapidly switchable variable coupler, formed from
a Mach–Zehnder interferometer (MZM), as a possible device
geometry to realize this concept. This allows the input pulse to
be coupled with high efficiency into the cavity (MZM in cross
state), after which the light is trapped (MZM switched to allow
only a few percent output coupling). The losses reported in
TFLN platforms are around ∼2.7 dB/m in straight waveguide
sections [28], ∼0.1 dB for a phase shifter of 0.5 cm with a Vπ
value of 4.4 V and a 3 dB bandwidth of ∼100 GHz [29]. The
dispersion in LN microring resonators [30] can be considered
negligible for the relatively long input pulses that will be appro-
priately matched to the cavity roundtrip time. If we consider
a cavity of net length 1.5 cm, out of which 0.5 cm accounts
for the phase shifter region, the roundtrip time of the cavity is
around 110 ps. A 100 GHz modulation rate corresponds to a
rise time of a few picoseconds, which can be considered as rapid
switching when compared to the roundtrip time of 110 ps.
For an input pulse profile as shown in the inset of Fig. 2(d) of
width 110 ps, taking the losses discussed above into account
(∼0.13 dB per roundtrip while assuming an ideal splitter), it is
possible to achieve a spectral compression factor of 92 (output
spectral width of∼100 MHz) and a peak power spectral density
enhancement of∼33 with a net loss of around 2.5 dB when we
maintain r2 = 0.98. However, if we could reduce the losses in
the phase shifter section, which accounts for a significant por-
tion of total loss, to the level of the straight waveguide section,
it would be possible to achieve a spectral compression factor of
∼208 (output spectral width of ∼44 MHz) and a peak power
spectral density enhancement of ∼93 for a net loss of 1.7 dB
when we maintain r2 = 0.99. The net loss can be reduced to
∼0.25 dB, but at a reduced spectral compression factor of∼36
(output spectral width of∼256 MHz) and a peak power spectral
density enhancement of∼22, when operated at r2 = 0.92.

In summary, we have proposed a new electro-optic approach
for spectral compression using time-varying cavities and dis-
cussed key design constraints. Since the system is linear, this
spectral compression is equally applicable to classical light and

light at the single photon level. It should also be possible to
modify the temporal profile of the output pulse by dynamically
tuning the reflectivity of the output mirror and to achieve spec-
tral tuning and compression simultaneously via dynamic tuning
of the refractive index. One may also use a nonlinear or time lens
based spectral compression approach as a front end to our time-
varying approach to achieve even larger spectral compression
factors. Finally, one can envisage operating a time-varying cavity
in the reverse sense, i.e., rapidly switching the output reflectivity
from one to zero to achieve spectral broadening of a narrowband
input after it is captured resonantly into the cavity.
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Optica 4, 1536 (2017).
29. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S.

Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).
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