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Frequency-bin qudits constitute a promising tool for quan-
tum information processing, but their high dimensionality
can make for tedious characterization measurements.
Here we introduce and compare compressive sensing and
Bayesian mean estimation for recovering the spectral corre-
lations of entangled photon pairs. Using a conventional
compressive sensing algorithm, we reconstruct joint
spectra with up to a 26-fold reduction in measurement
time compared to the equivalent raster scan. Applying a
custom Bayesian model to the same data, we then addi-
tionally realize reliable and consistent quantification of
uncertainty. These efficient methods of biphoton charac-
terization should advance our ability to use the high degree
of parallelism and complexity afforded by frequency-bin
encoding. ©2020Optical Society of America

https://doi.org/10.1364/OL.392694

Given the sparsity of many signals of interest in the real world,
compressive sensing (CS) [1] has emerged as a powerful, general
technique for reconstructing a signal from significantly fewer
measurements than required by traditional sampling methods.
In the context of quantum information, CS has been utilized
for quantum state reconstruction [2,3], process tomography
[4], and ghost imaging [5,6], and has proven to be an effective
tool for efficient characterization of high-dimensional quantum
states [7–9], especially in the spatial degree of freedom (DoF).
Bayesian mean estimation (BME) is more general, in the sense
that neither system sparsity nor a particular class of measure-
ments are required for the procedure’s validity, though this
knowledge can nonetheless be neatly accounted for in the prior
distribution. This is an advantage of Bayesian methods, along
with return of confidence intervals commensurate with the data
gathered [10]. BME has been explored experimentally, in single-
[11] and two-qubit polarization quantum state tomography
[12,13], and identification of low-light-level sources [14].

Recently, the frequency DoF has developed into a promising
platform for photonic quantum information processing (QIP)
[15–17], yet despite the naturally high-dimensional nature of
this Hilbert space, CS techniques have yet to be leveraged to
characterize spectral properties and, while Bayesian methods
have been applied to recover density matrices [18] and mode
transformations [19] in frequency-bin QIP, they have not been

explored for extracting high-dimensional biphoton frequency
correlations. In this work, we retrieve the frequency correlations
of quantum states with CS and BME for the first time.

We consider biphotons generated by spontaneous para-
metric downconversion, which can exhibit strong frequency
anticorrelations and are a common source of information car-
riers in frequency-domain QIP. Biphoton correlations can be
assessed by measuring the joint spectral intensity (JSI). The
conventional raster scan method of obtaining the JSI for an
N-dimensional Hilbert space (

√
N dimensions per photon)

requires N coincidence measurements between two narrow
spectral passbands, one for each photon. One way to improve
on this approach is to leverage dispersion in a time-of-flight
spectrometer, converting from spectral to temporal correlations
and using time-tagging to map out the JSI [8,20–22]. However,
this requires a timing reference to determine absolute—not just
relative—frequency, a condition which is not satisfied by, e.g., a
free-running continuous-wave–pumped biphoton source.
Our approach, valid for asynchronous sources, is to perform
measurements over many passbands at once. We use Fourier-
transform pulse shaping [23] to apply a code of spectral filters
to the frequency bins of each photon, with transmission values
taken from random binary, random gray-level, or Hadamard
codes.

In particular, the use of Hadamard codes is well established in
classical spectroscopy, where measuring linear combinations of
frequency bands can enable significantly higher signal-to-noise
ratios (SNRs) in background-limited environments [24]—
features which have been explored in measuring correlations
of frequency-entangled photons as well [25], though without
recovering the underlying probability distribution. Likewise,
the CS and Bayesian methods we consider here enjoy an SNR
improvement from measuring many bins at once. CS goes one
step further, reducing the total number of measurements needed
by exploiting the sparsity anticipated for our biphoton system.
BME takes a slightly different perspective on the problem:
whereas CS seeks to exceed a threshold of measurements needed
to find the underlying signal, BME instead is formulated to
return a credible estimate given any collection of measurements.

The experimental setup is depicted in Fig. 1(a). Broadband
biphotons were generated by pumping a periodically poled
lithium niobate (PPLN) ridge waveguide (AdvR) with a
continuous-wave 780 nm laser under type-0 configuration.
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Fig. 1. (a) Experimental setup. (b) Raster scan of lower entropy
state. (c) SMSE number-of-measurement convergence of LASSO
reconstructions using random gray value codes.

A 25 GHz spaced etalon was used to produce a biphoton fre-
quency comb. We used a pulse shaper (Finisar) to selectively
attenuate 20 frequency bins on either side of the center fre-
quency and block all others, giving JSI dimensionality N = 400
(limited in general not by the reconstruction methods but by
the phase-matching bandwidth of the PPLN and the accep-
tance bandwidth and resolution of the pulse shaper). Signal
and idler bins were sent to separate superconducting nanowire
single-photon detectors (Quantum Opus) and a time tagger
(PicoQuant) ascertained coincidences. We compare recon-
structed JSIs obtained from length-20 random and Hadamard
codes applied to each photon with 0.5 s integration time to
raster scans obtained in 5 s, maintaining the same average singles
counts (both random and Hadamard codes average a transmis-
sivity of 50% over all bins). We first tested a relatively sparse,
highly anticorrelated JSI, and then added an electro-optic phase
modulator (EOM) driven with 25 GHz RF signal to produce
spectral sidebands.

Given the results of an experiment, conventional CS tech-
niques associate the measured coincidences (y i ) with a linear
function of the joint spectral bins passed in measurement setting
i (a length-N vector xi given by the Kronecker product of the
individual codes applied to each photon [7]), weighted by the
length-N vector β. Each element of β is defined as the bipho-
ton flux within a particular bin-pair of the JSI. From this, the
N-dimensional probability distribution follows as p= β∑

i βi
.

For M measurements, β can be estimated by solving the linear
system y= Aβ, where A is an M × N matrix with rows xT

i .
In order to incorporate knowledge of sparsity, we use the

CS least absolute shrinkage and selection operator (LASSO)
method [26] to find an estimate of β, by solving

βLASSO =min
β

 1

2M

M∑
i=1

(y i − β0 − xT
i β)

2
+ λ

N∑
j=1

|β j |

 ,
(1)

with respect to β and β0 (an intercept). The absolute value
accounts for LASSO’s domain over all real numbers—although
as needed in our case, only positive βi are returned. The first
term favors solutions that minimize error with respect to the
measurement results, while the second term enforces sparsity.
We used MATLAB’s built-in LASSO algorithm to perform the

minimization. In order to select a sensible value for the weight
parameter λ, 10-fold cross validation was used, which partitions
the measurements into training and validation sets and com-
putes the mean squared error (MSE) of each solution against the
test data. Multiple λ values were tested, and the largest within
one standard error of the MSE-minimizing value was chosen.

We first use LASSO to reconstruct a relatively sparse JSI, the
raster scan of which appears in Fig. 1(b). The ratio of diagonal
to off-diagonal coincidences is∼40. If nothing is known about
the expected JSI, one can assess the number of codes necessary
for CS reconstruction by calculating a serial MSE (SMSE)
1
N

∑N
j=1 (p j − p̄ j )

2 between each normalized reconstructed
JSI p (from M codes) and the mean p of the previous several
(M − 5 to M − 1 in our case), continuing to add measure-
ments until the SMSE stabilizes. SMSE LASSO convergence
calculated for M = 10 to M = N is shown in Fig. 1(c). This
approach highlights how one can determine convergence
without explicitly comparing the recovered result to theory.

If one can predict the form of the JSI, however—as in the
present case—convergence can also be assessed by comparing
the reconstruction at various M s to the ideal case with prob-
ability vector q, where, because of the broadband nature of
our source, all antidiagonal bin-pairs are taken to have equal
probability and all others are zero. We use the Bhattacharyya
coefficient [27] as a metric of overlap for this purpose, defined
as Bc =

∑N
i=1
√

pi qi . Bc LASSO convergence is shown in
Fig. 2(a). A transition occurs around M = 160, beyond which
additional measurements produce minimal improvement.
Representative reconstructed JSIs for Hadamard and random
binary codes are shown in Figs. 2(b) and 2(c), respectively.
Each Hadamard sequence has “1” in the first column, so that
one spectral bin is passed for both signal and idler photons
in every measurement, preventing meaningful extraction of
information about the corresponding joint frequency bins
in the reconstruction. Thus, these bins were removed in the
Hadamard reconstructions below, making their JSIs 19× 19.
(Consequently, conventional Hadamard spectroscopy omits
the first row and column of the matrix when defining code
sequences [24].)

In order to compare the number of measurements required
for convergence with that anticipated from CS theory,
we can quantify the JSI sparsity by the effective number
of states, K= 2H(p), with H(p) the information entropy
H(p)=−

∑N
j=1 p j log2 p j . Experimentally, this number falls

between that of an ideal uniform anticorrelated JSI (K = 20)
and the maximum uncorrelated case of K = N = 400. The
shoulder at M = 160 [Fig. 2(a)] corresponds to more measure-
ments than the∼60 expected for a K = 20 sparse system, based
on the scaling K ln N

K [1,7]. However, computing the effective
dimensionality K from the raster scan itself gives K = 97, an
increase that can be attributed to the off-diagonal background
counts. Interestingly, K = 97 predicts a required number of
measurements of ∼140, much closer to our observations. The
10-fold improvement in the acquisition time (at the same aver-
age single-photon flux), combined with the advantage of fewer
measurements, results in a 26-fold reduction in the measure-
ment time compared to the raster scan. Each reconstruction
took less than 2 min on a personal laptop.
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Fig. 2. LASSO reconstruction. (a) Number-of-measurement
convergence. Overlap coefficients (Bc ) computed with respect to the
ideal distribution q. (b)–(c) Representative reconstructions using
(b) Hadamard and (c) random binary codes.

As Eq. (1) corresponds to a convex optimization problem, it
admits highly efficient numerical solutions; this ease of compu-
tation is an advantage of CS methods, but it comes at the cost of
ambiguity in sparsity enforcement (signified by the parameter λ
in the case of LASSO). Even when comparing different possible
values, as by cross-validation, the final choice of λ is ultimately
subjective. BME, on the other hand, “offers one answer to a
well-posed problem” [28]. The estimator’s initial model of the
system (which can be made as uninformed as necessary to reflect
actual knowledge) together with the data, uniquely determine
the posterior distribution. As long as the probability model can
be justified by physical principles and the resulting distribution
is adequately sampled, the result of BME is unambiguous.

Specifically, Bayes’ theorem gives the posterior probability
distribution of parameters representing the state of a system as
the normalized product of the likelihood function and prior
distribution [28]. The likelihood is the probability of observing
the collected data (the coincidence record y) given a possible
state of the system, according to some model, while the prior dis-
tribution represents initial knowledge of the state of the system.
Again, we seek the vector β (biphoton fluxes), but we can now
infer the underlying probability distribution p= β∑

i βi
directly,

by explicitly introducing a to-be-determined scaling parameter
C such that β =Cp. Then, for the same xi codes as in Eq. (1),
we can take as our likelihood

P(y|p,C)∝
N∏

i=1

e−CxT
i p(CxT

i p
)yi
, (2)

which models each observation according to a Poisson dis-
tribution of mean CxT

i p. We assign a prior on C as a normal
distribution of mean C0 and standard deviation 0.1C0, where
C0 is set initially by averaging the coincidences (we found
this variance sufficient for a uniform prior over all feasible
values of C ). For p’s prior, we draw from an N-dimensional
Dirichlet distribution Dir(α) to enforce normalization and
nonnegativity.
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Fig. 3. Bayesian reconstruction. (a) Number-of-measurement
convergence. Overlap coefficients (Bc ) computed with respect to the
ideal distribution q. (b)–(c) Representative reconstructions using
(b) Hadamard and (c) random binary codes.

Given the collected data and an appropriate prior distri-
bution P(p,C), the BME result for any function φ(p,C) is
given by the mean over the posterior distribution P(p,C |y)∝
P(y|p,C)P(p,C), i.e., 〈φ〉 =

∫
dpdCP(p,C |y)φ(p,C).

Occasionally such an integral may be solved analytically [13],
but more commonly a numerical sampling method is required.
Here we use a preconditioned Crank–Nicolson Metropolis–
Hastings algorithm (recently introduced in the context of
quantum state tomography [29]), a Markov-chain Monte Carlo
method, which iteratively generates samples from the posterior
distribution, accepting new samples with a probability based on
the evaluated likelihood-prior product at each point, and the
proposal density function. The posterior distribution is sampled
more heavily around local maxima, while allowing for jumps to
lower-probability regions, effectively sampling the entire space.

To ensure convergence, we increased the number of sam-
ples in the Markov chain until Bc values no longer varied. We
found that tuning the α parameter in the prior to favor sparse
solutions (α < 1) made no considerable difference in recon-
structions, confirming one prominent advantage of Bayesian
methods—that the form of the prior becomes irrelevant if
there is a sufficient amount of data. Bc BME convergence is
shown in Fig. 3(a), along with standard deviation error bounds.
Reconstructions with M ∼ 160 took about 12 min each on
the same laptop as used previously, considerably longer than
LASSO. This is the chief disadvantage of Bayesian methods,
making the SMSE approach to number-of-measurement
convergence nonviable here. The counteracting advantage,
however, is the return of appropriate error bounds for the legit-
imacy of each reconstruction. For BME, Hadamard codes
produced notably better reconstructions than random codes,
and number-of-measurement convergence occurred around
M = 160, as with LASSO, and with similar Bc values at con-
vergence. Thus, BME affords the same ∼26-fold reduction in
experimental measurement time (though of course with signifi-
cantly longer numerical analysis). Representative reconstructed
JSIs for Hadamard and random binary codes are shown in
Figs. 3(b) and 3(c), respectively, for M = 80, 160, and 400.
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Fig. 4. Higher entropy state. (a) JSI raster scan. (b) LASSO and
(c) BME reconstructions using Hadamard codes.

With the introduction of an EOM, more complicated JSIs
can be explored as well [30], due to the presence of additional
sidebands. Increasing the phase modulation amplitude to split
the original diagonal into two main peaks, we measured the JSI
with raster scan shown in Fig. 4(a), with a zoom-in highlighting
the split interference pattern. At the chosen level of modulation,
the effective number of states for an ideal input state is expected
to reach K = 89, nearly a quarter of the total dimensionality—
and, due to off-diagonal background, the number of states
computed from the raster scan is even more, at K = 205—so
the applicability of sparsity-based CS is questionable in this case.
Nevertheless, though we did not observe a clear Bc convergence
point, we did find reasonable reconstruction with M ∼ 300
Hadamard codes. Figures 4(b) and 4(c) show representative
LASSO and BME reconstructions, respectively. With a more
complex JSI, BME visibly outperforms LASSO, especially at
reconstructions with fewer measurements (as expected). While
clearly noisier than the raster scan, the total measurement time is
over 16 times shorter, indicating a practical advantage for rapid
measurements in photon-starved environments.

In future work, thresholding [7] could be applied to enhance
the contrast in recovered JSIs. Alternatively, because selecting
a particular threshold in conventional CS is, like choosing λ,
somewhat ad hoc, one may incorporate background into the
likelihood [Eq. (2)] using a physically motivated model for
accidentals—similar to the methods developed in Ref. [19].
Furthermore, it would be interesting to consider the Fourier
dual of this experiment—temporal modulation with electro-
optic intensity modulators driven with binary sequences—to
characterize time-domain correlations, potentially beyond the
resolution possible with single-photon detectors [31]. Such
tests could be combined with spectral measurements as a wit-
ness of time-frequency entanglement. Hence, our Bayesian
approach to JSI reconstruction should offer a flexible framework
that can be specialized to a variety of situations in biphoton
characterization.
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