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Abstract: The broad bandwidth and spectral efficiency of photonics has facilitated unparalleled
speeds in long-distance lightwave communication. Yet efficient routing and control of photonic
information without optical-to-electrical conversion remains an ongoing research challenge.
Here, we demonstrate a practical approach for dynamically transforming the carrier frequencies
of dense wavelength-division–multiplexed data. Combining phase modulators and pulse shapers
into an all-optical frequency processor, we realize both cyclic channel hopping and 1-to-N
broadcasting of input data streams for systems with N = 2 and N = 3 users. Our method involves
no optical-to-electrical conversion and enables low-noise, reconfigurable routing of fiber-optic
signals with in principle arbitrary wavelength operations in a single platform, offering new
potential for low-latency all-optical networking.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

All-optical signal processing provides intriguing opportunities for next-generation data communi-
cation and logic, with the possibility to surpass electronics in speed, latency, and energy efficiency
[1,2]. A variety of proof-of-principle experiments based on nonlinear-optical interactions [3,4]
have demonstrated foundational capabilities, including high-speed photonic logic [5,6], tunable
delay lines [7,8], and wavelength exchange [9] and multicasting [10,11]. Nevertheless, solutions
based on optical nonlinearities possess undesirable features, such as the need for strong pump
fields and limited prospects for reconfigurability in a single system, given that the variety of
functionalities demonstrated so far are based on distinct photonic components. Recently [12],
we investigated a hybrid processing approach based on electro-optic phase modulators (EOMs)
and pulse shapers—dubbed the “all-optical frequency processor” (AFP)—in which the control
is accomplished by electrical signals, but the operations preserve the data carriers entirely in
the optical domain. Here we leverage these theoretical results and experimentally demonstrate
agile frequency operations on wavelength-division–multiplexed (WDM) data streams. Utilizing
a three-element AFP, we realize channel hopping and broadcasting of binary phase-shift keyed
(BPSK) signals for up to three users in 25 GHz WDM channels in the same fiber. Our results
extend the reach of EOM/pulse-shaper frequency operations beyond narrowband quantum fre-
quency modes [13–17] to modulated classical data, providing a new route toward low-latency,
reconfigurable, and high-capacity all-optical networking.
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2. Background

Consider a comb of WDM carriers spaced by frequency ∆ω: ωn = ω0 + n∆ω (n ∈ Z), each with
a baseband data stream described by complex amplitude an(t). The AFP ideally acts as a complex
matrix Vmn relating input signals an(t) to output signals bm(t) according to bm(t) =

∑
n Vmnan(t)

[12,13]. Specifically, an EOM applying a 2π
∆ω -periodic phase modulation pattern ϕ(t) relates

the total input field Ein(t) =
∑

n an(t)e−iωnt to the output Eout(t) =
∑

n bn(t)e−iωnt according to
Eout(t) = eiϕ(t)Ein(t) so that, equating frequency components, we have

bm(t) =
∞∑

n=−∞
cm−nan(t), (1)

where ck =
∆ω
2π

∫ 2π
∆ω

0 dt eiϕ(t)eik∆ωt are the Fourier series coefficients of the EOM transformation.
In this form we see clearly the EOM’s function as a multimode interferometer, mixing and
combining inputs in each channel in a generally nontrivial fashion. On the other hand, the pulse
shaper applies an arbitrary phase shift to each channel, so that Eout(t) =

∑
n eiφnan(t)e−iωnt, or

bn(t) = eiφnan(t). (2)

Physically, this requires pulse shaper resolution sufficiently fine so that phase-to-amplitude
conversion at the transitions between adjacent channels does not modify the data streams. For
example, if we define a guard band ∆ωG centered at each channel edge ωn +

∆ω
2 , the full

modulation bandwidth ∆ωmod of an optical carrier must satisfy ∆ωmod<∆ω − ∆ωG for the
proposed model to hold.
The complete operation resulting from a cascade of EOM and pulse shaper elements follows

by successively taking the output bn from each component [Eq. (1) or (2)] and placing it into
input position an of the next, with the relevant constants ck or φn determined by the settings of
each device. As formally presented, this model involves a countably infinite number of frequency
modes, ill-suited for numerical implementation. Accordingly, we instead discretize each temporal
period into M samples (M � N)—equivalent to truncating to M frequency channels—and
represent the overall transformation as an M ×M matrix of factors, with each EOM acting as a
diagonal unitary in time and each pulse shaper as a diagonal unitary in frequency. Consequently,
the complex mode-transformation matrix Vmn relating the input field at channel n to output
channel m for our three-element AFP can be described as:

V = (FDEOM2F
†)DPS(FDEOM1F

†), (3)

where DEOM1 and DEOM2 (DPS) represent the diagonal transformations of the EOMs (pulse
shaper) in discrete time (frequency), and F is the M ×M discrete Fourier transform (DFT) matrix,
used in this context to approximate the continuous Fourier transform between temporal and
spectral representations. (Larger AFPs follow from incorporating additional factors in the above.)
Provided M is sufficiently large to prevent aliasing at the edges of the frequency-channel space
(we use M = 128), this model provides an accurate approximation to the physical transformation
around the N frequency channels of interest (ωn = ω0 + n∆ω; n = 0, 1, . . . ,N − 1). The objective
then is to find the EOM and pulse shaper settings implementing a transformation matrix V that
matches the desired operation.
The general problem of optimizing EOM and pulse shaper configurations to synthesize

frequency-mode operations has been explored in detail in the context of quantum information
processing with frequency-encoded photons [13–17]. However, the case of classical commu-
nications entails key differences in the design. For one, the typical metrics for quantifying a
quantum-optical operation—e.g., fidelity and success probability—prove less meaningful in the
classical context, where one is ultimately interested in symbol recognition. Additionally, whereas



Research Article Vol. 28, No. 14 / 6 July 2020 / Optics Express 20381

the deadtime and jitter of single-photon detectors limit typical quantum information transmission
rates to much lower than the channel spacings in dense WDM, modern classical communication
systems achieve modulation bandwidths approaching the channel spacings themselves. We
address both of these differences through (i) use of SNR as design metric and (ii) consideration
of GHz-rate modulated data.
Figure 1 offers a concept of our AFP and the operations we consider. The AFP consists

of two EOMs, separated by a pulse shaper. Surrounding the AFP are example input spectra
transforming through the system, for a three-channel broadcast operation (top) and two-channel
cyclic hop (bottom). Each user encodes the data stream on a predefined wavelength channel (step
I). The first EOM generates sidebands spreading the inputs into adjacent frequency channels
(step II); then the phase applied by the central pulse shaper, coupled with the second EOM,
returns the optical energy into the original channel subspace (step III), having undergone the
desired transformation (either broadcast or cyclic hop; see the corresponding EOM/pulse-shaper
configurations in Appendix A.1). Importantly, while the AFP settings are different between the
top and bottom cases, they are fixed independently of the input; that is, the AFP will broadcast or
frequency-hop the input data for any channel within the network. This condition distinguishes
our approach from other recent work on EOM/dispersion-based data transformations, where
the symbols for multiple data streams are generated in situ by the same EOMs which perform
temporal shaping and define the frequency carriers [18]. The AFP paradigm, by contrast, focuses
on routing arbitrary inputs with a particular transformation, so that the control parameters are
independent of the incoming fields and specific data format.

Fig. 1. Example transformations for three-user broadcast (top) and two-user hop (bottom) on
our three-element AFP. Dashed boxes enclose the channels of interest in our WDM network,
and each user n ∈ {0, 1, 2} is associated with a particular channel frequency ωn. The
intensity distribution at each step matches the transformations implemented experimentally
(see Appendix A.2).

3. Experiment design

We utilize the setup in Fig. 2 for testing. A single-frequency C-band laser is split into two paths:
5 mW is sent to an optical hybrid to serve as the local oscillator (LO), and the remainder to
EOM A to generate the data carriers, spaced at 25 GHz (this comb generator need not be phase
coherent with the AFP). EOM B applies BPSK data at 1 Gb/s to all carriers simultaneously. A
pulse shaper equalizes channel amplitudes and sends them through different fiber paths, with
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differential delays chosen to exceed the 1 ns bit period and decorrelate the data and randomize the
relative phase, thus emulating independent channels. After wavelength multiplexing, all carriers
pass through the AFP, undergoing either the broadcast or hop operation; the output mixes with
the LO on a conjugate homodyne detector, consisting of a 90◦ optical hybrid and two balanced
detectors. We record X and Y outputs at 20 GS/s and take one sample per 1 ns period as the
symbol value; this condition defines the effective “symbol pulse” for calibration. Digital phase
correction is performed for every 1 µs-long block, by averaging the square of Z = X + iY to
calculate the LO phase drift [19]. After subtracting this offset, we are left with the measured
symbols in X, and Y ≈ 0. By tuning the input laser frequency and adjusting the pulse shaper
parameters correspondingly to maintain equal channel amplitudes, the LO can be set to match
any of the output wavelengths without altering the input data streams.

Fig. 2. Experimental setup. EDFA: erbium-doped fiber amplifier. PC: polarization
controller. PBS: polarizing beamsplitter. LO: local oscillator path. POL: in-line fiber
polarizer. AWG: arbitrary waveform generator. ATT: optical attenuator. BD: balanced
detector. ADC: analog-to-digital converter.

The AFP’s settings are found via numerical optimization, which looks for EOM/pulse-shaper
parameters that maximize the SNR of the output BPSK data streams, defined for each receiver as
the square of the symbol quadrature value divided by its variance (see Appendix A.1 for details
on the optimization procedure). We consider a semiclassical noise model (classical fields plus
LO shot noise), and take the BPSK symbol xn ∈ {

√
µ,−√µ} applied to each input wavelength

channel, defined such that µ is the average photon number per symbol. Assuming the LO has
frequency ωk and (after phase correction) is aligned to measure the data originally in ωl, the
in-phase quadrature Xkl follows as the sum of signal, crosstalk, and noise contributions,

Xkl = K
√
η |Vkl |xl +

∑
n,l

K
√
η |Vkn |xn cos βkn + dX , (4)

where K = R√µLO (with R the effective receiver response in volts/photon and µLO the LO power
entering the hybrid, in units of photons per symbol), η is the overall system throughput (detector
and component insertion losses for the signal channels), Vkl is the specific AFP transformation
matrix, and βkn is the phase difference between the LO and the residual signal in channel ωk
from input in ωn. The term dX is the noise, modeled as a zero-mean Gaussian random variable
of variance (1 + D)K2/2, from LO shot noise and excess detector noise D [20].

If we make the realistic assumptions of uncorrelated data streams 〈xkxl〉 = µδkl and randomly
drifting interchannel phases 〈cos2 βkn〉 =

1
2 , then the SNR becomes

Rkl =
2µeff |Vkl |

2

1 + µeff
∑

n,l |Vkn |2
(5)
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after defining an effective photon number, µeff =
ηµ
1+D : detected photons per symbol, normalized

to shot and detector noise [12]. For any channel number N, there thus exist a total of N ×N SNRs
for all pairings of input and output channels, combinations of which can be used for optimization.

4. Results

We first explore 1-to-N broadcasting at µeff = 100, where all N wavelengths of interest can
receive the original data stream from any input channel. Hence the operation is appropriate for a
single, though arbitrary, input channel transmitting at a time, in which case interchannel crosstalk
terms vanish from Eq. (5), leaving Rkl = 2µeff |Vkl |

2. The solver maximizes the minimum of the
N × N SNR values at every iteration, i.e., min{R00,R01, . . . ,R(N−1)(N−1)}, which we have found
more effective for yielding a uniform SNR across all channels than maximizing the SNR average
[12]. (See Appendix A.1 for solutions, and measured mode transformation spectra in Appendix
A.2.) The constants K, D, and ηµ are retrieved through a calibration procedure that measures
〈X2 + Y2〉 for various combinations of the LO and signal beams on and off: after attenuator
adjustments, we obtain µeff = 102± 3, closely matched to the design of 100 and giving a baseline
SNR of 204.
Figure 3 plots the experimentally obtained BPSK constellations for the broadcast operations.

Since only one carrier is sent into the AFP at a time, decorrelating adjacent input channels is
unnecessary, so we utilize a simple alternating data sequence. “AFP Off” gives the reference
constellation, obtained for a channel passing through the AFP with the EOMs off. When the
AFP is configured for either a two- or three-channel broadcast, the outputs on all wavelengths
reproduce the data of the excited input channel; the SNR values and uncertainties (insets) are
the mean and standard deviation of the SNRs from a 10-fold partition of the full symbol record.
Good agreement with theory is obtained, which predicts SNRs of 97.5 and 60 for the two- and
three-channel cases, respectively (see Appendix A.1).

Fig. 3. Outputs for 1-to-N broadcast operations (5×103 symbols). (a) Reference constellation
for direct throughput. The data stream is sent through the AFP with all the EOMs off (i.e.,
no frequency transformation). (b) Outputs for all combinations of two-user broadcasts. (c)
Outputs for all three-user broadcasts. Measured SNRs follow in the insets.

As the next operation we consider cyclic frequency hopping (ω0 → ω1, ω1 → ω2,. . . ,
ωN−1 → ω0), now at µeff = 1000. This cyclic hop [12] generalizes the wavelength exchange
operation explored in previous all-optical processing experiments for swapping data between two
selected channels [9], by now operating on N channels simultaneously. As it can shift N inputs at
the same time, we employ the full (all inputs on) SNR formula [Eq. (5)] in the design routine
and optimize the metrics min{R01,R10} for N = 2 and min{R02,R10,R21} for N = 3. In general,
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frequency hopping is more challenging than broadcasting to implement on limited components
[12]. For our current three-element AFP driven by a single RF tone, the output SNRs in the
numerical solutions drop by ∼25% and ∼94% relative to the input in the two- and three-channel
hops, respectively. Nevertheless, these solutions enable optimal use of available resources, and
we again implement them on our AFP.

In order to test under realistic conditions of uncorrelated crosstalk, we apply a length-(215 − 1)
pseudorandom binary sequence (PRBS), rather than the alternating sequence used before. Our
findings follow in Fig. 4. Despite the higher average photon number in this case (µeff = 1050±50),
the SNR of the reference signal is much lower than the theoretical value of 2000, attributable
to modulation noise from our 4 GS/s arbitrary waveform generator (Tektronix AWG710) when
pushing to the limits of its bandwidth (we find that the electrical SNR directly out of the machine
drops by ∼30 times for the PRBS compared to the alternating sequence). The expected SNRs
based on a theoretical model which takes into account detection noise and crosstalk—but not
this modulation noise—are 1504 and 115 for the two- and three-channel hops, respectively (see
Appendix A.1). Yet since modulation noise alone (no AFP transformation) limits the optically
received SNR to ∼100 [Fig. 4(a)], it is expected to dominate for the N = 2 hop, and the SNR
will be about 100, as supported by Fig. 4(b). In the case of N = 3, the contributions of the
modulation and detection/crosstalk noise are about the same (SNRs ∼100), so the expected SNR
will be around 50 when combining these effects, which is likewise supported by Fig. 4(c). In
this way, theory and experiment match well when considering the empirical modulation noise.
Also, despite differences in received power levels for the three channels, their final SNRs remain
comparable. When only one input channel is transmitted (w/o crosstalk case), the variation
in hop efficiency results in SNRs that differ widely between channels. Yet when all inputs
are transmitting as designed (w/crosstalk), the SNRs for the channels are equal within error,
highlighting a key feature of the optimizer [12]: it balances the combination of efficiency and
crosstalk to equalize the capacities of each channel.

Fig. 4. Measured outputs for cyclic hop (106 symbols). (a) Reference constellation with
AFP off. Frequency-hopped outputs for (b) N = 2 and (c) N = 3 channels. The case
“w/crosstalk” corresponds to all N inputs modulated and transmitted, whereas “w/o crosstalk”
to only the designated input transmitting at a time. SNR values for each plot are provided in
the insets.
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5. Discussion

While we have realized operations on up to N = 3 channels in the current AFP, extending beyond
N = 3 is challenging due to our limited number of components. For example, supposing we utilize
the same AFP circuit driven by single-tone sinewaves to implement a four-channel broadcasting
operation and take an input SNR of 200 in channel 0, our simulations predict theoretical SNRs of
27.6, 27.6, 27.6, and 39.6 for channels 0, 1, 2, and 3 at the output—nonuniform across all channels
and far below the optimal value of 50. From our previous theoretical investigations, though,
scaling to much higher channel numbers should be possible with either more complex arbitrary
RF modulation patterns or additional EOMs and pulse shapers; in the latter case, it appears that
the number of components for near-ideal operations scales roughly linearly with channel number
N [12]. This provides a straightforward path toward larger operations, with the attainable number
of channels ultimately limited by the size, weight, and power budget available to the experimenter.
Importantly, in contrast to the use of frequency processors in quantum information, however, the
additional insertion loss associated with larger AFPs can be mitigated in the classical domain
with optical amplifiers, significantly relaxing technical constraints in proceeding to larger systems.
Of course, improving throughput of the AFP elements directly—which seems promising in light
of advances in chip-scale EOMs [21–23] and pulse shapers [24,25]—is the ideal avenue toward
larger AFPs, bypassing the additional noise and power consumption connected with optical
amplification.

Another direction for improvement concerns spectral efficiency. Due to the available equipment,
the present experiments considered BPSK modulation up to 1 Gb/s, but significantly faster baud
rates should be supported in our system, for which advanced symbol encodings such as Nyquist
pulse shaping [26–28] appear especially relevant. Based on nonoverlapping channel spectra,
Nyquist encoding can reach modulation bandwidths that fill the maximum available to each
wavelength, all while suppressing interchannel crosstalk as they transform through the AFP.
At the spectral resolution of our pulse shaper (10 GHz intensity full-width at half-maximum),
preliminary simulations suggest speeds ∼10 Gbaud under Nyquist encoding should be possible
with minimal degradation in SNR. And through appropriately designed high-order flattop
filters [24,29,30], much sharper roll-offs than possible with diffraction-based shapers should be
realizable in microring-based pulse shapers, thereby facilitating Nyquist baud rates approaching
the channel spacing itself and indicating an added bonus of moving on chip. Finally, it is
important to note that such limits imposed by spectral resolution are not unique to the AFP, but
are shared by any WDM system employing filter-based multiplexing and measurement.

6. Conclusion

We have demonstrated agile wavelength routing functionalities using an all-optical frequency
processor. The system implements broadcasting and cyclic hops for WDM channels, contributing
minimal additional noise and showing good agreement with theory. Interestingly, the AFP’s
strengths favorably complement those of nonlinear-optical processing approaches. While the
AFP offers flexibility, programmability, and precision in a variety of operations, nonlinear-optical
signal processing [1] is better suited to ultrabroad bandwidths and large channel numbers,
thus suggesting valuable opportunities for all-optical networking that leverage the best of both
paradigms.

Appendix A. AFP transformation details

A.1. Optimization approach

To obtain an experimentally realizable AFP transformation V [Eq. (3)], we choose SNR [Eq. (5)]
as our design metric, utilizing the Optimization Toolbox in MATLAB to search for an optimal set
of phases for DEOM1 , DPS, and DEOM2 that maximize the SNR values for a target operation and
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photon level µeff . Previously [13], success probability (defined as the probability of retaining an
input photon within the N frequency channels at the output, rather than scattering into adjacent
channels) was adopted as the metric to optimize with quantum gate fidelity being constrained.
In contrast, the usage of SNR here—like mutual information as in [12]—perfectly balances
the tradeoff between fidelity (related to channel selectivity) and success probability (related to
throughput) when it is impossible for both of them to reach unity given a limited amount of
experimental resources. For example, when µeff is low (high), we have found the optimized
solutions tend to favor better success probability (fidelity). Given practical limitations on the size
of the AFP as well as the complexity of the EO modulations, we restrict the EOM patterns to
single-tone sinewaves of amplitude less than 4 rad and consider a three-element AFP (EOM/pulse
shaper/EOM) in all simulations. The ability to optimize settings to match the capabilities of any
available system represents one of the salient features of our AFP method.

Fig. 5. Numerical solutions obtained to realize (a) two-channel and (b) three-channel
broadcasts on a three-element AFP. (Left) Temporal phase modulation applied to the first
EOM (solid red) and second EOM (dotted blue), plotted over one period; (Right) Spectral
phase modulation programmed on the pulse shaper, where indices 0 and 1 (and 2) denote
the two (three) channels of interest. Both solutions are optimized for an effective photon
number µeff = 100 at the input. For (b), the EO modulations are identical, and thus the two
curves are on top of each other.

Here we record the specific solutions for the pulse shaper and each EOM for the two- and
three-channel broadcast, designed for µeff = 100. Figure 5(a) shows the results for the two-channel
broadcast with a theoretical SNR of Rkl = 97.5 for all 2 × 2 combinations, which is close to the
optimal number of ∼100 (1/N of the input SNR, i.e., 200 in this case, obtaining when photons
are distributed equally to N channels and negligible scattering occurs outside of the network).
The temporal phases on both EOMs are just phase-shifted sinewaves with a modulation depth of
0.83 rad. In addition, on the pulse shaper is programmed a spectral phase pattern wider than the
total number of input channels in the network, in order to address new frequency components
generated after the first EOM. The solution for the three-channel broadcast is presented in
Fig. 5(b), corresponding to a theoretical SNR of Rkl = 60.0 for all 3 × 3 combinations. The
temporal phases on the two EOMs are identical, but now the modulation depth has increased to
1.43 rad. In both broadcast designs, we are just shy of the optimal SNR values due to unwanted
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Fig. 6. Numerical solutions obtained to realize (a) two-channel and (b) three-channel
hops on a three-element AFP. (Left) temporal phase modulation applied to the first EOM
(solid red) and second EOM (dotted blue), plotted over one period; (Right) spectral phase
modulation programmed on the pulse shaper, where indices 0 and 1 (and 2) denote the two
(three) channels of interest. Both solutions are optimized for an effective photon number
µeff = 1000 at the input.

scattering into other frequency channels outside of the network [as shown later in Figs. 7(a) and
(b) and 8(a)-(c)], which can be addressed in the future by introducing either an extra pulse shaper
and EOM, or an additional RF harmonic in the EO modulation [14].

For two- and three-channel hops, we choose the input photon level µeff = 1000 instead, which
brings the ideal SNR to 2000 in all cases after perfect hopping operations. The optimized solution
for two-channel hops is depicted in Fig. 6(a), predicting a theoretical output SNR of Rkl = 1504
for both ω0 → ω1 and ω1 → ω0 hops. The drop in the SNR, again, is mainly caused by photons
scattering into the adjacent channels outside of the network, rather than a significant portion
of the photons staying in the original channel [see Figs. 7(c) and (d)]. The EO modulations
consist of slightly time-shifted sinewaves with a modulation depth of 3.26 rad. Finally, the
solution for the three-channel hop is depicted in Fig. 6(b), resulting in a theoretical output SNR
of Rkl = 115 for all three operations: ω0 → ω1, ω1 → ω2, and ω2 → ω0 hops. This number is
substantially lower than the ideal, suggesting that a perfect three-channel hop is markedly more
difficult than the other functionalities we have addressed here. This also matches the prediction
in our previous theoretical work [12], where simulations indicated considerable reduction from
the ideal Shannon-limited channel capacity given fixed resources. Nevertheless, the SNR values
are consistent across the three hops, and as shown in the next subsection [see Figs. 8(d)-(f)], the
AFP manages to balance the effects of hop efficiency and crosstalk noise, even though they vary
across all three cases.

A.2. Mode transformation spectra

Here, we show a series of input/output transformation spectra for two- and three-channel broadcast
and hop, along with their theoretical prediction based on the optimized solutions obtained above.
For all the results shown here, we have turned off the BPSK data stream and focus our attention
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Fig. 7. Experimentally measured output spectra for (a-b) two-channel broadcast and (c-d)
two-channel hop. Theoretical spectra are also plotted (green circles) for comparison. Indices
0 and 1 denote the two channels of interest in our defined WDM network (dashed box).

Fig. 8. Experimentally measured output spectra for (a-c) three-channel broadcast and (d-f)
three-channel cyclic hop: (d) ω0 → ω1, (e) ω1 → ω2, and (f) ω2 → ω0. Theoretical
spectra are also plotted (green circles) for comparison. Indices 0, 1, and 2 denote the three
channels of interest in our defined WDM network (dashed box).

solely on how the optical power in every WDM carrier is transformed into designated output
channels. This procedure follows some of our previous quantum works [14,16], in which the
(intensity-only) performance of a linear-optical multiport can be characterized by probing the
frequency processor with a tunable, continuous-wave laser and measuring the output optical
spectra.
Figure 7 shows experimentally obtained spectra for two-channel broadcast and hop: the top

row shows the equi-amplitude superpositions resulting from input in either channel 0 or channel
1; the bottom row depicts the frequency hops between channels 0 and 1. For comparison, we
have also plotted the theoretically predicted spectra (green dots) which show strong overlap with
the experimental results, confirming the validity of the design procedure in describing practically
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achievable systems. The small bumps in adjacent channels −1 and +2 outside of the defined
network (dashed box), as discussed earlier, explain the drop in the theoretical SNR values.

Finally, the experimentally obtained spectra for three-channel broadcast and hop are recorded
in Fig. 8, with the first row showing optical power splitting equally into three output channels
for any one of the input channels, and the second row demonstrating the cyclic frequency hops.
The amount of scattering outside of the three-channel network (dashed box) is significantly
higher than that of the two-channel cases, especially the cyclic hop operation, indicating more
resources are required to implement similar functionalities for a larger number of channels.
Interestingly, though the mode-transformation spectra in three-channel cyclic hops [Fig. 8(d-f)]
differ most significantly from the ideal scenario, they actually provide valuable insights into the
interplay between the efficiency and selectivity, and how the AFP attempts to strike a balance
between them in the presence of limited resources. For example, the squared-moduli of the
mode-transformation matrix for the three-channel hop solution are

|V |2 =
©­­­­«
0.0001 0.0009 0.0595

0.1474 0.0024 0.00018

0.0011 0.0761 0.0005

ª®®®®¬
. (6)

Although all channels, as stated earlier, attain the same theoretical SNR value of 115 at
µeff = 1000, their respective transformations vary greatly. For example, the ω1 output (second
row) has appreciably higher probability [Fig. 8(d)], but lower selectivity (i.e., higher crosstalk)
compared to ω0 and ω2. The ω0 output (first row), on the other hand, receives the lowest signals
[Fig. 8(f)] among all channels, but also picks up the lowest noise. This highlights the versatility of
the AFP, allowing the system to find optimal transformations and, correspondingly, higher SNR
values for each channel than those possible by requiring a matrix V with elements of completely
uniform amplitude [12].
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