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1. Introduction 
 

The ability to manipulate the shape of broadband optical pulses has impacted many fields 
such as coherent control of chemical processes, high field physics, nonlinear fiber optics, and 
ultrafast spectroscopy [1].  Many methods have been invented to shape pulses, but the most 
widespread and general method for pulse shaping is spectral masking.  In this method, the 
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spectral components of the laser pulses are spatially dispersed using an element such as a 
grating, and then a mask is applied to modify the phase and/or amplitude of each component.  
Finally, the components are recombined to reconstruct the new, modified pulses [1].  Using 
high resolution spectral dispersers such as a virtually imaged phased-array (VIPA) [2], the 
individual frequencies that comprise the spectral comb produced by a mode-locked laser can 
be resolved [3].  In this regime one can fully control the shape of a stream of pulses with line-
by-line pulse shaping [4,5]. The limit that the update rate approaches the frep (repetition rate), 
where each pulse is individually shaped, is often referred to as arbitrary waveform generation.  
The ability to perform line-by-line pulse shaping on the output of a mode-locked laser has 
been enabled by the development of femtosecond comb techniques [6,7]. 

Current pulse shapers are good at producing waveforms of almost any shape at slow 
update rates.  The output pulse shape for line-by-line pulse shaping is limited only by the 
spectral bandwidth.  Most spatial light modulators used for this purpose operate at speeds less 
than 10 kHz, whereas mode-locked laser typically have an  frep of 100MHz-1GHz.  However, 
it is possible to modulate light at faster speeds with modulators such as LiNbO3 or electro-
absorption modulators.  An array of fast modulators could be used in a pulse shaper and 
potentially shape each individual pulse. Here, we analyze the dynamics of the shaped pulses 
as the update rate approaches the repetition rate of the laser, frep.  Our results illustrate that 
there is a fundamental tradeoff between response speed and waveform fidelity when high 
speed modulators are merged with line-by-line resolution.  These trade-offs are fundamental 
and not due to limitations in modulator technology. 

The naïve expectation of pulse shaping is that the instantaneous optical pulse will 
correspond to the instantaneous spectral mask; however this is not the case. Fast modulation 
creates sidebands that interfere with adjacent comb lines, causing degradation of spectral 
resolution. The Fourier time-frequency limit constrains how quickly the waveform can 
change given high spectral resolution.  Lowering the spectral resolution degrades the fidelity 
of the generated waveform.  Optimum performance between these fundamental limits is 
obtained when a tradeoff between these two extremes is made. 

2. Theory 
 

In this section, we derive a theoretical expression for Fourier transform pulse shaping with a 
time-varying mask. We begin by reviewing the theory for the familiar case of a time-
independent mask, then show how to extend the theory to include time variation. Our 
treatment draws on previous publications analyzing grating pair compressors [8] as well as 
pulse shapers with static masks [9,10].  

We start by writing the input field immediately before the first diffraction grating, as  
 

 ( ) ( ) ( ) ( )ˆ o oj t j t
inin ine x t Re x t e Re a t s x ee

ω ω⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

, = , =  (1) 

 
Where x is spatial distance in one dimension, t is time, ina is the input pulse train, and ω0 is 
the angular frequency of the input.  For simplicity later, we will use the 

notation ˆ( ) ( ) oj tF x t Re F x t e ω⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

, = , . We will take the input spatial profile as Gaussian, i.e.,  

 

 
2 2

( ) inx ws x e− /=  (2) 
 
where win is the input spot size.  We will assume a standard pulse shaping configuration, in 
which the grating and the pulse shaping mask are placed at the front and back focal planes of 
the lens, respectively. As shown in the Appendix, the field at the Fourier plane is 
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where ( )inA ω�  is the Fourier transform of ( )ina t , 
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is the radius of the focused beam at the Fourier plane (for any single frequency component), 
and  

 
2

2 cos D

f

cd

λα
π θ

=  (5) 

 
is the spatial dispersion parameter that describes the proportionality between spatial 
displacement and optical frequency. The grating input and output (diffraction) angles are 

iθ  

and 
Dθ  respectively for a reference ray at frequency 0ω  traveling along the optical axis, d  is 

the grating periodicity, and f  is the focal length [1]. Now we add the spatial mask, with a 

complex transmission that we denote as ( )M x , which is the key to pulse shaping action. The 
field directly after the mask is simply  
 
 2 1( ) ( ) ( )ˆ ˆx t M x x te e, = , . (6) 
 
Since for any specific frequency, the spot size is always finite at the masking plane, in 
general, the electric field subsequent to the spatial mask is a nonseparable function of space 
and frequency. This nonseparability occurs because the spatial profiles of the focused spectral 
components may be altered by the mask - i.e., some spectral components may sense spatially 
varying amplitude or phase, while others may not. This variation leads to different diffraction 
effects for different spectral components and results in an output field which couples space 
and time beyond the simple and reversible effects of spectral dispersion [10,11].  

On the other hand, from an applications perspective, one is usually interested in 
generating a spatially uniform output beam with a single prescribed temporal profile. In order 
to obtain an output field that is a function of frequency (or time) only, one must perform an 
appropriate spatial filtering operation. In the following, we analyze the case where such 
spatial filtering is implemented by focusing into a single-mode optical fiber placed in a 
Fourier plane of the second diffraction grating [1,9]. This situation is of practical interest for 
applications related to optical communications. In a fiber-pigtailed reflection geometry pulse 
shaper, for example, the input beam is collimated from and the output beam is coupled back 
into the same physical fiber [12,13]. A similar mode selection operation could also be 
performed by coupling into a regenerative amplifier for high-power applications. 
Approximately, such spatial filtering can be performed simply by placing an iris after the 
pulse shaping setup.  

For our analysis, we are interested in taking the masked field, propagating it to a second 
grating placed at the back focal plane of a second lens, and then focusing through a Fourier 
transform lens into a single mode fiber. The portion of the field that corresponds to the single 
guided spatial mode of the fiber is transmitted; any remaining portion of the field is not 

guided and is therefore eliminated. Denoting the spatial mode of the fiber as Fu  and the field 

at the fiber plane as 3ê , the coupled field is  
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Here the first factor gives the complex amplitude of the coupled field, and the second is the 
spatial mode.   The most interesting case is when the input field as transformed by the pulse 
shaper and the subsequent lens is perfectly mode-matched to the fiber. In the absence of 
masking, the entire input field is successfully coupled into the fiber without loss. In this case 
the output complex spectral amplitude function becomes  
 

 

2
2

2 2

2 ( )
( ) ( ) exp ( )out in

o o

x
A dx M x A

w w

αωω ω
π
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∫ �

� � . (8) 

 
The effective filter in the frequency domain is the square of the convolution of the mask 
function ( )M x  and the spatial field profile of the beam at the masking plane. Note that the 
spatial field profile enters once through the spectral dispersion of the first grating and lens and 
a second time (together with an integral over x ) through the mode matching with an assumed 
Gaussian fiber mode. Any physical features on the mask smaller than ow∼  are smeared out 
by the convolution, and this limits the finest features which can be transferred onto the 
spectrum. Wavelength components impinging on mask features that vary too fast for the 
available spectral resolution are in part diffracted out of the main beam and eliminated by the 
spatial filter. This process can lead to phase-to-amplitude conversion in the pulse shaping 
process [8,12]. Conversely, in the limit 0ow → , the apparatus provides perfect spectral 

resolution, and the effective filter is just a scaled version of the mask.  
We may now extend the theory to include a time-varying mask, ( )M x t, , with Fourier 

transform  

 ( ) ( ) j tM x dt M x t e ωω −, = ,∫� . (9) 

 
The complex spectral amplitude of the field immediately after the masking operation is 
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The time-varying mask modifies the frequency content at the various spatial locations. Mode 
matching at the output of the pulse shaper is taken into account giving  
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2

2 2
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2

o o

x x

w w
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d
A dx A M x e e

α ω ω αω
ωω ω ω ωπ

′− − −′ − −
′ ′− ,∫∫

�

�

�

�
� �∼ � � . (11) 

 
The interpretation is that for large frequency shifts, the new frequencies induced through the 
time variation of the mask will be focused at a position transversely shifted with respect to the 
fiber mode. As a result, the higher modulation frequencies of the time-varying mask are 
partially suppressed.  

A very simple case is when the mask is time-varying but uniform in space; the time-
varying mask is simply a modulator placed into a pulse shaper. Replacing ( )M x ω, �  in Eq. 
(11) with ( )M ω�  yields  

#89804 - $15.00 USD Received 15 Nov 2007; revised 27 Dec 2007; accepted 28 Dec 2007; published 4 Jan 2008

(C) 2008 OSA 7 January 2008 / Vol. 16,  No. 1 / OPTICS EXPRESS  318



 

 ( )2 2 2( ) 2( ) ( ) ( )
2

ow
out in

d
A M e Aα ωωω ωω ωπ

′
′

− /′ ′−∫
�

�
� �∼ � �  (12) 

 
Here the modulation spectrum is multiplied by a low-pass filter function. As the spot size at 
the masking plane gets smaller, the low pass filter cuts off at lower frequencies, revealing a 
fundamental trade-off in pulse shaping: very high spectral resolution implies a limit to the rate 
at which the pulse shaping function may be modified. In line-by-line shaping, the implication 
is that one may not fully update pulse shapes at speeds corresponding to the laser repetition 
rate while simultaneously fully resolving individual comb lines.  

3. Simulation 
 

The dynamic effects of a pulse shaper can be illuminated by numerical simulation.   The 
simulation numerically calculates the double integral in Eq. (11).  The input and output 
spectra are represented by arrays that contain the input and output frequency comb of the 
pulse train, while the spectral mask is a matrix that fully describes the mask in space and 
time.  In the integral, the mask is represented as a space and ω’ dependent matrix, which is 
equivalent to taking the one-dimensional Fourier transform of the temporal response of the 
mask at each spatial point.  An array size of 256 pixels was chosen to balance resolution and 
computation time.  The input spectrum is an array of 0’s with a spike of 1 every 8 pixels 
enveloped in a Gaussian.  By taking the Fourier Transform of this array we can construct the 
input train of pulses as a function of time (Fig. 1). 
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Fig. 1.  Input spectrum and pulse train. 
 

The relationship between α and w0 sets the width of the Gaussian “smearing” functions in 
Eq. (11) that determine the response of the pulse shaper.  The narrower the Gaussians, the 
slower the response to changes in the mask.  Conversely, the broader the Gaussians are, the 
more blurred or poorly resolved the spectral response of the mask.  Poor resolution results in 
low waveform fidelity and excessive resolution results in slow response speeds.  The result is 
a fundamental trade-off between spectral resolution and response time.   

To investigate the effects of the smearing functions on pulse shaping, w0 is varied, which 
changes the width of the smearing functions.  Both α and w0 are set by the specific design of a 
given pulse shaper with a dependence on parameters like wavelength and focal length of the 
lens used in the pulse shaper as described by Eq. (4) and Eq. (5).  Since we are looking at a 
narrow band of frequencies the effect of wavelength on this ratio is not important to the 
illustrated fundamental trade-off.  The variation of w0 is equivalent to setting the spacing 
between the comb lines on a spectral mask then adjusting the focus of the comb lines to 
change their size.  For generality w0 is expressed as a fraction of  
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 2rep repw fπα= . (13) 

 
For example, for a 1 GHz laser with the individual comb lines by dispersed by 20 μm, wrep is 
20 μm and α is 20 μm/2πGHz.  So w0= ½ wrep = π frepα is 1/2 the distance between comb lines 
or 10 μm.   

4. Results 
 

In a first set of test cases, dynamic effects are seen in the response of the pulse train to a step.  
A sample of pulses is analyzed by abruptly changing the spectral mask at time 0.  Before time 
0, the spectral mask allows the full spectrum to pass, and after time 0, it blocks every other 
comb line as illustrated in Fig. 2.    

The mask pattern for t > 0 doubles the separation between comb lines in frequency space, 
which makes the time between pulses half as long, or in effect doubles frep.  Figure 3 shows 
the switching behavior of the pulse train at various smearing function widths or spot sizes, w0.  
Due to the periodic nature of the Fast Fourier Transform algorithm, transient effects were 
observed at both edges of time aperture used in the simulation.  These expected edge effects 
are cropped out of the final pulse trains in order to simplify the appearance of Fig. 3.  This 
simplification was done by doubling the sample size of the input and then cropping the final 
output by deleting the first and last quarter leaving the same number of pulses.  For large spot 
sizes such as w0= wrep, the spectral blurring due to a broad smearing function is quite evident.  
In the spectral domain, this effect is seen in Fig. 2, which plots the effective static filter 
functions corresponding to the mask at time t > 0.  The edges of the filter function become 
increasingly rounded for increasing w0 due to the convolution of the mask with the smearing 
function.  In the time domain, as the spot size increases and the smearing function becomes 
broader, the ability of the shaper to produce clear double pulses is diminished.  In Fig. 3, 
observe the red dotted line for the larger spot sizes and how it peaks at two different heights; 
this poor waveform is due to the overlapping of the power associated with different comb 
lines at the same position on the mask.  At smaller spot sizes the spectral resolution is 
improved, with the result that the pulses in the doubled repetition rate region (t > 0) have 
equal intensities.  However, the dynamic response suffers.  The w0 = 1/8 wrep case shows how 
slowly the pulse train responds to change when the smearing function is narrow; the system 
takes about 4 repetition periods to shift to double pulsing while at w0 = wrep it shifts almost 
instantly.  The key point is that response to an abrupt change in the mask occurs over a time 
duration that scales inversely with the spectral resolution. Qualititatively speaking, the 
optimum spot size for the system described above that balances speed and spectral resolution 
(waveform fidelity) is approximately w0 = 3/8 wrep.  This means that the spot size of the comb 
lines on the spectral mask should be approximately 1/3 the distance between comb lines, 
although the exact choice will depend on the specific merit function of interest. 
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Fig. 2.  Dynamic masks and effective spectral filter functions.  Left: the dynamic mask  
illustrates the abrupt change in the mask at time 0.   Two cases are considered.  For spectral 
amplitude masking, the mask is set to block every other comb line for t > 0; the blue regions in 
the figure correspond to a mask value of 0.  For spectral phase masking, the mask is set to 
impart a phase shift of π to every second comb line as illustrated by the blue regions in the 
figure.   Right: the static filter functions corresponding to times t > 0 illustrate the blurring of 
the effective mask for larger spot sizes.  The effective spatial masks are calculated by 
convolving the smearing function in Eq. (11) with the spatial mask. 

 
We note that the pulse train output appears to be affected prior to the step in the mask at 

t = 0.  However, due to the large delay in propagating through the pulse shaper (not portrayed 
in the figures), there is no violation of causality.  Apparent changes in the output waveform 
prior to t = 0 simply correspond to the components of light being deflected or diffracted to 
shorter paths through the shaper.  Consistent with this interpretation, the analysis in [10] for a 
static pulse shaper shows a direct linkage between delay time in the shaped output waveform 
and spatial offset in the output beam (here without spatial filtering).  We also observe that 
angular dispersion from a grating or other spectral disperser is linked fundamentally to delay 
gradients across the beam [14].   Waveform changes in response to a step in the mask occur 
within a time region approximately equal to the inverse of the spectral resolution, which is 
consequently within the total time variation across the beam just after the spectral disperser. 
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Fig. 3.  Response of the pulse train to an alternating amplitude mask, turned on abruptly at 
t = 0, for various spot sizes, w0.  The dashed blue line shows the static pulse train where the 
full spectrum is allowed to pass, which yields the expected single pulsing.  The dotted red line 
shows the static pulse train when every other comb line in the spectrum is masked out.  This 
results in double pulsing behavior, with waveform fidelity that depends on w0.  The solid black 
line shows the dynamic response of a pulse train to the mask that abruptly switches at t = 0. 

 
In a second example, we consider a stepped phase mask.   A phase shift of π between 

alternating comb lines is turned on abruptly at t = 0.  Both the physical phase mask and the 
static spectral filter function (corresponding to t > 0) are also shown in Fig. 2. The filter 
function is the same as for the amplitude mask case, but the vertical axis corresponds to the 
phase of the mask alternating between 0 and π (complex transmission alternates between 
(1,0) and (-1,0)).   The output pulse train can be seen in Fig. 4.  For high resolution static 
pulse shaping, the mask is expected simply to shift the output in time by half the period of the 
pulse train.  Similar to what was seen in the amplitude case, we have fast response for large 
w0 but with waveform fidelity compromised (this is evident in this case as a reduction in 
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intensity).  Conversely for small w0 we have high spectral resolution and good waveform 
fidelity (negligible loss of intensity) but slow response.  Again the optimum spot size appears 
to be approximately 1/3 the distance between comb lines. 
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Fig. 4.  Response of the pulse train to an alternating phase mask, turned on abruptly at t=0, at 
various spot sizes, w0.  The dashed blue line shows the static pulse train where the full 
spectrum is allowed to pass with no phase shift.  The dotted red line shows the static pulse 
train when every other comb line in the spectrum is phase shifted by π; this yields the expected 
shift of half the period in the output pulse train.  The solid black line shows the dynamic 
response of a pulse train to a mask that abruptly switches between the two at t = 0.   

 
Another test case that illustrates the dynamic behavior of the pulse shaper is its response 

to a sweeping bandpass spectral filter.  Here the mask blocks the full spectrum except for a 
square window.  This pass window is then shifted spatially as a function of time allowing 
different portions of the spectrum to pass at different times.  The window scans through the 
center of the spectrum at a rate of 2/9 wrepfrep.  For this case, a larger α was used to give 
greater separation of the comb lines. Thus, instead of having a comb line every 8 pixels now 
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there is a comb line every 24 pixels.   Also for this calculation, all the input comb lines were 
set to unity amplitude, so the spectral envelope is flat rather than Gaussian.  The width of the 
window was set to 24 pixels corresponding to wrep in space or frep in frequency, such that 
ideally, one comb line is allowed through the mask at a time.  The response of the pulse train 
to this sweeping filter can be seen in Fig. 5.  At the top of this figure is the ideal case, a 
pseudo-spectrogram that shows how one might naïvely expect the system to respond to the 
moving filter, allowing one comb line through at a time.  This pseudo-spectrogram is created 
simply by multiplying the input spectrum by a scaled version of the time-dependent mask (no 
smearing taken into account), and then the comb line is broadened appropriately by the 
inverse time window chosen to construct the figure.  
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Fig. 5.  Spectrogram response of a pulse train with equal size comb lines to a sliding spectral 
window of size frep for various spot sizes, w0.  The ideal case is a pseudo-spectrogram of what 
one would naively expect from a moving spectral filter.  
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The spectrograms for the actual simulated output signals at various spot sizes were created 
using a gate function set equal to the Hanning window [15] with a size of 32 pixels; this 
means that the spectrogram at each point in time is the result of the frequency response of the 
sample inside this window 16 pixels before and 16 pixels after the point in time being 
calculated.  The behavior of these spectrograms may be explained in terms of the smearing 
function, as previously discussed.  When the spot size is small, the static filtering function 
that would be obtained for a stationary bandpass mask is sharp, as seen in Fig. 6.   On the 
other hand, the narrow smearing function slows the response of the pulse train to changes in 
the mask.  This slowing of the response is evident in the w0=1/24 wrep spectrogram where the 
traces are elongated along the time axis.  As w0 increases, the spectrograms initially shrink 
along the time axis, attaining a minimum extent around w0=1/3 wrep, but then elongate once 
again.  This minimum in duration is explained on the basis of the blurring of the equivalent 
static filtering functions depicted in Fig. 6.  For large w0 the equivalent static filters are unable 
to resolve individual lines, and the filter must be tuned over a larger frequency range (which 
requires more time) before a given comb line is cut off.  Thus the seemingly slow response at 
w0=4/3 wrep arises from the the rounded edges of the effective mask;  since we are analyzing 
the response of the system to a moving filter, the spectral blurring affects how the system 
appears to respond in time.   
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Fig. 6.  Sliding filter effective masks at various w0 as it the window crosses the center of the 
spectrum. 

 
The magnitude of the output waveform can be seen in Fig. 7 for three spot sizes.  The 

ideal case where only a single frequency is selected at a time would result in a constant, time-
independent field amplitude.  This behavior is most closely approximated by the w0=1/3 wrep 
case.  However, in all cases where multiple frequencies are present there is modulation in the 
time domain field magnitude.  This effect is minimized for intermediate values of spot size 
such as w0=1/3 wrep. When the spot size is either substantially decreased or increased, more 
frequencies are simultaneously present, and much stronger structure is observed in the time 
domain waveforms. 

5. Summary 

The dynamic effects of fast pulse shaping have been analyzed and explored in three 
representative cases.  In all these test cases, the spot size of the comb lines on the spectral 
mask is varied to adjust the width of the smearing function and thereby observe the effects on 
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the output pulse train.  The first case is a step in amplitude of alternating comb lines.  By 
removing every other comb line, the shaper produces a double pulsing output.  The pulse train 
responds quickly with poor spectral resolution when the smearing function is broad.  The 
second case also illustrates this effect by an abrupt phase shift in alternating comb lines by π, 
which shifts the output pulse train by half the period.  Again, we see similar dynamic effects.  
The final case describes the response of the pulse train to a sliding spectral filter.  
Interestingly we see similar effects for broad and narrow smearing functions; this is explained 
through the dynamic spatial nature of the mask.  All these test cases demonstrate that there is 
an optimum spot size or width of the smearing function that balances speed and spectral 
resolution.  This optimum is achieved when the radius of the spot size of the comb lines on 
the spectral mask is approximately one third the distance between comb lines. 
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Fig. 7.  Electric field magnitude for a pulse train passed through a pulse shaper with  a sliding 
spectral window of size frep for various spot sizes, w0.  Since the tunable filter ideally allows 
only one comb through at a time, the ideal pulse train would be converted to a constant 
magnitude, with no oscillation.  We see that w0=1/3 wrep  is the closest we get to this ideal 
response with minimal oscillations in the region where the tunable filter shifts between comb 
lines.  

 
It is worth emphasizing that our analysis applies specifically to the case where the output 

Gaussian mode filter is precisely matched to the field that propagates through the pulse shaper 
in the absence of masking.  Usually this will be the most interesting case, as it minimizes loss.  
However, new effects may be possible for other choices of the output mode filter.  For 
example, if the mode filter is spatially offset from the optimum position, it will lead to 
bandpass rather than low-pass filtering action of a rapidly varying pulse shaping mask.  In this 
case a simple time-varying amplitude or phase mask could be used, for example, to impose 
single-sideband modulation in parallel onto an entire set of optical comb lines. 
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Appendix A. Field at the masking plane  
 

Assuming an input field prior to the grating as given by Eq. (1), the field immediately after 
the grating may be written as [8]  
 

 ( )( ) ( ) ( )
2

oj tj x
in a a

d
e x t Re A s x e e ω ωγωωβ ω β

π
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od

πγ
ω θ

= . Here ( )cos o
iθ  and ( )cos

D

oθ  are the input and output 

(diffraction) angles for a reference ray at frequency oω  traveling along the optical axis, and 

d  is the grating periodicity. The j xe γω− �  factor imparts the variation in diffraction angle with 
frequency; and the beam size is scaled by the inverse of an astigmatism factor aβ , which 
results from the difference in input and output angles. 

Propagation from the grating at the front focal plane of the lens to the masking plane at 
the back focal plane may be analyzed using the Fourier transform property of a lens [16,17]. 
Specifically, for a scalar, monochromatic, one-dimensional field ( )ins x  at a plane a distance  f 
in front of a thin lens with focal length f, the resulting field at an output plane a distance f  
behind the lens is  

 

 ( ) ( )/( ) jkxx fj kx
out in inf f

s x dx s x e S
λ

′′ ′= ∫ ∼  (A.2) 

 
where 2k cω π λ= / = / , and ( )in xS k  refers to the spatial Fourier transform of the input spatial 

profile ( )ins x , and the Fourier transforms are defined as ( ) ( ) jkxS k dx s x e= ∫  and 

( ) ( )1

2
jkxs x dk S K e

π
−= ∫ . Using this Fourier transform property in conjunction with Eq. 

(A.1) for the field just after the grating, we immediately obtain the field at the masking plane 
of the pulse shaper, Eq. (3).  
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