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Spectral and temporal mode matching are required for the
efficient interaction of photons and quantum memories. In
our previous work [Opt. Lett. 45, 5688 (2020).], we proposed
a new route to spectrally compress broadband photons to
achieve spectral mode matching with narrowband mem-
ories, using a linear, time-variant optical cavity based on
rapid switching of input coupling. In this work, we extend
our approach to attain temporal mode matching as well by
exploiting the time variation of output coupling of the cav-
ity. We numerically analyze the mode matching and loss
performance of our time-varying cavity and present a possi-
ble implementation in integrated photonics. © 2022 Optica
Publishing Group

https://doi.org/10.1364/OL.445338

Quantum networks generally involve different physical plat-
forms like matter-based systems for implementing memory
nodes and photons for long-distance transportation [1]. Hence,
we must address the challenge of interfacing these platforms. In
addition to the quantum frequency conversion [2,3] required to
match the center wavelengths, we need to achieve spectral and
temporal mode matching which is the focus of this work. The
memories are generally narrowband with linewidths of the order
of a few hundred MHz or below. However, the photons generated
from typical spontaneous parametric down-conversion sources
are broadband with linewidths of the order of a few hundred GHz
or more. The temporal shape of the incoming photon also plays
a role in the probability of it being absorbed by the quantum
memory [4,5]. Hence, spectral compression along with tempo-
ral engineering is necessary to efficiently interface broadband
photons with narrowband memories.

Prior approaches to spectral compression include nonlinear
optical schemes [6,7–8] and time-lens operations [910–11]. The
conventional approaches to temporal shaping are intensity mod-
ulation and nonlocal shaping of heralded photons [12,13] and
are lossy even in an ideal scenario. In our previous work [14],
we proposed a novel approach of using time-varying cavities to
achieve spectral compression. Our approach is based on cap-
turing a broadband photon into a cavity via rapid switching
of the input coupling. By using high-quality (Q) cavities, our
approach enables the possibility of compressing photons to a
sub-GHz bandwidth, limited only by the cavity linewidth. This
allows for spectral mode matching between broadband photons

and narrowband memories. However, the temporal mode of the
compressed photons is a pulse train with a decaying exponen-
tial envelope, which generally is not optimal for matching to a
quantum memory. Hence in this work, we propose to employ the
time-variation of output coupling of the same cavity to engineer
the temporal shape simultaneously. Our approach is theoretically
lossless.

Quantum memory demonstrations with on-demand storage
and retrieval are generally three-level systems and fall under the
category of Λ-type schemes [15–18]. In these quantum memo-
ries, an auxiliary classical control pulse is used to mediate the
on-demand storage and retrieval of quantum signals. One can
either optimize the temporal shape of the classical control pulse
or the quantum signal relative to the other for maximizing the
interaction efficiency [5,6,15]. References [15–17] demonstrate
efficient quantum storage of quantum signals with near-Gaussian
temporal modes with widths of the order of few ns to few tens of
ns. Deriving motivation from these references, we explore and
analyze the possibility of achieving such Gaussian-shaped tem-
poral modes for the spectrally compressed photons for the initial
investigation of this idea. However, our analysis is extendable to
any generic temporal mode of interest.

We consider a Fabry–Perot (FP) cavity [Fig. 1(a)] for our
discussions, although our concept is applicable to any generic
cavity. We also show a possible integrated photonics imple-
mentation using a microring configured with a Mach–Zehnder
interferometer (MZI) in Fig. 1(b), discussed later. Consider an
FP cavity with the input and output field reflection (transmis-
sion) coefficients given by r1(t1) and r2(t2), respectively. Here,
r1 is rapidly switched from 0 to 1 at t = TR, where TR represents
the roundtrip time. For input pulses contained between t = 0
and t = TR, the entire pulse is captured inside the cavity and
exits only through the output mirror. In the case of a constant
r2, the output is a pulse train containing time-shifted copies of
the input with a decaying exponential envelope. If the input car-
rier frequency matches with one of the cavity modes, most of
the energy gets compressed into that resonance linewidth. The
rapid switching of r1(t) ensures energy confinement resulting
in this spectral compression. With the additional usage of time
variation of r2(t), we now seek to engineer the temporal mode
of the output. In principle, one may seek to use a suitable r2(t)
to attain any arbitrary temporal mode. As long as the time vari-
ation of r2(t) is sufficiently slow compared with the roundtrip
time, we intuitively expect the spectral compression properties
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Fig. 1. (a) Time-varying cavity with input reflectivity rapidly
switched from 0 to 1 after the pulse enters the cavity. For a constant
output reflectivity r2, it leads to a spectrally compressed pulse train
with a decaying exponential temporal envelope. The time varia-
tion of r2(t) can be used to reshape the output temporal mode. (b)
Integrated photonics implementation.

to be largely preserved, consistent with our simulation results
presented later.

We use E to represent the oscillating electric fields. The output
field Eout(t) of such a cavity for any generic input Ein(t) can be
expressed using an iterative relation [19,20] given by

Eout(t)
t2(t)

= e−αL/2 t1
(︃
t −

TR

2

)︃
Ein

(︃
t −

TR

2

)︃
+ e−αL r1

(︃
t −

TR

2

)︃
r2 (t − TR)

Eout (t − TR)

t2 (t − TR)

Eout(t) =

{︄
∞∑︂

m=0

e−αL(1/2+m) t1
[︃
t −

(︃
mTR +

TR

2

)︃]︃
t2(t)

Ein

[︃
t −

(︃
mTR +

TR

2

)︃]︃ m∏︂
n=0

bn

}︄
b0 = 1, bn = r1

[︃
t −

(︃
nTR −

TR

2

)︃]︃
r2 (t − nTR) ∀n ≥ 1

(1)
where L represents the roundtrip length and 2αL the roundtrip
loss. The dispersion is assumed to be negligible. For any given
Ein(t), r1(t) (rapidly switching from 0 to 1), and αL, one can
try to find a r2(t) such that the output Eout(t) resembles the
targeted Gaussian shape Etar(t) = e−t2/σ2 ejω0 t, where ω0 is the
carrier frequency of the input and σ2 determines the temporal
width. Assuming excessive loss is to be avoided, the achiev-
able temporal widths are upper bounded by the intrinsic cavity
lifetime. Hereon, we assume Ein(t) oscillates at one of the cav-
ity resonances, into which the spectral compression occurs. We
define two parameters, namely fidelity (ζ) and efficiency (η),
as figures of merit to quantify the system performance. Fidelity
captures the similarity between the produced output profile and
the targeted output profile, given by the following integral:

ζ =

|︁|︁∫ E′

out(t)E∗
tar(t) dt

|︁|︁2∫
|E′

out(t)|
2 dt

∫
|Etar(t)|2 dt

. (2)

Here, E′

out(t) is obtained by filtering out the spectral content of
Eout(t) that falls outside of the cavity resonance which coin-
cides with the carrier frequency. We use a flat-top bandpass
filter of width 1/TR centered at the corresponding resonance for
this filtering operation [shown in inset of Fig. 2(c)]. This is a
valid assumption as we do not expect the narrowband memory
to respond to the filtered out spectral content. Efficiency (η)
describes the loss performance of our system or, equivalently,
the ratio of energy present in the spectral compression peak to

Fig. 2. For the three different cases of r2(t) shown in panel (a), (b)
temporal and (c) spectral profiles of the output E′

out are plotted. The
input pulse is shown in the inset of panel (b) and r1(t) is assumed to
be abruptly switched from 0 to 1 at t = TR. Here, 2αL = 0.025 dB
is assumed. The first curve from the left corresponds to a constant
r2(t) = 0.97 and the other two curves are the optimal solutions for
specific conditions (details in text). In panel (c), the input is shown
in black, and plots are normalized to peak input power spectral
density. FWHM of the input is ≈ 1/TR. In the inset of panel (c), the
log plots are shown for both input (not magnified) and Eout (curve
with sharp peaks) to highlight the multiple peaks that are filtered to
obtain E′

out. Dashed lines represent the filtering operation.

the input:

η =

∫ |︁|︁E′

out(t)
|︁|︁2 dt∫

|Ein |
2 dt

. (3)

Both ζ and η take values between 0 and 1, with the ideal sce-
nario being ζ = η = 1. Here, η is upper bounded by 1 as it is
a linear and passive system, and ζ is upper bounded by 1 due
to the Cauchy–Schwarz inequality. We use a numerical opti-
mization technique called particle swarm optimization (PSO)
[21] to obtain an optimal r2(t) that satisfies Eq. (1), while min-
imizing the cost function C(ζ , η) = η × log10(1 − ζ). This cost
function provides a higher weight to ζ than to η, which allows
us to emphasize the temporal shaping ability in our analysis.
PSO is easy to implement and does not require the problem
to be differentiable. For optimization simulations, we discretize
r2(t) at integer multiples of TR starting from TR/2 away from the
input time (the instant at which the output starts to take nonzero
values); the discretized optimal r2(t) is later smoothened using
spline interpolation for potential practical implementation.

For our simulations, we assume an input pulse time-limited
to the pulse duration Tp; the field is flat-topped over the cen-
tral 0.75Tp, with symmetric sinusoidal rising and falling edges
accounting for the remaining 0.25Tp [inset of Fig. 2(b)]. Initially
we assume the pulse duration is matched to the roundtrip time:
Tp = TR. Here, Ein(t) is input between t = 0 and t = TR, and r1(t)
is switched abruptly from 0 to 1 at t = TR, and 2αL = 0.025 dB
is assumed. We have shown both temporal and spectral profiles
of the output (E′

out) in Fig. 2(b) and Fig. 2(c), respectively, for
the three different cases of r2(t) shown in Fig. 2(a). For a con-
stant r2(t) = 0.97 (first curve from the left), the output has a
decaying exponential envelope. For the other two cases, we per-
form numerical optimization to obtain r2(t) to mode match E′

out(t)
with the targeted Gaussian temporal mode of widthσ = 30 × TR,
while minimizing C(ζ , η). Here and in the following figures, we
show r2(t) only for the values of t, over which the output is
non-negligible. The red curve corresponds to the optimal case,
with ζ = 0.9999 and η = 0.66. The green curve corresponds to
the case when we force the optimizer to not maximize ζ beyond
0.95, resulting in a larger η = 0.78. This reduced fidelity can
be connected to the truncated portion of the Gaussian tail near
t = 0. The optimal outputs are essentially of the form e−(t−τ)2/σ2
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Fig. 3. Estimated loss resulting due to cavity attenuation for dif-
ferent values of (a) fidelity (assuming 2αL = 0.025 dB) and (b)
cavity roundtrip loss (while maintaining ζ = 0.9999) to achieve
the Gaussian temporal shapes of widths σ ∈ {30 × TR, 50 × TR}.
σ = 50 × TR, upper curves.

with τ chosen by the optimizer, determining the amount of trun-
cation at the leading edge and consequently the fidelity and the
loss. Hence to achieve a high fidelity with the Gaussian shape,
most of the input power has to execute a higher number of
roundtrips resulting in a higher loss for a lossy cavity. These two
examples demonstrate the trade-off between fidelity and loss
performance. Also, the decaying exponential output resulting
from the constant r2(t) = 0.97 has a comparably low ζ = 0.77,
but has a higher η = 0.82. All these cases have sharp peaks in
their spectral profiles [Fig. 2(c)] at the center indicating spec-
tral compression (spectral narrowing along with spectral peak
enhancement). The output spectral widths are similar for the
three cases and are roughly two orders lower than the input. This
shows the ability of our system to both spectrally compress and
temporally shape the incoming photon.

To further expand on the trade-off between fidelity and loss,
we consider Gaussian profiles of the form e−(t−τ)2/σ2 over t ≥ 0.
If τ is intentionally varied, the outputs are similar except with
different amounts of the leading edge truncated at t = 0, leading
to different values of ζ [see red and green curves in Fig. 2(b)].
We can analytically estimate the loss due to cavity attenuation,
even without specifically writing down the required r2(t) using
the formula: η =

∑︁∞

n=0 |E(tn)|2/eαL ∑︁∞

n=0 |E(tn)|2e2αLtn/TR . Here the
output field is represented by samples corresponding to n
roundtrips through the cavity, each of which has experienced
n + 1/2 roundtrips worth of cavity attenuation. However, this
estimate does not include the other sources of loss (shorter
input pulses, Tp<TR, finite rise time for r1), which are con-
sidered later. In Fig. 3(a), we plot the estimated total loss
(−10log10η) resulting solely due to cavity attenuation for dif-
ferent values of ζ to achieve the Gaussian temporal modes of
widths σ ∈ {30 × TR, 50 × TR}, for 2αL = 0.025 dB. The total
loss increases with the increase in fidelity, consistent with the
examples given above, illustrating the trade-off. Also, the total
loss is higher for achieving a larger temporal width as it requires
most of the input to execute an increased number of roundtrips.
This loss estimate can be seen as a lower bound to achieve cer-
tain fidelity values for any input as it excludes the other practical
loss sources mentioned above. In Fig. 3(b), we plot the estimated
total loss to achieve ζ = 0.9999 as a function of roundtrip loss.
The total loss increases with the increase in roundtrip attenu-
ation and is higher for achieving the larger temporal width, as
expected. One can choose an optimal τ based on this analysis and
can reverse engineer the required r2(t), constraining to the phys-
ical laws. However, it is efficient to use numerical optimization
to arrive at the solution.

Fig. 4. Optimization results for achieving Gaussian temporal
modes of widths (a), (c) σ = 30 × TR and (b), (d) σ = 50 × TR. r1(t)
is assumed to be a raised cosine function (inset of panel (b)). We
consider two cases: (1) Tp = TR, β = 0 and (2) Tp = 0.9TR, β = 1.
For case (1), the optimal r2(t) minimizing C(ζ , η) and the corre-
sponding output profiles are shown in panels (a), (b) for different
values of cavity loss. For both cases, the fidelity and loss metrics are
plotted in panels (c), (d) for the cost functions C(ζ , η) (lower curves
in the upper subpanels and upper curves in the lower subpanels) and
C′(ζ , η) (upper curves in the lower subpanels and lower curves in
the lower subpanels). Dashed lines in panels (c), (d) correspond to
the estimated loss for ζ = 0.9999 plotted in Fig. 3(b) for respective
temporal widths.

We now analyze the performance addressing practical sce-
narios for different values of cavity loss, rise time for switching
r1, and input pulse width. r1(t) is assumed to be a raised cosine
function [inset of Fig. 4(b)], switching from 0 to 1 with the
transition centered at t = TR over the rise time βTR. The input
pulse is as defined earlier, but with Tp not necessarily equal to
TR. We consider two different cases: (1) Tp = TR, β = 0 and (2)
Tp = 0.9TR, β = 1. For input pulses shorter than TR, substantial
power gets compressed into the other cavity modes, effectively
leading to additional loss as only the central mode is assumed
to overlap with the memory. In the case of a nonzero rise time
for switching r1, some power is lost to the input side. For a
nonzero β, the input arrival time needs to be optimized addi-
tionally to account for power lost to the input side. Here the
optimizer is again allowed to choose the optimal output pulse
delay (τ). For these cases, we discuss the performance met-
rics to achieve the targeted Gaussian temporal modes of widths
σ = 30 × TR [Figs. 4(a) and 4(c)] and σ = 50 × TR [Figs. 4(b)
and 4(d)]. For case (1), the optimal r2(t) minimizing C(ζ , η) and
the corresponding

|︁|︁E′
out(t)

|︁|︁2 for achieving the Gaussian tempo-
ral shapes of widths σ = 30 × TR and σ = 50 × TR are shown in
Figs. 4(a) and 4(b), respectively, for different values of roundtrip
loss. For both cases (1) and (2), the fidelity and loss (−10log10η)
are shown in Figs. 4(c) and 4(d) as a function of roundtrip loss
(lower curves in the upper subpanels and upper curves in the
lower subpanels). The fidelity drops and the loss increases with
the increase in roundtrip loss. As the cavity loss increases, the
optimizer settles for Gaussian profiles with increased trunca-
tion at the leading edge to minimize the loss by reducing the
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total number of roundtrips, resulting in the fidelity drop. The
fidelity performance is similar for both cases. Although the loss
is higher in case (2) compared with case (1), as power leaked into
the adjacent resonances and the input side loss increase due to
Tp = 0.9TR and β = 1, respectively, the difference is only∼ 1 dB.

We have considered a cost function with a higher weight
to ζ so far to emphasize the shaping ability. However, a cost
function of the form C′(ζ , η) = 1 − ζη, with equal weights to ζ
and η, is directly related to the probability of the photon being
captured by the quantum memory, as ζ describes the overlap
integral between the photon and the memory and η represents
the total loss (similar to Ref. [6]). We have plotted the fidelity
and loss for this cost function in red in Figs. 4(c) and 4(d) for
the cases analyzed above. This leads to lower fidelity but also
lower loss compared with the former cost function. In Figs. 4(c)
and 4(d), the dashed line corresponds to the estimated loss for
achieving ζ = 0.9999 from Fig. 3(b). It can be observed that the
optimizer settled to a loss lower than this estimate by sacrificing
on ζ especially for C′(ζ , η) and in a few cases of C(ζ , η) when
operated at higher roundtrip loss. If we compare this cavity with
optimal time-varying r2(t) to a cavity with optimal constant r2,
this has three times higherC′(ζ , η) for Gaussian temporal output
modes when the roundtrip loss is zero. However, this contrast in
performance decreases with the increase in roundtrip loss.

As discussed in our earlier work [1], one can envision an inte-
grated photonics demonstration using a microring configured
with a switchable coupler, formed from a MZI [Fig. 1(b)]. Ini-
tially the MZI is in the cross-state, allowing the input pulse to
enter the cavity. However, before the light arrives back at the
upper input port of the MZI, the control voltage to the MZI
is rapidly switched to a state close to the bar state (effectively
high r2). This captures the input pulse inside the cavity with
high efficiency. Subsequently, a small portion of the trapped
light is output after every roundtrip, controlled via small varia-
tions of the MZI voltage. Such weak out-coupling is analogous
to the weak transmission through the partially reflecting output
mirror of an FP cavity. Thus, for input pulses time-limited to
less than the roundtrip time, the time variation of both input
and output coupling can be realized using the same MZI (as
the MZI acts as an input port between 0 and TR, after which
it behaves as an output port). Alternatively, one may envision
a microring with separate input and output (drop) ports, each
of which is configured with its own MZI for time-dependent
coupling; this is directly analogous to the FP cavity analyzed.
With recent demonstrations of high-Q cavities and high-speed
electro-optic modulators, thin-film lithium niobate (TFLN) is
a promising platform to realize this demonstration [22]. The
record-low losses reported in TFLN platforms are ∼ 2.7 dB/m
for straight waveguide sections [23], and ∼ 0.15 dB/cm for
phase-shifter sections with a Vπ · L value of 2.325 V-cm and
a 3-dB bandwidth of ≥ 67 GHz [24]. As an example, we con-
sider a 6.5-mm-long TFLN cavity, corresponding to a 50-ps
roundtrip time – longer than available switching times but much
shorter than achievable photon lifetimes. If the phase shifter
section is 2.5-mm long, then the roundtrip loss is ∼ 0.05 dB.
The dispersion can be considered negligible for the input pulses
whose widths are around the roundtrip time [25]. For the input
pulse shown in the inset of Fig. 2(b) of width 50 ps, it would
be possible to achieve the Gaussian temporal modes of FWHM
(
√

2ln2 σ) of 1.8 ns and 3 ns with losses of 3 dB and 4.5 dB,
respectively, with ζ ≈ 1. If the phase shifter loss can be reduced
to the level of the straight waveguide, the roundtrip loss drops to

∼ 0.018 dB. Consequently, it will be possible to achieve a lower
loss of 1.4 dB, 2 dB, and 2.9 dB for the Gaussian temporal modes
of FWHM of 1.8 ns, 3 ns, and 6 ns, respectively, with ζ ≈ 1.

In summary, we have proposed a way to incorporate tempo-
ral engineering capability in our novel electro-optic approach to
spectral compression using time-varying cavities. Our system is
linear and hence is applicable for both classical and quantum
light. Providing for a bandwidth interface of broadband photons
to narrowband quantum memories will contribute to new oppor-
tunities for entanglement distribution, such as entanglement
swapping between ground stations linked by a satellite.
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