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A weak-shock solution is obtained for the nonlinear propagation of a waveform that initially has the
form of an asymmetric double exporential. Such a wave shocks at its peak, so that shock growth and
wave-amplitude attenuation occur simultaneously. Simple formulas for wave amplitude, shock amplitude,
and arrival time are given as is an expression for the waveform. We also present a general technique for
obtaining weak-shock solutions for the amplitude of any integrable waveform that forms a single shock.

PACS numbers: 43.25.Cb
INTRODUCTION

In a previous paper,' Rogers presented a weak-shock
solution for the propagation of a shock wave with an ex-
ponentially decaying tail. Such a waveform is a special
case of a more general class, namely, asymmetric dou-
ble exponential waveforms.

This paper treats the nonlinear propagation of an
acoustic waveform that initially has the form of an
asymmetric double exponential function, that is, a wave
whose pressure rises exponentially with one time con-
stant, then decays exponentially with a second time con-
stant (see Fig. 1). Examples of such waveforms include
the bubble pulses that follow the shock wave in an under-
water explosion, the acoustic signal from an airgun, and
an explosive shock wave that has been reflected from a
water-air interface. If we consider only spherically
spreading waves, except for the last example, where an
early surface reflection could have a significant effect
on the farfield wave amplitude, nonlinear effects will
not be significant for a single airgun or explosion, no
matter how large. This is due to the fact that, except
for a relatively unimportant depth dependence, the amp-
litude and rise time of such waves scale in such a way
as to leave the shock formation distance independent of
the charge weight of the explosive or the pressure-
volume product of the airgun. For arrays of airguns
or explosives or for propagation conditions where cy-
lindrical rather than spherical spreading pertains, non-
linear effects can cause significant changes in wave
amplitude and enei'gy.

Unlike most waveforms studied to date,? the double
exponential shocks at the peak of the wave rather than at
the zero-crossing. As a result, wave amplitude and
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FIG. 1. Assumed particle velocity waveform at x=0.
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energy attentuation occur simultaneously with shock
growth. In this report we use weak-shock theory to ob-
tain simple expressions for the wave amplitude and
shape as a function of propagation distance. We also
present a general technique for obtaining weak-shock
solutions for the amplitude of any integrable waveform
that forms a single shock.

I. SOLUTION FOR SHOCK WAVE PARAMETERS

We consider a particle velocity » versus time profile,
which at x=0 rises exponentially with time constant 7,
for ¢t <0 and falls off exponentially with time constant 7,
for t>0, i.e.,

w0, =uyet’™1, t<0,
=Uy e'”rﬁ, t>0, (1)
as shown in Fig, 1.

We now introduce the retarded time t’'=#- x/c, and
the characteristic length I, = 7,c}/Bu,, where § is the
parameter of nonlinearity of the fluid and ¢, is the sound
speed. We define the dimensionless variables #=u/u,
{'=t'/1, ¥=x/l,,n=T,/7,, and let ! denote the dimen-
sionless retarded time corresponding to the peak of par-
ticle velocity. The parameter x is a measure of the
“age” of the wave.? It is a linear function of range for
plane waves, a logarithmic function for spherical waves,
and a square root function for cylindrical waves.? That
is, for plane waves x=x and the pressure is given by
p=pcqu. For cylindrical waves x=r,(r/7))!/* and p
=(#y/7)!/*pcou. For spherical waves x=R,log(R/R,)
and p=(R,/R)pcyu, where p is the fluid density and »
and R are cylindrical and spherical radial distances,
respectively. For nonplanar waves u« should be re-
garded as a Blokhintsev* invarient rather than a parti-
cle velocity.

The waveform distorts as it propagates, and at x=1 a
shock forms at the peak of the rising portion of the wave,
For X > 1 then, fs' will also denote the position of the
shock. Our goal is to obtain a solution for t!(x)as well
as expressions for i,(x), the acoustic particle velocity
immediately preceding the shock, and for #,(%), the par-
ticle velocity immediately following the shock.

The particle velocity #(%,7) is given by

Wz, 1) = exp(f’ +28), f'<i!, (22)

and
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w(x,t")=exp[- (" + @) /), £'>7. (2b)
It follows that #,(%) and ii,(%) are related to £/ by

(%) = exp(t. + i, %) , (3)
and

ity() = exp-(F; + i) /] . 4)
Taking the logarithm and rearranging terms, we obtain

[i(®) = logit, - 1, %, (5)
and

Fi(%) = —nlogit, — it . (6)

We can derive differential equations for #,(%) and #,(%)
using Egs. (5) and (6) in conjunction with the expression
for the propagation velocity of the shock front:

afdr=-L@, + ) . ()

By differentiating Eqs. (5) and (6) with respect to % and
then using Eq. (7) to substitute for df!/d%, we obtain

%(&b—{ta):(l/ﬁb—i)(dfjtb/dj?), (8)
and
3(ity = i) = (n/it, + 2)(dit,/ d%) . 9

At this point it is convenient to make a change of var-
iables. Instead of #,(%) and #,(%), we will work with
7,(%) and 7,(%), which we define, respectively, as the di-
mensionless time constants immediately prior to and
immediately following the shock front (as shown in Fig.
2). The reason for the change of variables will soon
become apparent.

From Eq. (3) we have
dity/dE ] =1,/ (1 - xit,) . (10)

We define 7,(%) such that

7y(%) = ~[di,/ (dit,/dED], (11)
so that

T,=tyx—1, (12)
or, alternately,

(3 = (1,+ 1)/ . (13)
Similarly we use Eq. (4) to show that

dit,/dE! = ~it,/ (0 + %it,) (14)
and we define 7, such that

7a(%) = = [it,/ dity/ )] . (15)
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FIG. 2, Shocked particle velocity waveform (9? >1).
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The result is that

T, =%+, (16)

4, =(1,-1m)/%. (17)

Expressing Eqs. (8) and (9), the differential equations

for #, and 4,, in terms of 7, and 7, and using the substi-
tutions indicated by Eqs. (13) and (17), we obtain

dry/dx=[(1,+1)/@7,2)(T,+7T,-1-7), (18)

and

dr,/dz=[(7,~ n)/ (21,0 (1, + T, +1 +7) . (19)

We impose initial conditions at =1, the propagation
distance at which shock formation begins. The only
mechanism for attenuation we are considering consists
of points on the trailing edge of the wave catching up
with the shock front; hence, the peak of particle velo-
city must equal unity prior to shock formation and

,=1,=1, at x=1. (20a)
From Eqs. (12) and (16) we see that this implies that

T,=1+7, (20b)

and
7,=0, at x=1.

We digress for a moment to consider the behavior of
these functions in the limit where x approaches infinity.
The asymptotic shape for our waveform as ¥ becomes
very large is a simple sawtooth,’ so that 7, becomes
proportional to V% and #, becomes proportional to
1/V&. It is also clear that #, must approach zero
quicker than #,, so that we can write the asymptotic li-
mit of Eq. (8) as follows:

_C/‘/}—: (l/ﬁb) (dﬁb/d&) I

where C is some constant. We have also used the fact
that 1/4, must dominate ¥ as ¥ approaches infinity.
Otherwise Eq. (8) tells us that @, would increase with .
The solution of Eq. (21) is

(21)

u,~exp(-2CVx), as x—o. (22)
From Eq. (12) then,
lim(r,)=-1, (23)

which essentially states that in the limit as % -, the
waveform to the left of the shock is undistorted.

Only a few straightforward manipulations are re-
quired to express 7, in terms of 7,. We multiply Eq.
(19) by 7, and Eq. (18) by 7, and then subtract, giving

T(dT,/dR) — T,(d7,/dR) = (1/28) (72 - T+ 1~ 17), (24)

or
(d/dR)(ri-tH=(1/%(ri -7+ 1-1). (25)
The solution to this equation is
T,=(Ax+1i+nt- 112, (26)

From Eq. (20b) we find that the constant A is given by

P. H. Rogers and A. M. Weiner: Nonlinear propagation 1189



A=2(n+1), 27
so that
T, =[2(n+ D2+ T2+ 2= 1]1/2, (28)

We note here that as an alternative to the procedure
of Eqs. (24) through (28), we could easily find a relation
between #, and u, using Landau’s law of equal areas.’
This more general method is demonstrated in the Ap-
pendix.

Now that we know 7, in terms of 7,, we can use Egs.
(5) and (6) to find 7, as an implicit function of 2. We
equate the right-hand sides of these equations and make
the appropriate substitutions for #, and i, with the re-
sult that

-nlog[(r,~n/%]~ 1, +n=1log[(r, + 1)/2] - 7,- 1. (29)

Taking the exponential function of Eq. (29) and making a
few manipulations gives the following:

fefb: 7 +1, (303)
where
f= x(nol)(.ra - Tl)‘ﬂ e 171q) , (30b)

with 7, given by Eq. (28).

For 0 <% <1 (that is, until shock formation occurs),
we can express 7, and 7, as explicit functions of x:

nH=%-1, (31)
and
(D) =x+7y. (32)

For %>1, this result is no longer valid and we can no
longer obtain 7, as an explicit function of ¥. However,
we can use Newton’s rule to obtain the following itera-
tive solution to Eq. (30):

_ fn e(fb)"_ [(Tb)n+ 1]
(Tb)ml = (Tb)n —fn e(rb),, {1 _ (Tb)n/[(Ta)n _ TI]}_ 1

The only problem remaining is to find a good starting
point for our iterative process. OQur first approximation
for 7, should approach -1 as x becomes large and
should have the right behavior for x—1. Such a function
can be found by solving Eq. (18) under the assumption
that ¥=1. First, we obtain approximate expressions
for 7, and 7,. Eq. (19) yields

(33)

dr,/dz=1,
and
d*1,/d%* = ~3/[4(1+7)], for z=1. (34)

We express 7, as the first few terms of its Taylor ser-
ies:

T,=(1+n)+&-1)-{3/[8(1 +plHz - 1)°. (35)

Likewise, Eq. (18) and repeated applications of 1’Hopi-
tal’s rule yield

dr,/di=-1%,
and

d’1,/d%* =L [(2n+3)/(n+1)], for %=1, (36)
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so that an approximate expression for 7, is given by

T,==3(-1)+%[2n+3)/(n+ D)E-1)°. (3M
We now use Egs. (35) and (37) to approximate (1, + 7,
-1-9)/7, to first order terms in (=1). We obtain

(Ty+ T=1-n)/7,==1-2[2n+ 1)/t + DZ-1). (38)
This can be replaced by

(Tb+Ta_ 1-71)/702-1“‘%[(271*‘1)/(77"'1)]7,,, (39)
which is also correct to the first order in (x ~1). We
now define a new constant

y=312n+1)/(n+1). (40)

Note that y is a weak function of 7 lying between  and
% as 7 varies from zero to infinity. Plugging Eqs. (39)
and (40) into Eq. (18), we arrive at

dr,/[(t,+ DY(y1, - D] =dz/2% . (41)

The solution to Eq. (41), subject to the condition that
T,=0at =1, is

T, = (1= 27020 /(y + 27017 (42)

The approximate solution given by Eq. (42) has the pro-
per behavior for x=1 (up to second order terms) and
does approach ~1 as x approaches infinity. Thus we
use Eq. (42) as the starting point for the iterative solu-
tion given by Eq. (33).

We might be interested in an even simpler starting
point for our iterative solution. In that case, we need
only notice that when n=1%, then Eq. (42) reduces to

7,=(1-%)/(1+3), n=3. (43)

Eq. (43) has the correct first order behavior in the vi-
cinity of x=1 for any 5 and still approaches ~1 as %
-, With Eq. (43) as a starting point, the first itera-
tion yields a solution accurate to within 0.6% for all 7.
With Eq. (42) as the starting point, the first iteration is
accurate to within 0.2%. Repeated iterations will, of
course, yield greater accuracy.

Knowing 7,(%), we can now obtain the values of 7,, #,,
and %, through the use of Egs. (28), (13), and (17), res-
pectively. It is preferable to use Eq. (6) rather than
Eq. (5) to find £..

The three quantities which are of most practical in-
terest are the peak amplitude #,, the shock amplitude
@i, = #i, - #,, and the arrival time {/. These quantities
are relatively weak functions of 7,, so one can obtain
them by substituting 7, directly from Eqgs. (42) or (43)
into the above equations without going through the iteva-
tion process at all. Sufficiently accurate results can,
in fact, be obtained by using Eq. (43) which is indepen-
dent of n rather than Eq. (42) for 7,. The principal
results of this report can thus be expressed as

a=1, #<1,
=1 + B’ - 1+2(n+ D]+ (1-2)%}/?

-p{x+ 1))V x(x+1), =1, (44)
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FIG. 3. Peak amplitude (solid lines) and shock-discontinuity
amplitude (dashed line) as a function of “age” % for n=0, 1, 10,
and infinity,

-t

#,=0, ¥<1,

il =ty = {1+ B)2[n? - 1+ 2 + DE]+ (1 - D/
—-(E+n+2)Vux+1), 3>1, (45)

Il

Uy

and

t!=—nlogi, — % . (46)

The peak amplitude, shock amplitude, and the advance
in the arrival time £ are plotted as a function of % for
1=0, 1, 10, and = (shown in Figs. 3 and 4). Note that
11=w corresponds to a waveform that at ¥=0 rises ex-
ponentially to a value of unity, then remains there for
all time. Such a wave never attenuates at all. Once
the shock is completely formed, it is equivalent to a
simple shock. Of course, one must continually put
energy in at the source to support such a wave, and it
must be one dimensional, i.e., in a pipe. The case 7
=0 corresponds to a waveform that at x=0 rises ex-
ponentially to unity, then discontinuously falls to zero.
The discontinuity is not a shock and disappears as soon
as #>0. Though it may not be immediately apparent,
11=0 also handles the case of the surface-reflected ex-
plosive shock wave, i.e., a wave for which the pressure

151 7=
7=1Q
10
nel
-?'s n:0

5._

L ' ) L " 1
0 10 R 20 30

X

FIG. 4. Advance in arrival time as a function of “age” % for
n=0, 1, 10, and infinity.
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discontinuously falls to some negative value, then rises
exponentially to zero.

Figures 3 and 4, which are calculated directly from
Eqs. (44), (45), and (46), show the results obtained by
essentially holding 7, constant and changing n by vary-
ing 7,. This keeps ¥ (which is inversely proportional
to 7,) the same in all cases. If we define 2 new dimen-
sionless “age” parameter X’ in terms of 7, such that
x'=3%/7n, this new age parameter will then be equivalent
to the age parameter in Ref. 1. Expressed in terms of
%', 1~ corresponds to a shock wave with an exponen-
tial tail and Eq. (44) reduces to the result given in Ref.
1.

’

Ii. SOLUTION FOR THE WAVEFORM SHAPE

We now have a method for determining the position of
the shock front and the particle velocity immediately
before and after its arrival, but as yet we do not have a
solution for the shape of the velocity waveform. An
exact expression cannot be obtained, but we can easily
derive an excellent approximation.

For i’ st', the acoustic particle velocity satisfies Eq.
(2). Taking the logarithm of both sides, we find that

logn=%'+ux. 47

We now introduce two new dimensionless variables g
and % such that

-

a=ge*, (48)
and

2=xel. (49)
Bq. (47) is then equivalent to

logg-32=0. (50)

Using Newton’s rule, we obtain the following iterative
solution:

Enol =(1 - IOgén)/[(l/gn) = E] .

Before choosing a trial solution, let us consider some
requirements that this trial solution must satisfy. First,
the minimum value of Z is zero, corresponding to

(51)

g=1, at£=0. (52a)

Second, at Z=¢"!, the waveform is shocked so that z
= ¢! is the maximum value of Z in which we are inter-
ested. This corresponds to

g=e, ati=e". (52b)
Finally,
d5/di=c0, atZ=¢l, (52¢)
8.

which simply states that the shock occurs at Z=e™. A
function which satisfies the condition of Eq. (52) is

Fo=e—al(l/e-2)!/3, (53a)
where
a=e'’3e-1)=2.398. (53Db)
The first iteration yields
P. H. Rogers and A. M. Weiner: Nonlinear propagation 1191



. _1-logle-a(l/e-2)!/3]
815 /le-a(l/e-27]-2’
where g, differs from the exact value of 7 by less than

0.6% and is exactly correct for Z2=1/e. We take g, as
our solution for ' <f..

(54)

We now duplicate this procedure for £*>f!. Taking the

logarithm of Eq. (2b), we obtain
logi=—-({+2%) /7. (55)

We introduce two more dimensionless variables f and
y, where

i=f et (56)
and

- a glfn

y=(/nxe (57)
Equation (55) is reduced to the following:

logf=-75. (58)

Rogers! previously obtained the following iterative

solution for this equation:

- 1+log{(2y+1)/[1+1og(y +1

7= 1tlog{(2j + 1/[1+log(j + ]} (59)

§+(25+1)/[1+10gG + 1)]

The error in f3 is less than 1% for 3 <10%, Qur approxi-
mate sclution for the waveform shape then is given by
Eq. (48):

(60)

Figures 5, 6, and 7 show # as a function of dimen-
sionless retarded time for several values of ¥ and 7.
As anticipated, %,, #,, and fs' all decrease with x. If we
compare the three figures, we see that as 7 increases,
the shock front attentuates less rapidly and moves more
rapidly in the negative #’ direction. Furthermore, if
we keep 7 constant and vary %, we see that the various
waveforms coincide when # is very small. This too is
expected, when # is small, very little distortion takes
place, and the shape of the original waveform is pre-
served.

The results in Figs. 5 and 7 were checked against,

0 -5 -2.5 o} 25 5

FIG. 5. Particle velocity as a function of retarded time for
n=0.2 and for ¥x=0, 1, 3, and 10.
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FIG. 6. Particle velocity as a function of retarded time for
n=1 and for ¥=0, 1, 3, and 10.

and are in excellent agreement with, a computer alo-
grithm that models the original waveform as a set of
discrete points and that allows each point to propagate
individually according to the laws of weak-shock theory.

APPENDIX

In this section we use Landau’s law of equal areas to
obtain a relation between #, and #, that is equivalent to
that of Eq. (28). Landau’s law® states that the area
under any closed waveform propagating according to
the laws of weak-shock theory remains constant. (By
closed we mean that the initial and final points of the
waveform must lie on the #’-axis, i.e., #=0.)

Consider the waveform given by

PO TR
u=e", t'<0, (A1)

a=etn, {150,

for =0, as shown in Fig. 8(a). The area under this
curve is

0 . - .
Ao=f e"df'+f et/ di’
- o

=1 +7. (Az)

Now we let the wave propagate a distance x. The re-
sult is shown in Fig. 8(b). Not only must the total area

101
o9t
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o7t
o6t
05}
04t
03t

c>

02
0.

o -5 -25 0 2.5 5

FIG. 7. Particle velocity as a function of retarded time for
n=>5 and for ¥=0, 1, 3, and 10.
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c>

FIG. 8. (a) Initial waveform (¥=0). The total area under the
curve, as well as the area under each of Regions I, II, and III,
remains constant. (b) Distorted waveform (%>1). The total
area under the curve, as well as the area under each of regions
I, II, and IIT, remains constant.

under the curve remain constant, but according to the
law of equal areas, the area in each of regions I, II, and
III must also remain unchanged. Therefore,

Al = 71124 )
and (A3)
A= ’2» 4

where A; denotes the area in region I, etc. The area
Aqqy is found geometrically from Fig. 8(b); it is simply
the difference of two triangles:

Ay = 3@ 0u, - @01, . (A4)
Equating the total areas, we have
Mty + 8ty + 302% — U3k =1+1. (AS)

Now we make the substitutions indicated in Eqs. (13)
and (17) and simplify to obtain

=2+ YR+ 1i+ni-1, (A6)

which is the same as Eq. (28).

The method outlined above is quite powerful and can
be applied to many other problems. Consider, for ex-
ample, a waveform that at =0 rises exponentially for

¢<0 and falls off linearly for >0, that is,
u=e¥, I'<0,

u=1-1Y¢, >0,

(A7)

as shown in Fig. 9(a), where ¢ is dimensionless. Note
that the initial area under the curve is

Ay=1+¢E/2.

Figure 9(b) shows the distorted waveform at a propa-
gation distance ¥. The total area is now given by

A=T/2+0R/2+ i1, - 423/2
Equating Eqs. (A8) and (A9), we obtain

(A8)

(A9)
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- >

FIG. 9. (a) Initial waveform (2= 0). (b) Distorted waveform
(x>1).

a, ={[2/(k + D~ + 2 2/2+ 1+ £/2)}2 12, (A10)

We can now derive a second relation between #, and #,.
First we write down the shape of the waveform for ar-
bitrary x and &:

(Alla)
(Al1b)

=, iy
a=1-(F"+ux)/E, t'>¢].

Now we make the following substitutions. In Eq. (Alla)
we replace # with i, and £ with f;; similarly we replace
# with #, and ¢’ with £, in Eq. (A11b). We solve each
equation for t:: and equate the resulting expressions,
giving

Uy + %) =uy + xity + £ . (A12)

By combining this with Eq. (A7) and introducing the
time constant 1, as given in Eq. (12), we find that

%G e~ (1,+1)=0, (A13a)
where

G=e", (A13b)
with

s=2@E+ola/2n(ri-1+1+£/2]P/2, (A13c)
This solved iteratively using Newton’s rule yields

(Tyae1 = (Tp)a = {3G €0t — [(7,), + 1]}

x [RG e<'n)n*’(1 - (—Eis’%(—’ﬁm) - 1]-l . (A19)

A good trial solution to Eq. (A14) can be found by
writing the differential equation for 7, and using the
method of Eqs. (34) through (42) to solve it approxi-
mately. One obtains the same approximate solution as
before [that is, Eqs. (40) and (42)] provided only that 75
is replaced by £ in Eq. (40). This is no real surprise
since the linear decay at #=1 and #*=#/ looks identical
to the exponential decay.

P. H. Rogers and A. M. Weiner: Nonlinear propagation 1193



1p, H. Rogers, J. Acoust. Soc. Am. 62, 1412-1419 (1977). “D. J. Blokhintsev, J. Acoust. Soc. Am. 18, 322-334 (1946).

*p. T. Blackstock, Amevrican Institute of Physics Handbaok, 5L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
edited by D. Gray (McGraw-Hill, New York, 1972), Chap. 37. Oxford, 1959), pp. 372—378.

3D. T. Blackstock, J. Acoust. Soc. Am. 39, 1019—-1020 (1966).

1194 J. Acoust. Soc. Am., Vol. 66, No. 4, October 1979 P. H. Rogers and A. M. Weiner: Nonlinear propagation 1194



