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A weak-shock solution is obtained for the nonlinear propagation of a waveform that initially has the 
form of an asymmetric double exponential. Such a wave shocks at its peak, so that shock growth and 
wave-amplitude attenuation occur simultaneously. Simple formulas for wave amplitude, shock amplitude, 
and arrival time are given as is an expression for the waveform. We also present a general technique for 
obtaining weak-shock solutions for the amplitude of any integrable waveform that forms a single shock. 

PACS numbers: 43.25.Cb 

INTRODUCTION 

In a previous paper, • Rogers presented a weak-shock 
solution for the propagation of a shock wave with an ex- 
ponentially decaying t•il. Such a waveform is a special 
case of a more general class, namely, asymmetric dou- 
ble exponential waveforms. 

This paper treats the nonlinear propagation of an 
acoustic waveform that initially has the form of an 
asymmetric double exponential function, that is, a wave 
whose pressure rises exponentially with one time con- 
stant, then decays exponentially with a second time con- 
stant (see Fig. 1). Examples of such waveforms include 
the bubble pulses that follow the shock wave in an under- 
water explosion, the acoustic signal from an airgun, and 
an explosive shock wave that has been reflected from a 
water-air interface. If we consider only spherically 
spreading waves, except for the last example, where an 
early surface reflection could have a significant effect 
on the farfield wave amplitude, nonlinear effects will 
not be significant for a single airgun or explosion, no 
matter how large. This is due to the fact that, except 
for a relatively unimportant depth dependence, the amp- 
litude and rise time of such waves scale in such a way 
as to leave the shock formation distance independent of 
the charge weight of the explosive or the pressure- 
volume product of the airgun. For arrays of airguns 
or explosives or for propagation conditions where cy- 
lindrical rather than spherical spreading pertains, non- 
linear effects can cause significant changes in wave 
amplitude and energy. 

Unlike most waveforms studied to date, •'2 the double 
exponential shocks at the peak of the wave rather than at 
the zero-crossing. As a result, wave amplitude and 
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FIG. 1. Assumed particle velocity waveform at x: 0. 
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energy attentuation occur simultaneously with shock 
growth. In this report we use weak-shock theory to ob- 
tain simple expressions for the wave amplitude and 
shape as a function of propagation distance. We also 
present a general technique for obtaining weak-shock 
solutions for the amplitude of any integrable waveform 
that forms a single shock. 

I. SOLUTION FOR SHOCK WAVE PARAMETERS 

We consider a particle velocity u versus time profile, 
which at x--0 rises exponentially with time constant z l 
for ! •< 0 and falls off exponentially with time constant T2 
for ! >0, i.e., 

u(O,t)=uoet/'l, t •O, 

=uoe"/'2, t>0, (1) 

as shown in Fig. 1. 

We now introduce the retarded time t'= t - x/c o and 
the characteristic length l 0 = r•c•//3Uo, where /3 is the 
parameter of nonlinearity of the fluid and c o is the sound 
speed. We define the dimensionless variables •=u/uo, 
/'= t'/r•, •= x/lo, •/= r2/ri, and let • denote the dimen- 
sionless retarded time corresponding to the peak of par- 
ticle velocity. The parameter x is a measure of the 
"age" of the wave? It is a linear function of range for 
plane waves, a logarithmic function for spherical waves, 
and a square root function for cylindrical waves.3 That 
is, for plane waves x= x and the pressure is given by 
p=PCoU. For cylindrical waves X=ro(r/ro) t/2 and p 
= (ro/r) i/2pCoU. For spherical waves x=R 010g(R/Ro) 
and p = (Ro/R)Pcou , where p is the fluid density and r 
and R are cylindrical and spherical radial distances, 
respectively. For nonplanar waves u should be re- 
garded as a Blokhintsev 4 invarient rather than a parti- 
cle velocity. 

The waveform distorts as it propagates, and at •= 1 a 
shock forms at the peak of the rising portion of the wave. 
For :• >• 1 then, [•' will also denote the position of the 
shock. Our goal is to obtain a solution for [j(x)as well 
as expressions for •b(•), the acoustic particle velocity 
immediately preceding the shock, and for •a(:•), the par- 
title velocity immediately following the shock. 

The particle velocity •(œ,[') is given by 

•(•, [9 = exp(•' + •), •" < •;, (2a) 
and 
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•(},•')=exp[-(f'+ •})/•], f'>•j. (2b) 
It follows that •(}) and •a(}) are related to t•j by 

•(}) = exp(•j + • •), (3) 
•d 

•(}) = exp[-(?j + •})/n]. (4) 
T•ing the logarithm •d rearr•ging terms, we obt•n 

f•(•) = •og• - •, (5) 
•d 

fj(}) = -• •og• - •}. (6) 

We c• derive differential equations for •(}) •d 
using Eqs. (5) •d (6) in conjunction with the expression 
for the prop•ation velocity of the shock front: 

By differentiating Eqs. (5) •d (6) with respect to 
then using Eq. (7) to substitute for d•j/di, we obtmn 

•(• - •.) = (•/• - })(d•/d}), (8) 
•d 

•(•, - •.) = (•/• + })(d•,/ d}) . (9) 

At this point it is convenient to m•e a ch•ge of var- 
iables. Ins[cad of •b(}) •d •,(}), we will work with 
7b(}) •d •(}), which we define, respectively, as the di- 
mensionless time constats immediately prior to •d 
immediately following the shock front (as shown in Fig. 
2). The reason for the ch•ge of variables will soon 
become apparent. 

From Eq. (3) we have 

a•/d• = •,/(1 - •). 

We define r•(}) such that 

7,(}) = -[•,/(a•,/d•], 
so that 

T b = l/b•C -- 1 • 

or, alternately, 

•b(•) = fi'b + 1)/:•. 

Similarly we use Eq. (4) to show that 

du•/ dt • = -•,/ (•1 + 

and we define r• such that 

- [u•/(du•/dtfi. r•(•) = • • 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

FIG. 2. Shocked particle velocity waveform (} > 1). 

The result is that 

z• =•+ •/, (16) 
and 

h• = (• - n)/}. (1•) 

Expressing Eqs. (8) and (9), the differential equations 
for • and •, in terms of • and • and using the substi- 
tutions indicated by Eqs. (13) and (17), we obtain 

d•/d• = [(r• + 1)/(27•)](?•+ •, - 1 - •/), (18) 
and 

a•-•/d} = [(•'• - r/)/(2ra})] (To + 7. + 1 + r/). (19) 
We impose initial conditions at •= 1, the propagation 
distance at which shock formation begins. The only 
mechanism for attenuation we are considering consists 
of points on the trailing edge of the wave catching up 
with the shock front; hence, the peak of particle velo- 
city must equal unity prior to shock formation and 

•=•=1, ati=l. (20a) 

From Eqs. (12) and (16) we see that this implies that 

T• = 1 + •, (20b) 

and 

r0=0 , at •=1. 

We digress for a moment to consider the behavior of 
these functions in the limit where } approaches infinity. 
The asymptotic shape for our waveform as • becomes 
very large is a simple sawtooth, 3 so that •, becomes 
proportional to v•- and • becomes proportional to 
1/x•-. It is also clear that • must approach zero 
quicker than •., so that we caa• write the asymptotic li- 
mit of Eq. (8) as follows: 

-c /•f• : (1/•)(d•/ a•) , (21) 
where C is some constant. We have also used the fact 

that 1/• must dominate } as } approaches infiuity. 
Otherwise Eq. (8) tells us that • would increase with }. 
The solution of Eq. (21) is 

%~ exp(-2Cv•), as •- oo. (22) 

From Eq. (12) then, 

•lim(ro) = -1, (23) 

which essentially states that in the limit as }-•o, the 
waveform to the left of the shock is undistorted. 

Only a few straightforward manipulations are re- 
quired to express •a in terms of •'•. We multiply Eq. 
(19) by •a and Eq. (18) by • and then subtract, giving 

v.(dva/a• ) - v•(dv•/d•) = (1/2•)(T• - T• + 1 -- V•), (24) 
or 

- 4): - + 1 - 
The solution to this equation is 

r• = (A} + •; + •/• - 1) '/• . (26) 

From Eq. (20b) we find that the constant A is given by 
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A = 2(• + 1), (27) 

so that 

ß • = [2(•+ 1)}+•+• 2- 1] •/2. (28) 
We note here that as an alternative to the procedure 

of Eqs. (24) through (28), we could easily find a relation 
between u• and uo using Landan's law of equal areas? 
This more general method is demonstrated in the Ap- 
pendix. 

Now that we know •, in terms of •, we can use Eqs. 
(5) and (6) to find ?• as an implicit function of }. We 
equate the right-hand sides of these equations and make 
the appropriate substitutions for •, and • with the re- 
suit that 

-•/log[(•'• - •7)/}] - ?• + •7 = 1og[(•'0 + 1)/}] - •b - 1. (29) 
Taking the exponential function of Eq. (29) and making a 
few manipulations gives the following: 

fe %= • + 1, (303) 
where 

f= x(")(•'4 - •7)"" e ("•-'•) , (30b) 

with •, given by Eq. (28). 

For 0 • 1 (that is, until shock formation occurs), 
we can express • and 7, as explicit functions of }: 

ß = 3- 1, (31) 
and 

73(3) =3+•. (32) 

For }>1, this result is no longer valid and we can no 
longer obtain •0 as an explicit function of 3. However, 
we can use Newton's rule to obtain the following itera- 
tive solution to Eq. (30): 

fn e%)"' [(r•)n + 1] _ (33) (%)"*• = (•)• -f, e%), {1 - (r•),/[(•), _ •]•_ 1 ' 
The only problem remaining is to find a good starting 

point for our iterative process. Our first approximation 
for •'• should approach -1 as 3 becomes large and 
should have the right behavior for 3- 1. Such a function 
can be found by solving Eq. (18) under the assumption 
that }= 1. First, we obtain approximate expressions 
for •o and •0. Eq. (19) yields 

mid 

d%/d:•= 1, 

d:•'./d32 = -3/[4(1 + •/)], for } = 1. (34) 

We express % as the first few terms of its Taylor ser- 
ies: 

ß • = (1 + •7) + (} - 1) - {3/[8(1 + •)]}(• - 1) 2 . (35) 
Likewise, Eq. (18) and repeated applications of l'H$pi- 
tai's rule yield 

dq'b/ d} = - «, 
and 

d•'o/d} •' -- • [(2•/+ 3)/07 + 1)], for } = 1, (36) 

so that an approximate expression for • is given by 

ß • = -«(}- 1) + •[(2• + 3)/(• + 1)](3- 1) • . (37) 

We now use Eqs. (35) and (37) to approximate (• + ?• 
- 1 - •)/?• to first order terms in (}= 1). We obtain 

(•'0 + • - 1 - •/)/• = - 1 - •[(2• + 1)/(q + 1)](•- 1). (38) 

This c• be replaced by 

(• + %- 1 - •)/• =-1 + •[(2V + 1)/(q + 1)]•, (39) 

which is also correct to the first order in (x- 1). We 
now define a new const•t 

Y = •(2n + 1)/(n + 1). (40) 

Note that y is a we• f•ction of V lying between • •d 
3 

• as q varies from zero to i•inity. Plugging Eqs. (39) 
•d (40) into Eq. (18), we arrive at 

d•o/[(• • + 1)(• b - 1)] = d}/2}. (41) 
The solution to Eq. (41), subject to the condition that 
ß •=0 at •= 1, is 

T• = (1 -- •(y*i) / 2)/(• + •(y*l)/2) ß (42) 

The approximate solution given by Eq. (42) h• the pro- 
per behavior for }= 1 (up to second order terms) •d 
does approach -1 as J approaches infinity. Thus we 
use Eq. (42) • the starting point for the iterative solu- 
tion given by Eq. (33). 

We might be interested in • even simpler starting 
point for our iterative solution. In that c•e, we need 
only notice that when • = •, then Eq. (42) reduces to 

r• = (1 - })/(1 + }), n = •. (43) 

Eq. (43) has the correct first order behavior in the vi- 
cinity of •= 1 for •y • •d still approaches -1 • } 
-•. With Eq. (43) • a starting point, the first itera- 
tion yields a solution accurate to within 0.6• for ail q. 
With Eq. (42) as the starting point, the first iteration is 
accurate to within 0.2•. Repeated iterations will, of 
course, yield greater accuracy. 

•owing •(•), we c• now obt•n the v•ues of •,, •, 
•d •, through the use of Eqs. (28), (13), •d (17), res- 
pectively. It is preferable to use Eq. (6) rather th• 
Eq. (5) to find •j. 

The three qu•tities which are of most practic• in- 
terest are the pe• amplitude •,, the shock amplitude 
•s= •,- •, •d the arriv• time •j. These qu•tities 
are relatively we• functions of T•, so one c• obt•n 
them by substituting • directly from Eq•. (42) or (43) 
into the above equations •thout KoinK through the itera- 
tion process at all. S•ficiently accurate results c•, 
in fact, be obtained by using Eq. (43) which is indepen- 
dent of q rather th• Eq. (42) for T•. The princip• 
results of this report c• •us be expressed • 

•=1, }•1, 

•, =({• + •)2[n2 -- 1 + 2(V + 1)}] + (1 - })2}l/2 

-z/(}+l))/}(3+l), 3>•1, (44) 
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FIG. 3. Peak amplitude (solid lines) and shock-discontinuity 
amplitude (dashed line) as a function of "age" i for •- 0, 1, 10, 
and infinity. 

•=0, •<1, 

us=u • - •b= ({(1 + •)z[•2 - 1 + 2(• + 1)•] + (1 - 
-(•+ • + 2))/•(•+ 1), •>1, (45) 

•d 

• = -• [og• - •.•. (46) 
The pe• •plitude, shock amplinde, •d •e •v•ce 

in •e arrival time [j are plot•d • a function of } for 
•=0, 1, 10, •d • (shown in Figs. 3 •d 4). No• that 
•=• corres•nds to a waveform that at •=0 rises ex- 
ponenti•ly to a v•ue of •ity, then rem•ns there for 
M1 time. Such a wave never attenuates at •1. •ce 

the shock is completely formed, it is equiv•ent • a 
simple shock. • course, one must continu•ly put 
ener• in at •e source to support such a wave, •d it 
must be one dimensional, i.e., in a pipe. The c•e • 
=0 corresponds • a waveform •at at •=0 rises ex- 
•nenti•ly • •ity, then discontinuously f•ls to zero. 
The discont•uity is not a shock •d disappe•s • soon 
• •>0. Though it may not be immediately apparent, 
•=0 •so h•dles •e c•e of •e surface-reflected ex- 
plosive shock w•ve, i.e., a wave for w•ch the pressure 

15 

FIG. 4. Advance in arrival time as a function of "age" • for 
•-0, 1, 10, and infinity. 

discontinuously falls to some negative value, then rises 
exponentially to zero. 

Figures 3 and 4, which are calculated directly from 
Eqs. (44), (45), and (46), show the results obtained by 
essentially holding ?• constant and changing •/by vary- 
ing t2- This keeps • (which is inversely proportional 
to •l) the same in all cases. If we define a new dimen- 
sionless "age" parameter •' in terms of • such that 
•'= •/•/, this new age parameter will then be equivalent 
to the age parameter in Ref. 1. Expressed in terms of 
•', •-•o corresponds to a shock wave with an exponen- 
tial taft and Eq. (44) reduces to the result given in Ref. 
1. 

II. SOLUTION FOR THE WAVEFORM SHAPE 

We now have a method for determining the position of 
the shock front and the particle velocity immediately 
before and after its arrival, but as yet we do not have a 
solution for the shape of the velocity waveform. An 
exact expression cannot be obtained, but we c•m easily 
derive an excellent approximation. 

For ['•< •'•, the acoustic particle velocity satisfies Eq. 
(2). Taking the logarithm of both sides, we find that 

Iog• = •' + •. (47) 

We now introduce two new dimensionless variables • 
and • such that 

(4a) 
and 

• = • e i' . (49) 

lqq. (47) is then equivalent to 

log- = 0. (so) 

Using Newton's rule, we obtain the following iterative 
solution: 

•,, = (1 - log•,)/[(1/•,) - •]. (51) 
Before choosing a trial solution, let us consider some 

requirements that this trial solution must satisfy. First, 
the minimum value of J is zero, corresponding to 

•= 1, at i = 0. (S2a) 

Second, at i = e '•, the waveform is shocked so that • 
= e 'l is the maximum value of i in which we are inter- 

ested. This corresponds to 

• = e, at t = e '• . (52b) 

Finally, 

d•/d• = •, at • = e '• , (52c) 
which simply states that the shock occurs at • = e 'x. A 
function which-satisfies the condition of Eq. (52) is 

•0 = e- a(1/e- S)1/3, (53a) 
where 

0t = ½1/3(e- 1) • 2.398. (53b) 

The first iteration yields 
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where •l differs from the exact value of • by less than 
0.6% and is exactly correct for • = 1/e. We take •l as 
our solution for [' • •. 

We now duplicate this procedure for •>[•. T•ing the 
logarithm of Eq. (2b), we obt•n 

log• = - (•+ •})/•. (55) 

We introduce two more dimensionless variables • •d 
9, where 

• =? e -i'/•, (56) 
and 

9 = (1/•) }e-"/' ß (57) 
Equation (55) is reduced to the following: 

log?= -•. (58) 

Rogers • previously obtained the following iterative 
solution for this equation: 

•, _- 1 + log{(2• + 1)/[1 + log(• + 1)• '• + (29 + 1)/[1 + log• + 1)] (59) 
The error in •a is less th• 1• for • • 10 •. Our approxi- 
mate solution for the waveform shape then is given by 
Eq. (48): 

Fibres 5, 6, •d 7 show • • a function oi dimen- 
sionless retarded time for severe v•ues of • •d •. 
As •ticipated, i•, l•, •d [j all decrease with i. H we 
compare the •ree fibres, we see that • • incre,es, 
the shock front attentuates less rapidly •d moves more 
rapidly in the negative •' direction. Furthermore, if 
we keep • const•t •d vary •, we see that the various 
waveforms coincide when • is very sm•l. This too is 
expected, when • is sm•l, very little distortion t•es 
place, •d the shape of the originE waveform is pre- 
served. 

The results in Figs. 5 •d 7 were checked •anst, 

0 -5 -2.5 0 2.5 5 

FIG. 6. Particle velocity as a function of retarded time for 
U=i and for•=0, 1, 3, and 10. 

and are in excellent agreement with, a computer alo- 
grithm that models the original waveform as a set of 
discrete points and that allows each point to propagate 
individually according to the laws of weak-shock theory. 

APPENDIX 

In this section we use Landau's law of equal areas to 
obtain a relation between • and • that is equivalent to 
that of Eq. (28). Landan's law s states that the area 
under any closed waveform propagating according to 
the laws of weak-shock theory remains constant. (By 
closed we mean that the initial and final points of the 
waveform must lie on the •'-axis, i.e., •= 0.) 

Consider the waveform given by 

• = e", f'<O, (A1) 
•=e 4'/", f'>O, 

for }=0, as shown in Fig. 8(a). The area under this 
curve is 

f + f- e_•./.d•' 
=1 + r/. (A2) 

Now we let the wave propagate a distance •. The re- 
suit is shown in Fig. 8(b). Not only must the total area 

I.Or I1•. •(:0 

,.or t 

^ I "Ix I Xk 0,7 - 0.7• _X:10 I I • k X 
O.B 0.6 

a o.• • :,o • 

0.4 "'• 0.4 
0.5 0.5 

0.2 02 

0,1 0.1 

0 -5 -2.5 0 2.5 5 0 -5 -2,5 0 2.5 5 

FIG. 5. Particle vel•lty as a f•eUon of retarded time for Fla. 7. Particle vel•ity as a function of retarded time for 
n:0.2 and for }•0, 1, 3, and 10. •:5 and for •:0, 1, 3, and 10. 
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........ '-'m .......... I 

uBX 
•I•. 8, (a) •itial wave•otm (•- 0). •e • a•a •de• the 
eu•e, as well as the a•a •der e•h of Re•ons I, II, and 
•mai• eons•t. 
a•a •der •e eu•e, as well as the a•a •der e•h of •ons 
I. • and •, remains consent. 

•der the curve rem•n consist, but according to the 
law of equ• areas, the area in e•h of regions I, II, •d 
III must •so remain unch•ged. Therefore, 

•d (A3) 

Au = •, 

where Ax denotes the area in region I, etc. The area 
•Ill iS fo•d geometric•ly from Fig. 8(b); it is simply 
ß e difference of •o tri•gles: 

Ant = •(ua•)u• - •(ubx)ub . (A4) 

Equating the •tM are•, we have 

•= + • 

Now we m•e the substitutions indicated in Eqs. (13) 
•d (1•) •d simplify to obtain 

T•=2(•+ 1)•+ T•+n •- 1, (A6) 
which is the s•e • Eq. (28). 

The method outlined above is quite powerful •d 
be Applied • m•y other problems. Consider, for ex- 
•ple, ß waveform •at at }= 0 rises exponenti•ly for 
•<0 •d f•ls off line•ly for t>0, that is, 

• = e •', F' < 0, (A•) 
;=•-F?•, P>0, 

• shown in Fig. 9(a), where • is dimensionless. Note 
•at the initi• area •der the curve is 

• = • + •/2. (A8) 

Fibre 9(b) shows the disrobed waveform At a propa- 
gauou di•t•ee •. The •t• area m no• given by 

A = •/2 + •/2 + • - •/2. (A9) 
Equating Eqs. (AS) •d (A9), we 

A • 

2, = {[2/(• + •*)](-•+ •: •/2 + •t+ •/2)}'". (A•0) 
We can now derive a second relation between •, and •. 
First we write down the shape of the waveform for ar- 
bitrary • and •: 

• = 1 - (•'+ •)/•, t'• t•. (Allb) 

Now we m•e the following substi•tions. In Eq. (Alla) 
we replace A with • •d •' with •; similarlywe rep•ce 
• wi• • •d •' wi• • in Eq. (A11b). We solve each 
equation for • •d equate the resulting expressions, 
giving 

•(• + •) = • + • + •. (A12) 

By combining this wi• Eq. (A7) •d introducing the 
time cons•t •b • given in Eq. (12), we find that 

• e'• '•- (•+ 1) =0, (A13• 
where 

G = e g-* , (A13b) 

wi• 

s={2(}+ •)[(1/2})(T•- 1) + 1 + •/2• • ' (A13c) 

This solved i•ratively using Newton's rule yields 

(,p.- _ + 

s• • ' 

A good tri• solution • Eq. (A14) c• be fo•d by 
writing the differential equation for ro •d using the 
method of Eqs. (34) through (42) to solve it approxi- 
mately. •e obt•ns the s•e approximate solution • 
before [•at is, Eqs. (40) •d (42)] provided only that • 
is replaced by • in Eq. (40). This is no reM surprise 
since the linear decay at } = 1 •d F'= • looks identic• 
to •e exponentiM decay. 
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