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is not required. Our technique is ideal for the creation of tunable and
high-repetition-rate biphoton states.
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1. Introduction

The pursuit of two-photon frequency combs—entangled photons occurring in a superposi-
tion of discrete spectral mode pairs [1–10]—offers much promise, as such biphotons have
the potential to combine the unique characteristics of quantum entanglement [11, 12] with
the precision of classical optical frequency comb metrology [13, 14]. Several configurations
generating such photonic states have been implemented, including spontaneous four-wave
mixing in microresonators [10, 15, 16], cavity-enhanced spontaneous parametric downconver-
sion (SPDC) [2–5, 9, 17], and direct filtering of broadband biphotons [7, 8]. Assuming phase
locking of the constituent spectral modes, the temporal correlation function of these biphoton
frequency combs consists of a train of peaks, the number of which is approximately equal to
the spectral mode spacing divided by the linewidth. Indirect measurements based on Hong-Ou-
Mandel interference have revealed the periodic coincidence dips indicative of such correlation
trains [2, 7, 8], and with sufficiently low repetition rates, direct correlation measurements have
been made possible as well [3,5,9]. Moreover, it has been predicted theoretically [18] that prop-
agation of these two-photon frequency combs through dispersive media will produce revivals
of the temporal correlation function at discrete dispersion values, through an extension of the
classical temporal Talbot effect [19, 20].

In this work, we experimentally examine a new method for generating biphoton correlation
trains based on optical filtering with spatial light modulators [21–23]. Our technique permits the
creation of extremely high-repetition-rate (∼THz) trains, with programmable control of peak
number and spacing. We explore both amplitude and phase filtering approaches, each with its
own advantages. With amplitude filtering, we create coherent biphoton frequency combs with
tunable properties and experimentally demonstrate the two-photon temporal Talbot effect for
the first time. Alternatively, when the temporal phase of the biphoton wavepacket is unimpor-
tant, we show that spectral phase-only filtering can yield correlation trains with much greater
efficiency, even though the filtered spectrum does not contain a series of discrete frequencies—
i.e., it is not comb-like. Our results therefore not only contribute to the development of two-
photon frequency combs, but also show that for some applications it may be possible to remove
the requirement of a true frequency comb in favor of a low-loss spectral phase filter.

In Sec. 2 we introduce the experimental setup and describe the generation of a two-photon
correlation train using amplitude filtering. We then manipulate this frequency comb in Sec. 3 to
show the temporal Talbot effect. In Sec. 4 an alternative phase-only approach is implemented,
which offers improved efficiency in correlation train production. Finally, we explore the limita-
tions imposed by the spectral resolution of our pulse shaper in Sec. 5, concluding with a short
summary of all findings in Sec. 6.

2. Amplitude filtering

The quantum state produced by degenerate SPDC of a continuous-wave pump at frequency 2ω0

can be expressed as [24]

|Ψ〉= M|vac〉s|vac〉i +
∫

dΩφ(Ω)|ω0 +Ω〉s|ω0 −Ω〉i, (1)
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where M ∼ 1, “vac” denotes the vacuum state, s the signal photon, and i the idler. Here we
choose to distinguish signal and idler photons by frequency, with the former denoting the high-
frequency photon and the latter the low-frequency one; this is achieved by taking the complex
amplitude φ(Ω) as vanishing for Ω < 0. We measure the fourth-order (second-order in inten-
sity) correlation function Γ(2,2)(τ), which is proportional to the probability of detecting a signal
photon delayed by a time τ with respect to its sibling idler. To describe the effects of spectral
filtering on this correlation function, it is useful to define an effective biphoton wavepacket [25]

ψ(t + τ, t) = 〈vac|Ê(+)
s (t + τ)Ê(+)

i (t)|Ψ〉, (2)

where the positive-frequency field operators Ê(+)
s (t + τ) and Ê(+)

i (t) are associated with an-
nihilation of a signal photon at time t + τ and an idler at time t, respectively. The correlation
function Γ(2,2)(τ) = |ψ(t + τ, t)|2 depends only on τ for our statistically stationary source and
can be directly measured through ultrafast coincidence detection based on sum-frequency gen-
eration (SFG) [26–32], which is what we employ here. Filtering is achieved by programming
complex transfer functions Hs(ω) and Hi(ω) on the signal and idler halves of the spectrum,
respectively, yielding a final wavepacket

ψ(τ) =
∫

dΩφ(Ω)Hs(ω0 +Ω)Hi(ω0 −Ω)e−iΩτ , (3)

apart from a unimodular t-dependence and an unimportant overall scale factor. This equation
governs all the results obtained below with spectral filtering.

Figure 1(a) provides the experimental setup. A continuous-wave pump beam at ∼774 nm is
coupled into a periodically poled lithium niobate (PPLN) waveguide [33,34], generating entan-
gled photons at 1548 nm through degenerate SPDC, with an internal efficiency of about 10−5

per pump photon. A typical biphoton spectrum, along with the passbands selected by the pulse
shaper, is shown in Fig. 1(b) (measured on an optical spectrum analyzer at a resolution of 250
GHz). After removing the residual pump light with filters, the remaining biphotons are cou-
pled into optical fiber and spectrally shaped by a commercial pulse shaper (Finisar WaveShaper
1000S); in all the cases examined here, a baseline quadratic phase is applied to both photons to
compensate for the dispersion of the nonlinear crystals and connecting optical fiber. After leav-
ing the pulse shaper, the photons are coupled into a second PPLN waveguide, phase-matched
with the first, and recombined via SFG; at optimized dispersion compensation, the conversion
efficiency is around 10−5 [32]. The unconverted biphotons are filtered out, and the remain-
ing SFG photons are detected on a silicon single-photon avalanche photodiode (PicoQuant
τ-SPAD) with a dark count rate less than 20 s−1. Sweeping additional linear spectral-phase
terms on the pulse shaper and recording the SFG counts at each step give a direct measure-
ment of Γ(2,2)(τ) [27]. More details of this experimental setup and high-efficiency correlator
can be found in Ref. [32]. For comparison, we first show the singly peaked correlation function
generated without any additional spectral modulation; the result is given in Fig. 1(c), with a
full-width at half-maximum (FWHM) of about 370 fs. Each data point reflects the average of
five 1-s measurements, after dark count subtraction, with dashed lines giving the theoretical
result. Unless noted otherwise, the data points in all subsequent measurements of the correla-
tion function are also averages of five 1-s measurements, with error bars giving the standard
deviation and a dashed line showing the corresponding theoretical curve.

Proceeding to the case of amplitude filtering, we first note that in this method there exists
a fundamental tradeoff between overall flux and the number of peaks generated. Defining ωc

as the bandwidth of a given spectral passband and ωFSR as the spacing between passbands,
the total number of peaks in the train is proportional to the ratio ωFSR/ωc, whereas the total
power transmissivity is inversely proportional to this quantity [35]. Combined with the fact
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five 1-s measurements, and the dotted curve gives the theoretical result.
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Fig. 2. Amplitude filtering. (a) Signal spectrum measured after the pulse shaper (with idler
blocked). The nearly flat spectrum of Fig. 1(b) is converted to a set of three passbands,
spaced by 650 GHz and each of width 250 GHz. (b) Measured temporal correlation function
for the spectrum in (a), but with the low-frequency idler passed. A 650-GHz correlation
train with three peaks is generated, in accordance with theoretical predictions.

that the optical energy is now distributed among many peaks, the maximum count rate actually
decreases quadratically with the number of correlation peaks. Therefore to remain comfortably
above the background, we program on the signal spectrum three passbands spaced at 650 GHz,
each with the fractionally broad bandwidth of 250 GHz, and leave the idler untouched. The
measured signal spectrum is given in Fig. 2(a), acquired with an optical spectrum analyzer at
a resolution of 62.5 GHz. The spacing-to-passband ratio predicts about three temporal peaks,
and this is precisely what we find for the filtered biphoton correlation function, as shown in
Fig. 2(b). The result is in excellent agreement with theory, confirming the ability to produce
correlation trains through straightforward amplitude filtering by our pulse shaper.
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3. Biphoton temporal Talbot effect

The biphoton comb generated in the previous section lends itself well to the examination of
the temporal Talbot effect. The spatial Talbot phenomenon—first reported by Henry Talbot in
1836 [36]—describes the revival of spatial interference patterns at discrete distances away from
a periodic grating [37, 38], an effect which has recently been observed for entangled photons
as well [39, 40]. The temporal counterpart which we consider here derives from the formal
mathematical equivalence between paraxial diffraction and narrowband dispersion, known as
space-time duality [41, 42]. In this dual version, a periodic electric field envelope is exactly
replicated after propagation through multiples of the so-called Talbot dispersion [19, 20]. In-
terestingly, fractional Talbot dispersion can prove particularly useful and has been exploited
in flattop frequency-comb generation [43,44], repetition-rate multiplication [45–47], and high-
speed temporal cloaking [48].

The origin of this effect for biphoton frequency combs can be understood most simply by
considering the ideal case of a series of comb lines with infinitely narrow linewidths followed
by second-order dispersion. Specifically, in Eq. (3) we take

Hs(ω0 +Ω) =
N−1

∑
n=0

anδ (Ω−nωFSR)e
iΦ(s)

2 Ω2/2 (4)

and
Hi(ω0 −Ω) = eiΦ(i)

2 Ω2/2, (5)

which yields the final biphoton amplitude

ψ(τ) =
N−1

∑
n=0

φ(nωFSR)aneiΦ+n2ω2
FSR/2e−inωFSRτ , (6)

where Φ+ = Φ(s)
2 +Φ(i)

2 , with the familiar Franson dispersion cancellation condition resulting

when Φ(i)
2 =−Φ(s)

2 [49]. As an aside, we note that the entanglement shared between signal and
idler photons allows the same expression to be obtained when applying all narrowband filters
on the idler instead, for it is only the product of signal-idler spectral filters which enters in Eq.
(3). Returning to Eq. (6) we readily observe that the periodic wavepacket completely replicates
itself for values of Φ+ that are integer multiples of the Talbot dispersion ΦT , where

ΦT =
4π

ω2
FSR

, (7)

as this ensures that the dispersion factor in Eq. (6) evaluates to unity for all n [18]. Taking the
limit of infinitesimal linewidth for the signal spectrum shown in Fig. 2(a) gives the theoretical
Talbot carpet shown in Fig. 3(a). At integer multiples of ΦT , perfect reconstruction of the
biphoton train is realized; at half-integer multiples, revivals with a half-period delay shift are
obtained.

For real biphoton combs, the temporal train is not perfectly periodic, but damped by an enve-
lope with duration inversely proportional to the non-vanishing linewidth, a well-known effect in
classical pulse shaping [23]; therefore only approximate coherence revivals are possible. In par-
ticular, dispersion eventually spreads out the entire wavepacket, meaning that the self-imaging
phenomenon is discernible only up to a finite multiple of ΦT [18]. With the fractionally large
linewidth in our experiments (ωFSR/ωc = 2.6), chosen to minimize loss, measurable Talbot
interference is limited to approximately the dispersion regime 0 < |Φ+| < ΦT . This is never-
theless sufficient to observe the basic effect. Figure 3(b) presents the theoretical Talbot carpet
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Fig. 3. Simulated Talbot carpets. (a) Theoretical temporal correlation as a function of ap-
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Perfect revivals are observed at integer multiples of the Talbot dispersion. (b) Correspond-
ing correlation function when the linewidth is 250 GHz, as in Fig. 2(a). Dashed horizontal
lines indicate the values of dispersion considered in Fig. 4. Imperfect—but still clear—
self-imaging is obtained over the first Talbot length, limited by dispersive spreading. (An
overall delay shift has been subtracted off for clarity.)

for our filtered biphoton source, plotting the temporal two-photon correlation function Γ(2,2)(τ)
as a function of net dispersion; horizontal lines mark the specific dispersions which we consider
experimentally below. At each value of the dispersion, we have shifted the wavepacket center to
zero delay, in much the same way as retarded time is calculated for classical pulses [42]. For in
general, the applied dispersion introduces a frequency-dependent delay given by τ(Ω) = Φ+Ω,
and since the mean signal frequency offset 〈Ω〉 �= 0, the mean signal-idler delay varies with
applied dispersion. Intuitively, the fact that signal and idler are separated by frequency implies
that group velocity dispersion forces them to travel at different mean speeds; therefore their
average temporal separation increases as they propagate through greater amounts of dispersion.

As in the theoretical proposal of Ref. [18], we have specialized this development to the case
of continuous-wave-pumped SPDC, in which the sum of signal and idler frequencies is fixed to
a single value. If short-pulse pumping were considered instead, signal and idler would then be
correlated about a range of frequencies, and we expect this broadened correlation bandwidth to
impose an additional temporal envelope analogous to those resulting from finite filter linewidth
or pulse-shaper resolution. Thus when the pump bandwidth exceeds these other characteristic
frequencies, the correlation train would be severely damped. Yet for a pump whose spectrum is
still narrower than the other relevant frequency scales, we expect self-imaging to nevertheless be
observable. Accordingly, it would be interesting to explore the effects of such pulsed pumping
in future studies—particularly the transition from the short- to long-pulse regimes—although
for this first demonstration we focus on the more direct continuous-wave limit.

Experimentally, we explore the temporal Talbot effect by programming the optical dispersion
directly on the pulse shaper and observing the change to the biphoton correlation function
of Fig. 2(b). As before, measurement of Γ(2,2)(τ) is made possible by applying additional,
oppositely sloped linear spectral phase terms to the signal and idler spectra, to programmably
control the relative delay. For our 650-GHz correlation trains, the Talbot dispersion parameter
ΦT is 0.753 ps2, and we apply net dispersions satisfying

Φ+ = 0.25ΦT ,0.35ΦT ,0.5ΦT ,ΦT . (8)

The result for the quarter-Talbot case is presented in Fig. 4(a). The correlation train has doubled
in repetition rate to 1.3 THz and matches theory well. Similar quarter-Talbot-based repetition-
rate multiplication has been used to generate classical pulse trains as well [45–47]. In Fig.
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4(b), the dispersion is now 35% of the Talbot value, with the odd peaks increasing in relative
magnitude and the even ones falling off, a transition which is made complete at the half-Talbot
mark, as highlighted in Fig. 4(c). High-extinction peaks at 650 GHz are again clearly evident,
shifted under the envelope by half a period with respect to the zero-dispersion case. Finally,
the function is returned to its original state at a full Talbot dispersion [Fig. 4(d)], although
the effects of finite linewidth are taking their toll as the train spreads out, resulting in a lower
maximum count rate and the formation of extra satellite peaks.

For direct comparison of the coherence revivals, we numerically correct for the temporal
offset due to signal-idler group velocity difference and overlay the zero-, half-, and full-Talbot
correlation functions in Fig. 5(a), which clearly shows resurgence of the 650-GHz train due
to temporal Talbot interference. In likewise fashion, we superpose the quarter- and zero-Talbot
results in Fig. 5(b), highlighting the repetition-rate doubling. Such rate multiplication through
the temporal Talbot effect is particularly advantageous in that it is achieved without removing
spectral lines, which would instead reduce overall flux by an amount equal to the frequency
multiplication factor [50–52]. Notwithstanding the ultrahigh efficiency of the ultrafast biphoton
correlator we use [32], an obvious goal for the future would be to realize even higher detection
efficiencies, which would permit demonstrations with narrower spectral filters and hence longer
trains. Nonetheless, the current experiments fully confirm the theory of Ref. [18] in extending
the temporal Talbot effect to biphotons.

4. Phase-only filtering

For circumstances in which the temporal biphoton phase is unimportant, and one is concerned
only with the correlation function itself, an alternative method based on spectral phase-only fil-
tering can be used to produce correlation trains much more efficiently than amplitude filtering,
utilizing a technique developed early in the history of classical femtosecond pulse shaping [35]
and applied to, e.g., control of molecular motion [53]. To understand this approach, consider
the modulus squared of Eq. (3), where we define K(Ω) = φ(Ω)Hs(ω0 +Ω)Hi(ω0 −Ω) for
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Fig. 5. Coherence revival comparison. (a) Overlay of the zero-, half-, and full-Talbot cases,
after delay correction to center all at zero delay. 650-GHz trains are seen in all cases, with
the finite linewidth responsible for overall spreading. (b) Overlay of the zero- and quarter-
Talbot cases, again shifted so both are centered at zero delay. The original 650-GHz train
is doubled to 1.3 THz at the quarter-Talbot dispersion, as expected from theory. (In both
plots, error bars have been omitted for clarity.)

simplicity. This allows us to write the fourth-order correlation function as

Γ(2,2)(τ) =
∫

dΩ
∫

dΩ′K∗(Ω)K(Ω′)ei(Ω−Ω′)τ . (9)

Redefining a new integration variable Δ according to Δ = Ω′ −Ω and replacing Ω′ gives

Γ(2,2)(τ) =
∫

dΔe−iΔτ
∫

dΩK∗(Ω)K(Ω+Δ). (10)

Thus the measured correlation function is given by the inverse Fourier transform of the auto-
correlation of the filtered biphoton spectrum, and so the condition for a periodic train requires
only that this autocorrelation consist of discrete peaks—K(Ω) itself need not be comb-like. In
our case, we achieve the desired spectral peaks by taking Hi(ω) = 1 and choosing Hs(ω) to
be a periodic repetition of a maximal-length binary phase sequence (M-sequence) [54], which
indeed possesses discrete spikes in its autocorrelation. Since the input biphoton spectrum is es-
sentially flat over the pulse-shaper passband, no additional amplitude equalization is required,
and so the spectral filtering is ideally lossless. In stark contrast to the amplitude filtering of
Sec. 2, the maximum count rate drops only linearly with the number of peaks generated by
phase filtering—instead of quadratically—thereby offering the potential for significantly longer
biphoton trains at a given flux. However, we emphasize that temporal interference effects, such
as the Talbot phenomenon, do not carry over to these non-comb-like states, since the inter-peak
temporal phase varies widely.

We first consider the length-7 M-sequence [0 1 1 1 0 1 0], where we map the zeros to phase 0
and the ones to phase π . Each element is programmed to cover a bandwidth of 115 GHz, giving
a total of three repetitions of the M-sequence over the 2.415-THz signal passband set on the
pulse shaper here. The measured correlation train is presented in Fig. 6(a), again showing good
agreement with theory. The missing peak at zero delay results from destructive interference
between the 0- and π-phase elements. We can restore the central peak by changing the binary
phase shift; taking 0.78π for the shift instead of the original π , we obtain the blue curve in
Fig. 6(b). A high-contrast train at 805 GHz is generated under a smooth envelope, without any
amplitude filtering of the biphoton spectrum.

To directly compare the flux improvement over the equivalent amplitude filter, we also pro-
gram three repetitions of the amplitude sequence [1 0 0 0 0 0 0] over the same bandwidth,
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which gives the desired 805-GHz train but at the cost of removing much of the original bipho-
ton spectrum. This result (red curve) is compared to the phase-only approach in Fig. 6(b); the
amplitude case is reduced approximately 7-fold in integrated flux and is barely visible above
the noise. We run a similar comparison for length-3 sequences as well, giving each symbol
a bandwidth of 160 GHz and replicating the sequence five times over a 2.4-THz total signal
bandwidth. For the phase filter, we use the M-sequence [1 0 1], where ones now map to a phase
shift of 0.65π; for the amplitude filter, we take the transmission sequence of [1 0 0]. Both re-
sults are compared in Fig. 6(c), and a count rate improvement of about 3:1 is observed for the
phase-only sequence. These results stress the substantial flux increases facilitated by pure phase
filtering, which—coupled with the programmable control of peak number and spacing—make
such states valuable tools for future work with high-repetition-rate biphotons.

5. Resolution limitations

In Sec. 2, we discussed the flux reduction resulting from periodic amplitude filtering of the
broadband biphoton spectrum, showing in Sec. 4 how this can be mitigated through phase-only
filtering. Here we confront and analyze a separate restriction imposed by the finite pulse-shaper
resolution: time aperture. The time aperture, or the maximum temporal duration over which the
shaped waveform will accurately reproduce that of the ideal infinite-resolution mask, is fixed
by the resolvable frequency spacing [21–23]. If we model this temporal window as a Gaussian
function with an intensity FWHM TFWHM = (2ln2)1/2T , the effect of finite resolution is to
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Fig. 6. M-sequence filtering. (a) Measured correlation function for length-7 M-sequence
with a π phase shift. (b) Correlation function for the same M-sequence but with a 0.78π
phase shift (blue), compared to an amplitude filter at the same repetition rate (red). (c)
Correlation function for a length-3 M-sequence with a 0.65π phase shift (blue) and the
corresponding amplitude filter. In both (b) and (c), phase filtering yields a flux improvement
roughly equal to the number of peaks.
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yield the impulse response h(t) (the inverse Fourier transform of the transfer function H(ω))

h(t) = h(0)(t)e−t2/T 2
, (11)

where h(0)(t) is the impulse response corresponding to an infinite-resolution pulse shaper.
Therefore the generated trains are restricted to a time window roughly equal to the inverse of
the spectral resolution. Now when the characteristic frequency scale δω over which the ideal
mask H(0)(ω) varies satisfies 1/δω � T , h(t)≈ h(0)(t), and the effects of finite resolution are
negligible (which was the case in the previous sections). However, to explicitly examine the
limits of our biphoton correlation train generator, now we choose filter functions that are sig-
nificantly modified by the time aperture. Moreover, because we use the pulse shaper not only
for generation but also for imposing the relative signal-idler delay, we suffer on two counts:
first in the creation of the correlation train, and second in its measurement. Letting ψ̃(τ) denote
the measured wavepacket under the effects of finite pulse-shaper resolution, to best reflect the
experimental conditions of our measurement, the expression in Eq. (3) must be modified to

ψ̃(τ) =
∫

dΩφ(Ω)H̃s(ω0 +Ω,τ/2)H̃i(ω0 −Ω,−τ/2), (12)

where the delay τ is explicitly imposed by the filters, with the signal temporally shifted by τ/2
and the idler by −τ/2 [27]. The corresponding infinite-resolution filters are thus

H̃(0)
s (ω0 +Ω,τ/2) =C(Ω)e−iΩτ/2 (13)

and
H̃(0)

i (ω0 −Ω,−τ/2) = e−iΩτ/2, (14)

where C(Ω) is the ideal spectral code applied to the signal photon. The finite-resolution filters

H̃s(ω,τ) and H̃i(ω,τ) are obtained by convolving H̃(0)
s (ω,τ) and H̃(0)

i (ω,τ) with the Fourier

transform of the time aperture function e−t2/T 2
. In this way we can incorporate the effect of

finite resolution on both the spectral code and imposition of signal-idler delay.
Experimentally, we take the same periodically repeated length-3 phase sequence as in Sec.

4, but this time consider very narrow spectral chips. In order to correct for count-rate reduction
due to alignment drift, we normalize each correlation function to a peak value of unity; since the
time aperture term is equal to one at zero signal-idler delay, such renormalization has no effect
on examination of aperture effects. In the first case, we program a chip bandwidth of 16 GHz,
for a total of 50 repetitions of the fundamental sequence over the 2.4-THz signal bandwidth; the
measured correlation function is given in Fig. 7(a). Compared to the 160-GHz chip case in Fig.
6(c), the peak separation has been pushed from 2.1 to 21 ps, and the two side peaks are lowered
slightly in relative intensity by the pulse-shaper time aperture. Further reductions are evident
for even smaller chips; Fig. 7(b) shows the results for 9-GHz chips (total signal bandwidth
2.403 THz), and Fig. 7(c) those for 5-GHz chips (2.4-THz total signal bandwidth). We find
that a value for T of 50 ps (TFWHM = 58.9 ps) gives good agreement with the observed peak
reduction, as evident by the dotted theoretical curves in Fig. 7. This experimentally measured
time aperture corresponds to a 3-dB spectral resolution of about 7.5 GHz, slightly better than
the 10 GHz specified for the WaveShaper 1000S. From these results, it is clear that pulse-shaper
resolution limits the overall duration of the generated biphoton correlation function to a window
of around 50 ps. Any slower detection schemes are therefore unable to resolve these correlation
trains, so while this phase-only filtering method is well suited for programmable generation of
high-repetition-rate biphoton trains, the narrow linewidth available from resonant photon-pair
generation [2–5, 9, 10, 15–17] or filtering with an etalon [7, 8] would prove more appropriate
when temporally long trains are required.
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Fig. 7. Examination of pulse-shaper time aperture. Normalized coincidence rate for peri-
odic repetitions of length-3 M-sequences with (a) 16-GHz chips, (b) 9-GHz chips, and (c)
5-GHz chips. The theoretical curves are obtained with T = 50 ps in Eq. (11).

6. Conclusion

We have experimentally implemented several techniques based on programmable spectral fil-
tering for the generation of biphoton correlation trains. Amplitude filtering was first used to
create an approximately comb-like spectrum, and accompanying this filter with appropriate
quadratic spectral phase, we were able to demonstrate for the first time coherence revivals and
repetition-rate multiplication through the biphoton temporal Talbot effect. Subsequently we ex-
plored phase-only filtering to generate correlation trains with much greater efficiency over the
amplitude filtering approach, useful when the temporal biphoton phase is of no concern. Fi-
nally, by pushing the inter-peak separation to long delays, we verified the time aperture limits
imposed on our technique by finite pulse-shaper resolution. Overall, these demonstrated spec-
tral filtering tactics could prove quite valuable in future work on periodic biphotons, particularly
where high speeds and tunability are advantageous. We are curious how applications similar to
those explored with classical pulses, such as selective molecular excitation [53], may benefit in
interactions at the quantum level from the repetitive biphotons obtained here.
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