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Abstract—Shaping, signal processing, and time–space con-
version of femtosecond pulses can be achieved by linear and
nonlinear manipulation of the spatially dispersed optical fre-
quency spectrum within a grating and lens pulse shaper. In this
paper, we first review our work on femtosecond pulse shaping
and processing, with an emphasis on applications to high-speed
communications and information processing. We then present a
new concept for generalized time–space processing based on cas-
caded time-to-space and space-to-time conversions in conjunction
with smart pixel optoelectronic arrays and provide a detailed
discussion of our recent studies of time-to-space conversion based
on second-harmonic generation (SHG) within a femtosecond
pulse shaper.

Index Terms—Demultiplexing, holography, nonlinear optics,
optical pulse measurements, optical pulse shaping, second har-
monic generation, ultrafast optics.

I. INTRODUCTION

REVOLUTIONARY breakthroughs have occurred in the
field of ultrafast laser technology during the 1990’s.

Mode-locked dye lasers have given way to mode-locked solid-
state lasers, which offer substantially increased average powers
( 1 W and above), shorter pulsewidths (below 10 fs), as well
as extremely high-peak powers in amplified systems. The use
of solid-state gain media has also led for the first time to
simple, turn-key femtosecond lasers, and many researchers are
now setting their sights on practical and low-cost ultrafast laser
systems suitable for real-world applications.

At the same time, important advances have also occurred
in the complementary areas of ultrafast optical pulse-shaping,
waveform synthesis, and signal processing, which are the
subject of this paper. Using pulse-shaping techniques, one
can now engineer femtosecond pulses into complex opti-
cal signals according to specification. A key point is that
waveform synthesis is achieved by parallel modulation in the
frequency domain, which is achieved by spatial modulation
of the spatially dispersed optical frequency spectrum. Thus,
waveforms with effective serial modulation bandwidths as
high as terahertz can be generated without requiring any
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ultrafast modulators. Furthermore, by using an extension of
pulse shaping called spectral holography, one can holograph-
ically record and then reconstruct such waveforms. During
the reconstruction process, one can also perform interesting
signal processing operations, such as time reversal, convolu-
tion, correlation, and matched filtering of femtosecond optical
waveforms. Holographic methods also allow time-to-space
conversion, where ultrafast time-domain signals are mapped
(demultiplexed) into a spatial replica of the original ultrafast
waveform.

These time/spectral-domain processing methods are in close
analogy with traditional spatial-domain Fourier optics process-
ing techniques. By applying such Fourier processing methods
in the ultrafast time domain, one can achieve many new
capabilities not available using other approaches.

One aim of our current research is to expand on this
relationship between space and time to develop generalized
time–space processing systems. The key concept is to first
convert incoming ultrafast time-domain optical signals into
spatial optical signals. In the spatial domain these signals can
then be processed in parallel using optoelectronic smart pixel
array technologies, and finally converted back into the ultrafast
time domain. The use of smart pixel optoelectronics may allow
sophisticated digital electronic processing operations which
would not be possible directly in the ultrafast optical domain.
This may have important applications, e.g., for processing of
information in ultrahigh-speed optical communications net-
works.

In Section II of this paper, we review our work on femtosec-
ond waveform synthesis and holographic processing of fem-
tosecond optical waveforms, with an emphasis on applications
to high-speed communications and information processing. A
detailed review of work in this field up to 1995 is given
in [1]. In Section III, we then outline our current research on
generalized time—space processing systems. A key issue in
applying such methods for real applications is the response
time of the space-to-time and time-to-space converters, which
should be able to operate at frame rates in the gigabit-
per-second range. A time-to-space conversion technique that
can meet this requirement was recently demonstrated in [2],
[3], where the time-to-space conversion was accomplished
by using a modified spectral holography approach where a
second-harmonic crystal acts as the “holographic” (actually
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Fig. 1. Femtosecond pulse-shaping apparatus.

nonlinear) medium. We have adopted this approach in our lab-
oratory and have investigated how to optimize the conversion
efficiency of the second-harmonic generation (SHG) based
time-to-space converter [4]. We have recently achieved greater
than 50% second conversion efficiency, which constitutes
more than two orders of magnitude improvement compared
to the original experiments. A detailed discussion of these
experiments and an analysis of time-to-space conversion using
this technique are given in Section IV. In Section V, we
conclude.

II. PULSE SHAPING AND SPECTRAL HOLOGRAPHY

A. Femtosecond Pulse Shaping

Fig. 1 shows the basic pulse-shaping apparatus, which we
discuss briefly here. A more detailed description has been
given in previous publications [1], [5], [6]. In pulse shaping, an
ultrashort laser pulse is incident on a simple grating and lens
apparatus, which spatially separates the pulse into individual
optical frequency components. The lenses are identical and
separated by twice their focal length; this forms a unit mag-
nification telescope with the gratings placed at the outer focal
planes of the lenses. Midway between the two lenses, where
the spatial separation of the frequencies is a maximum, one
can insert spatially patterned masks, or programmable spatial
light modulators, in order to manipulate the amplitude and the
phase of the spatially dispersed optical frequency components.
After the various frequencies are reassembled into a single
collimated beam, one obtains a shaped pulse, with the pulse
shape determined by the Fourier transform of the amplitude
and phase pattern imposed on the spectrum by the masks. The
pulse shaper is dispersion free, so that in the absence of a
mask, the output and input pulses are identical.

The first use of the pulse-shaping apparatus shown in
Fig. 1 was reported by Froehly [7], who performed pulse-
shaping experiments with input pulses 30 ps in duration.
Related experiments demonstrating shaping of pulses a few
picoseconds in duration by spatial masking within a fiber and
grating pulse compressor were demonstrated independently
by Heritage and Weiner [8], [9], [10]. The dispersion-free
apparatus in Fig. 1 was subsequently adopted by Weineret
al. for manipulation of femtosecond optical pulses [5], [11].
With minor modifications, pulse-shaping operation has been
successfully demonstrated for pulses below 20 fs in duration
[12], [13]. The apparatus of Fig. 1 (without the mask) can also
be used for pulse stretching or compression by changing the
gratings-lens spacing. This idea was introduced and analyzed

(a)

(b)

Fig. 2. Intensity cross-correlation traces of shaped pulses, measured using
unshaped reference pulses directly from the laser. (a) Picosecond square
pulsegenerated using microlithographically fabricated amplitude and phase
masks. (b) Ultrafast optical pulse (“bit”) sequence, generated using phase
only filtering.

by Martinez [14] and is now used extensively in chirped pulse
amplification.

Fig. 2 shows of examples of shaped pulses generated using
fixed masks. Fig. 2(a) shows a 2-ps square pulse with100-
fs transition times (comparable to the duration of the input
laser pulses) [5]. This pulse was generated by using both
phase and amplitude masks to pattern the spectrum according
to a truncated -function. Square pulses with flatter tops
have also been demonstrated by appropriately apodizing the
masking functions [15]. Fig. 2(b) shows an example of an
ultrafast pulse sequence with an effective modulation rate of
2.5 THz [16]. Such sequences may be useful as ultrafast data
packets for time-division multiplexed optical communications
networks. It is interesting to note that the pulse sequence
shown in Fig. 2(b) was generated with a phase mask only.
In situations where only the time-domain intensity profile is
specified, and the temporal phase is left as a free parameter
[as in Fig. 2(b)], one can often design a phase-only filter to
generate the desired intensity profile [16], [17]. This allows
one to avoid the loss associated with amplitude filters. Phase-
only filters have been extensively explored in spatial optics.
The pulse sequence shown here was actually generated using
a phase-only filter known as a Dammann grating, which was
originally designed for generation of spot arrays for space-
domain interconnect applications [18], [19].

The required spatial masking has been demonstrated using
a number of technologies. The original work on femtosec-
ond pulse shaping used microlithographically fabricated phase
and amplitude masks, as above [5]. Currently, most atten-
tion is focused on programmable spatial light modulators
that allow computer control over the masking pattern with
millisecond reprogramming times. The first demonstrations
of programmable pulse shaping used one-dimensional (1-D)
liquid crystal phase modulator arrays with up to 128 modulator
pixels and millisecond reprogramming times [6], [20]. Arrays
allowing independent gray-level phase and amplitude control
were subsequently developed [21] and are now available
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commercially. Faster liquid crystal modulators allowing bi-
nary spectral phase modulation with 100-s reprogramming
times have also been reported [22]. Pulse shaping using an
acoustooptic modulator as a programmable mask has also been
demonstrated [23] and is seeing application with amplified
femtosecond systems. Optoelectronic modulator arrays have
potential to serve as pulse-shaping masks with subnanosec-
ond reprogramming times appropriate for communications
and information processing applications. The one experiment
reported to date used an array of GaAs multiple quantum
well modulators within a pulse-shaper setup to carve the
input pulse spectrum into a number of separate wavelength
channels for wavelength-division multiplexed (WDM) optical
communications [24]. Application of optoelectronic modulator
arrays for time-domain pulse-shaping applications has not yet
been reported. Pulse shaping based on the use of spherical [25],
moving [26] and deformable [27] mirrors and on holograms
[28], [29], [30], [31], [32] has also been reported.

Pulse shaping has been or is currently being used in a num-
ber of laboratories for a broad range of applications, including
coherent control over ultrafast physical processes, high field
physics, ultrafast nonlinear optics in fibers, and high-speed
information networks. A review of some of these applications
is given in [1]. The pulse-shaping applications demonstrated
by Weiner and coworkers include dark soliton propagation
[33], [34] and enhanced nonlinear optical switching [15] in
fibers, coherent control in solid-state materials [35], [36], and
manipulation and enhancement of ultrafast terahertz radiation
[37], [38].

There are a number of opportunities to apply pulse-shaping
techniques in optical communications and, networking. We
have already discussed in connection with Fig. 2(b) the pos-
sibility of generating ultrafast data packets for time-division
multiplexed (TDM) communications. A new concept for pro-
cessing of such packets is proposed in Section III. In WDM
communications, the pulse-shaping technique allows realiza-
tion of nearly arbitrarily programmable spectral filters, which
can be used to construct WDM cross-connect switches with
flat-topped frequency response [39], multichannel WDM gain
equalizers [40], or hybrid WDM/space-division multiplexed
optoelectronic switching systems [41]. Note that for these
WDM applications, the input signal will usually consist of
a series of mutually incoherent wavelength channels rather
than a coherent pulse. Another application is for code-division
multiple-access (CDMA) optical communications, in which
different users sharing the fiber channel are distinguished on
the basis of different minimally interfering optical codes. Here,
pulse shaping can be used for either frequency-domain phase
[42], [43], [44] or amplitude [45], [46] coding (and decoding).
Optical CDMA based on spectral phase coding of femtosecond
pulses is currently under investigation in our group at Purdue
[47], [48]. Pulse shaping has also been used to correct for cubic
(or higher order) phase distortion encountered for example in
transmission of femtosecond pulses over kilometer lengths of
fiber [49] and has been used inside a mode-locked external
cavity diode laser to generate synchronized modelocked pulse
trains simultaneously at several different wavelengths for
hybrid TDM-WDM communications [50].

We have recently demonstrated two interesting extensions
of pulse shaping. The first experiment demonstrates the use of
a programmable pulse shaper for phase filtering of incoherent
light from an erbium doped fiber amplified spontaneous emis-
sion source [51]. Related experiments were also reported in
[52], [53]. Although the result of phase filtering of incoherent
light is still incoherent light, nevertheless, the phase filter-
ing operation does affect the electric field cross correlation
function between the light before and after the pulse shaper.
We have shown that the pulse shaper can manipulate this
correlation function much in the same way that a pulse
shaper can manipulate the output intensity profile for coherent
input pulses. One motivation for performing this work is
the possibility of using coherence coding of inexpensive
incoherent light sources (instead of expensive femtosecond
pulse sources) for certain classes of optical CDMA systems
[45], [46], [52].

In a second recent experiment [54], [55], we have demon-
strated a modified pulse shaper incorporating microlens arrays
adjacent to the masking plane. The motivation for this work is
the desire to demonstrate rapidly programmable pulse shaping
using optoelectronic modulator arrays to perform the masking
function. Typical optoelectronic arrays have large amounts of
dead space between the active modulator elements. This would
lead to distortion in standard pulse-shaping systems where the
optical spectrum is spread along a continuous line in the pulse-
shaping plane, since optical frequencies impinging on the dead
spaces in the array would not be properly controlled. The
microlens arrays in the modified pulse-shaper focus the optical
frequency spectrum into a series of discrete spots which should
better match the format of an optoelectronic modulator array.

At this point we give a very brief theoretical description [1],
[56] of pulse shaping. Since the pulse-shaping apparatus acts
as a linear filter for femtosecond input pulses, its response can
be characterized in the frequency domain by

(1)

where and are the Fourier transforms of the
input and output electric fields, respectively, and is the
complex frequency response of the linear filter acting on the
femtosecond pulses. We wish to relate to the actual
physical masking function with complex transmittance .
To do so, we note that the field immediately after the mask
can be written

(2)

where

(3a)

and

(3b)

Here is the spatial dispersion with units cm (rad/s),
is the radius of the focused beam at the masking plane (for
any single frequency component), is the input beam radius
before the first grating, is the speed of light, is the grating
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period, is the wavelength, is the lens focal length, and
and are the input and diffracted angles from the first

grating, respectively.
Note that (2) is a function of both space and frequency
. This occurs because the spatial profiles of the focused

spectral components can be altered by the mask, e.g., some
spectral components may impinge on abrupt amplitude or
phase steps on the mask, while others may not. This leads to
different amounts of diffraction for different spectral compo-
nents and results in an output field that may be a complicated
function of space and time. This space–time coupling has been
analyzed by several authors [57]–[59].

On the other hand, one is usually interested in generating
a spatially uniform output beam with a single prescribed
temporal profile. In order to obtain an output field which is
a function of frequency (or time) only, one must perform
an appropriate spatial filtering operation. Thurstonet al. [56]
analyze pulse shaping by expanding the masked field (2)
into Hermite–Gaussian modes and assuming that all of the
spatial modes except for the fundamental Gaussian mode
are eliminated by the spatial filtering. In real experiments
the Gaussian mode selection operation could be performed
by focusing into a fiber (for communications applications)
or by coupling into a regenerative amplifier (for high-power
applications). This can be also be performed approximately
by spatial filtering or simply by placing an iris after the pulse-
shaping setup. In any case, if one takes the filter function
to be the coefficient of the lowest Hermite–Gaussian mode
in the expansion of , one arrives at the following
expression [1], [56]:

(4)

Equation (4) shows that the effective filter in the frequency
domain is the mask function convolved with theinten-
sity profile of the beam. The main effect of this convolution
is to limit the full-width at half-maximum (FWHM) spectral
resolution of the pulse shaper to .
Physical features on the mask smaller than are smeared
out by the convolution, and this limits the finest features
which can be transferred onto the filtered spectrum. One
consequence of this picture is that wavelength components
impinging on mask features which vary too fast for the
available spectral resolution are in part diffracted out of the
main beam and eliminated by the spatial filter. This can lead
to phase-to-amplitude conversion in the pulse-shaping process.
Conversely, in the limit , the apparatus provides
perfect spectral resolution, and the effective filter is just a
scaled version of the mask.

Note that in our treatment above we assume that the output
Gaussian mode which is selected is matched to the input
mode. The case where the input and output mode sizes are
not matched is analyzed in [60]; in some cases this can give
improvement in spectral resolution compared to that expected
from (4).

The effect of finite-spectral resolution can be understood in
the time domain by noting that the output pulse will
be the convolution of the input pulse with the impulse

response . The impulse response in turn is obtained from
the Fourier transform of (4) and can be written as follows:

(5a)

where

(5b)

and

(5c)

Thus, the impulse response is the product of two factors. The
first factor is the Fourier transform of the mask (appropri-
ately scaled) and corresponds to the infinite-resolution impulse
response. The second factor is an envelope function that
restricts the time window in which the tailored output pulse can
accurately reflect the response of the infinite-resolution mask.
The full-width half-maximum duration of this time window
(in terms of intensity) is given by

(6)

The time window is proportional to the number of grating lines
illuminated by the input beam multiplied by the period of an
optical cycle. A larger time window can only be obtained by
expanding the input beam diameter. The shortest feature in
the output shaped pulse is of course governed by the available
optical bandwidth.

Equations (4) and (5), which result from an approximate
treatment of diffraction at the mask, have been found to
adequately describe a great number of experimental situations.
Experiments show that both the available time window and
the available frequency resolution are well modeled. We
reiterate, however, that these results are valid only when a
suitable spatial filter is employed so that the pulse shape
is constant across the spatial beam profile. Practically, it is
also helpful to avoid using a masking function whose infinite
resolution impulse response function (5b) significantly exceeds
the available time window (5a).

B. Spectral Holography

Further pulse processing capabilities are achieved through
an extension of pulse shaping called spectral holography
[29], [61], in which the pulse-shaping mask is replaced by
a holographic or nonlinear material. Spectral holography was
first proposed theoretically [61] in the Russian literature, and
subsequent experiments demonstrating the principles of time-
domain processing via spectral holography were performed
by Weiner [29]. In analogy with off-axis spatial holography,
two beams are incident: an unshaped femtosecond reference
pulse with a uniform spectrum, and a temporally shaped signal
waveform with information patterned onto the spectrum. The
spectral components making up the reference and signal pulses
are spatially dispersed and interfere at the Fourier plane.
The resulting fringe pattern is stored by using a holographic
recording medium. During readout with a short test pulse, each
spectral component from the test pulse diffracts off that part
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of the hologram containing phase and amplitude information
corresponding to the same frequency component from the
signal beam. The diffracted frequencies are then recombined
into a pair of output beams, corresponding to1 and 1
order diffraction, respectively. Assuming linear holographic
recording and sufficient spectral resolution, the reconstructed
field can be written as follows:

(7)

Here, , , and are the complex spectral
amplitudes of the test, reference, and signal fields, respectively,
and and are the propagation vectors of the diffracted
output beams. The envelopes of the reconstructed output pulses
are given by the Fourier transform of (7), as follows:

(8)

When both test and reference beams consist of unshaped pulses
with durations short compared to the duration of the shaped
signal pulse, the output pulse is either a real or a time-reversed
reconstruction of the original signal pulse, depending on the
diffraction direction. Furthermore, if the test beam itself is
a shaped pulse, then one can generate the convolution or the
correlation of the signal and test electric field envelopes. In the
special case where the test and signal waveforms are identical,
the correlation becomes a matched filtering operation, which
is useful for chirp compensation and pulse compression and
for ultrafast pattern matching.

Experiments demonstrating spectral holography in the ul-
trafast time domain were performed by Weiner using fem-
tosecond, visible wavelength pulses [29], [62], [63]. The
holographic material was a thermoplastic plate, which was
first exposed to the signal-reference interference pattern and
then “developed” to form a permanent spectral hologram. All
of the signal processing operations enumerated above were
successfully demonstrated. As one example, Fig. 3 shows
data corresponding to matched filtering operation. All the
data correspond to intensity cross-correlation measurements of
output pulses resulting from the spectral holography process.
The short output pulse shown in Fig. 3(a) results when all three
pulses (signal, reference, and test) are ultrashort pulses with
no distortion. In Fig. 3(b), pulse shaping is used to encode
the signal pulse only into a low intensity pseudonoise burst
similar to a spread-spectrum waveform. Finally, in Fig. 3(c),
both signal and test pulses are encoded in the same way;
the identical distortions cancel, and an intense bandwidth-
limited output pulse is restored. These data illustrate the
coding–decoding process that forms the basis for femtosecond
code-division multiple-access (CDMA) communications. It
is worth noting that such holographic matched filtering is
a self-aligned process, so that one can decode or process
incoming signals without having to precisely specify those
signals beforehand.

(a)

(b)

(c)

Fig. 3. Holographic matched filtering of coded ultrafast waveforms. (a) None
of pulses are coded. (b) The signal is coded using pulse shaping. (c) Both
signal and test pulses are coded, resulting in matched filtering operation and
a restored output pulse.

Fig. 4. Apparatus for space-to-time mapping using spectral holography and
dynamic semiconductor photorefractive films [67].

C. Holographic Time–Space Conversion

In the previous section on spectral holography we discussed
pure time-domain systems, in which an ultrafast input temporal
signal is processed to yield a new output temporal signal. One
can also consider hybrid spectral holography systems in which
time and space are mixed. These systems allow conversion
from the spatial domain into the ultrafast time domain (parallel
to serial conversion) or from the ultrafast time domain into
the spatial domain (serial to parallel conversion). Such hybrid
space–time conversions have been discussed theoretically by
Mazurenko [61], [64] and demonstrated experimentally by
several groups [28], [65]–[68].

Time-to-space mapping of femtosecond optical waveforms
can be achieved by recording a spectral hologram using time-
domain signal and reference pulses, as in the previous section,
and then reading out using a monochromatic, continuous-
wave (CW) laser. Nuss [67] used the arrangement sketched
in Fig. 4 for experiments demonstrating such time-to-space
mapping. Femtosecond signal and reference pulses at830
nm are obtained from a mode-locked Ti:sapphire laser, and a
photorefractive multiple-quantum-well device (PRQW) [69],
[70] is used as a dynamic holographic recording material. Key
features of these PRQW’s are a response time of1 s at an
intensity of 10 mW/cm and a diffraction efficiency of a few
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Fig. 5. Block diagram of generalized space–time pulse processing systems. By converting interchangeably between time, space, and wavelength domains,
sophisticated data manipulation applications may be possible.

percent. Read-out is accomplished by using an 850-nm CW
laser diode. By passing the diffracted output beam through
a Fourier transform lens, the original temporal information
is converted into spatial information. The spatial profile of
the resulting output beam is given by the electric field cross-
correlation between signal and reference pulses. For a short
bandwidth limited reference pulse, this yields a spatial replica
of the electric field amplitude of the original time-domain
signal pulse.

In addition to PRQW’s, bulk holographic crystals have also
been employed for time-to-space conversion experiments [68].
However, both PRQW’s and bulk holographic materials are
too slow for use in most communication applications requiring
gigabit per second frame rates. A related technique for time-
to-space conversion of picosecond pulses was demonstrated
by Ema, who utilized the exciton resonance in ZnSe for
the nonlinearity required for holography [65]. Although this
material has the advantage of fast response (13 ps), its
operation wavelength is 442 nm and it must be cooled to
cryogenic temperatures. A third scheme, first demonstrated
by Mazurenko, Fainman, and coworkers [2], [3], relies on
the instantaneous nonlinear effect of SHG using a nonlinear
optical crystal within a pulse shaper. This scheme is an
important advance due to the combination of fast response
and operation at convenient wavelengths and temperatures. We
have performed similar time-to-space mapping experiments
in which we demonstrate SHG conversion efficiencies above
50%. This work is described in detail in Section IV.

Finally, we note that spectral holography can also be utilized
for the converse operation, namely, space-to-time conversion
[28], [31], [32], [68]. Here one records a hologram of a
one-dimensional spatial image onto a holographic recording
material placed inside a pulse shaper. The hologram acts
as a diffractive pulse-shaping mask and generates an output
pulse which is a scaled version of the direct spatial im-
age, or its Fourier transform, depending on the hologram
recording geometry. In addition, by utilizing nonlinearities
in the recording process, one can demonstrate new pulse
processing operations, such as edge enhancement in space-
to-time conversion [32].

III. GENERALIZED TIME–SPACE SYSTEMS

FOR ULTRAHIGH-SPEED DATA PROCESSING

By exploiting the ability to convert between space and
time in pulse shaping and spectral holography, one can en-
vision new opportunities for data processing and manipula-
tion of extremely broadband optical signals. Consider cas-
caded time–space systems as shown conceptually in Fig. 5.
Here, an ultrafast time-domain data stream (or possibly a
multiwavelength data signal) would first be converted into
the space-domain. Various processing operations could then
be performed using high speed smart pixel optoelectronic
arrays. The smart pixel array would include detectors for
reading the space-domain data, VLSI electronics for pro-
cessing, and modulators for converting back to the ultrafast
time (or the wavelength) domain using an appropriate pulse-
shaping setup. Experiments demonstrating cascaded space-to-
time and time-to-space conversion based on spectral hologra-
phy were reported previously [68], but no further processing
was performed. The combination of time–space conversions
and space-domain (parallel) optoelectronic processing could
lead to great flexibility for implementing new types of ultrafast
optical data processing.

Key to this concept is the use of arrays of optoelectronic
“smart pixels” to implement the spatial-domain processing
function. Smart pixel device arrays, in which optoelectronic
transceivers such as detectors and modulators are intimately
coupled to electronic processing circuitry at every pixel of the
array, have recently emerged as a key technology for tradi-
tional (i.e., spatial domain) optical signal processing systems
and optical interconnect systems [71], [72]. The main theme is
to build systems in which optics and electronics can each per-
form the functions for which they are most ideally suited. Here,
our aim is to employ smart pixel technology in an application
for which it has previously received little attention—namely,
for manipulation and processing of ultrafast time-domain
optical signals. By incorporating high performance smart pixel
device arrays into ultrafast pulse processing systems, we
can accelerate processing times substantially and achieve
completely new functionalities.
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As a demonstration vehicle, we have initiated experiments
using the hybrid SEED smart pixel technology [73], which
is available through Bell Laboratories on a foundry basis.
This technology consists of arrays of gallium arsenide multiple
quantum well (GaAs MQW) optical detectors/modulators, or
SEED’s, bonded onto the surface of silicon CMOS (Si-CMOS)
electronic chips, forming smart pixel arrays. The CMOS
circuitry is custom designed in order to implement the desired
processing functionalities. This technology can be expected to
operate with frame rates up to the gigabit-per-second range,
depending on the minimum feature size of the particular
CMOS process employed. Our current experiments are being
performed using pulses from a modelocked Ti:sapphire laser
in order to match the 850-nm operating wavelength of
the hybrid SEED optoelectronics. For actual communications
experiments, one would likely need to operate in the 1.5-m
band. This could potentially be achieved by fabricating smart
pixel arrays based on asymmetric Fabry–Perot modulators
(AFPM’s). Although AFPM’s and AFPM arrays were initially
developed in the 850-nm spectral region [74]–[76], single
device operation was recently extended to the 1.5-m band
with both very high speed (20 Gb/s) and high on-off contrast
( 15 dB) in a format compatible with array operation [77].
Alternatively, for some applications one may be able to exploit
the wavelength conversion inherent in SHG time-to-space
conversion to match a 1.5-m operating wavelength to 850
nm GaAs optoelectronics.

As illustrated in Fig. 5, the use of smart pixel optoelectron-
ics could potentially allow tailoring of a wide range of system
functionalities through the VLSI design. Examples include
data detection and regeneration, time-slot interchanging, digi-
tal optical gating, packet header recognition, and TDM–WDM
data format conversion. With suitable optoelectronics and
materials, it may be feasible, for example, to implement
such functionalities for 100-Gb/s time-division multiplexed
optical data, by using 32-element smart pixel arrays operating
in parallel at 3.2-Gb/s frame rates. Such a combination of
functionality and speed is not currently available through any
established technology.

IV. TIME-TO-SPACE CONVERSION USING

SECOND-HARMONIC GENERATION

A. Overview and Experimental Setup

As noted earlier, a scheme for time-to-space conversion
based on SHG within a pulse shaper was recently demonstrated
by Mazurenko, Fainman, and coworkers [2], [3]. Since the
SHG nonlinearity is essentially instantaneous, this work is an
important advance compared to previous time-to-space conver-
sion methods which depended on materials with slower nonlin-
ear responses. However, in previous short pulse experiments
where SHG was performed using angle-tuned type-I phase
matching in an LBO crystal [3], the conversion efficiency was
rather low ( 0.1%). We have recently achieved femtosecond
optical time-to-space mapping with more than 50% conversion
efficiency using temperature-tuned noncritical phase matching
(NCPM) in a thick KNbO nonlinear crystal. This increase

Fig. 6. Schematic diagram of time-to-space conversion apparatus using SHG
within a femtosecond pulse shaper.G: Grating.L1, L2: lenses.Es: Signal
beam.Er: Reference beam. NLC: Potassium niobate nonlinear crystal.

in efficiency by more than 500 fold may enable systems
using time-to-space mapping in conjunction with smart pixel
optoelectronic device arrays to perform sophisticated ultrafast
pulse processing operations repeatable at communication rates
with realistic power budgets.

In the rest of this paper, we discuss our time-to-space
conversion experiments using KNbO. We first describe the
experimental setup. We then analyze the time-to-space map-
ping operation theoretically, pointing out similarities to pulse
shaping throughout. Finally, we present our experimental
results validating the theory and demonstrating the50%
conversion efficiency in time-to-space mapping. The analysis
of the conversion efficiency itself is being published elsewhere
[4] and is not repeated here.

The experimental arrangement, which is similar to that in
[3], is shown in Fig. 6. A short pulse (125 fs FWHM) emitted
by a mode-locked Ti-sapphire oscillator is split into two
beams, a featureless reference pulse and a signal beam,

, which can be shaped. The two beams are diffracted by
the single diffraction grating (600 lines/mm) such that the1
diffraction order from one beam overlaps with the1 order
from the other. The two diffracted beams pass through lens
(focal length 6 cm) and are spectrally dispersed in the back
Fourier plane of the lens. We have utilized both a collinear as
well as a noncollinear geometry, in which the two beams are
displaced vertically by a few mm at the grating. The two beams
interact in the KNbO nonlinear crystal that is mounted on
a thermoelectric (TE) cooler for precise temperature control.
Since the spatial dispersions of the two beams are equal
in amplitude and opposite in sign, the spot with frequency

from the signal beam spatially overlaps and mixes
with the spot with frequency from the reference
beam. This interaction in a nonlinear crystal while satisfying
the phase matching condition results in generation of a blue
SHG beam that oscillates at the optical frequency and is
quasi-monochromatic. For a sufficiently short reference pulse,
the spatial profile of the blue beam at the output of the crystal
is the Fourier transform of . By performing a spatial
Fourier transform using lens (with focal length 16
cm), a spatial replica of is obtained and recorded using
a charge-coupled device (CCD) camera.

In order to illustrate the spatial dispersion within the pulse
shaper, in Fig. 7, we have plotted data on peak wavelength as
a function of transverse position in the plane of the nonlinear
crystal for both reference and signal beams. These data were
measured by placing an optical fiber connected to an optical
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Fig. 7. Plot of wavelength as a function of transverse position at the
pulse-shaper masking plane for signal and reference beams. The two beams
have equal but opposite spatial dispersions.

spectrum analyzer into the spectrally dispersed beams. By
translating the fiber in the spectral dispersion direction, we
were able to record the spatially dependent spectra. From
Fig. 7, we see that the wavelength corresponding to the peak
of the spectrum varies linearly with position. A linear fit to the
data yields a variation of 10.488 nm/mm for the signal beam
and 10.40 nm/mm for the reference beam. The slopes are
nearly equal and opposite, as required for this time-to-space
conversion scheme.

Our experiments are performed using a 53 6.2 mm a-
cut KNbO crystal. KNbO , a biaxial crystal that belongs
to space groupBmm2, is known to possess high nonlinear
coefficient ( 20 pm/V) [78]. In addition to its good
optical quality and large damage threshold [79], KNbO
allows noncritical type I phase matching for blue generation
at around 430 nm by temperature tuning. These properties
make this crystal an attractive choice for our application.
Because of its large group velocity mismatch (1.2 ps/mm
for 860–430-nm conversion [80]) and narrow phase matching
bandwidth ( 0.07 nm for crystal length of 6.2 mm), this
crystal has been useful mainly for doubling CW and to
some extent picosecond pulsed lasers. It is usually avoided
for femtosecond applications. Since our experiment converts
femtosecond input pulses into quasi-monochromatic upcon-
verted pulses, the narrow phase matching bandwidth is not a
serious limitation. This opens up the use of the large nonlinear
coefficient in a noncritically phase-matched geometry with no
spatial walkoff to allow high conversion efficiency and is an
important contribution of our work. In our experiments, the
fundamental beam propagates along the crystallographic-axis
with its polarization along the-axis generating a nonlinear
polarization with second-harmonic beam polarized
along the -axis (using the nonlinear coefficient ). In this
case, the fundamental wavelength can be tuned between 840
and 940 nm for temperatures between38 C and 180 C
[81]. Here, we tune the center wavelength of the laser to 857.7
nm which allows type-I NCPM for the quasi-monochromatic
output at 428.85 nm at room temperature.

In the following, we first describe the theory of time-to-
space conversion via SHG in a pulse shaper. We then proceed
to discuss the experimental results.

B. Time-to-Space Conversion Theory

A theory for time-to-space conversion using spectral SHG
was previously published by Sun, Mazurenko, and Fainman
[3]. Here, we sketch a theory which follows a similar line, but
with some differences as well. These include the following:

(1) We include the effects of group velocity walkoff and fi-
nite phase matching bandwidth in the nonlinear crystal.
This is especially relevant for our experiments using
a thick nonlinear crystal and allows us to predict the
temperature tuning response of the nonlinear crystal
inside the pulse shaper.

(2) We specialize to the practically important case of
Gaussian input beams, which simplifies the calculations
and leads to additional physical insight.

(3) We specifically relate the time window and other fea-
tures of signals produced in time-to-space conversion
to the relevant concepts that have previously been
developed in the context of pulse shaping.

We have previously analyzed the conversion efficiency
in SHG-based time-to-space converters and discussed how
to achieve high efficiency [4]. Since this analysis is given
elsewhere, it is not repeated here.

For our calculations we assume input signal and reference
fields, and respectively, as follows:

(9a)

(9b)

Here and are the slowly varying complex electric
field envelope functions, is the center frequency of the
input pulses, and Gaussian beams with radiusare assumed.
We take to represent the transverse dimension in which the
frequencies are spatially dispersed. One would usually assume
a Gaussian variation in the second transverse direction
as well; however, since there is no spectral dispersion in this
direction, the spatial variation has no effect on the time-
to-space conversion operation and is therefore omitted in our
analysis. The Fourier transform of the signal pulse envelope
function is given by

(10)

with a similar expression for .
The optical frequency components are spatially dispersed

by the grating and first lens with focal length. Following
standard pulse-shaping analysis [1], [14], [56], [82] the signal
field in the Fourier plane of is given by e6

(11)

The spatial dispersion parameterand focused spot size in the
Fourier plane are given by (3a), (3b). The spatial dispersion
of the reference field is assumed to be equal and opposite to
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that of the signal field. Therefore, we have

(12)

The nonlinear polarization responsible for time-to-space
conversion depends on the product of signal and reference
fields. We ignore the self-terms due to the reference and signal
fields individually since: 1) these terms do not result in time-
to-space conversion; 2) these terms are not phase matched
except for frequencies very close to ; and (3) these terms
can be eliminated by using a noncollinear beam geometry.
The component of the nonlinear polarization oscillating near
the second-harmonic frequency is written

(13)

Here, we have assumed that depth of focus is sufficiently
long that the beam radius does not vary appreciably within
the nonlinear crystal, an approximation that is only partly
true in our experiments. However, since most of the second
harmonic is generated near the beam waist, this approximation
is expected nevertheless to yield reasonable results. We now
introduce the frequency variable , which
physically signifies an actual second-harmonic frequency at

. Substituting in for and combining all the Gaussian
terms, one obtains

(14)

In the undepleted pump approximation, the generated second-
harmonic field at the output of the nonlinear
crystal is simply proportional to , assuming broad-
band phase matching. The case of finite phase matching
bandwidth is handled by multiplying by an additional filtering
function that acts only on the second-harmonic
frequency parameter . As is well known [83]–[85], the
finite-phase-matching bandwidth arises due to group velocity
walkoff between the fundamental and second-harmonic fields,
where the bandwidth within which second harmonic can be
efficiently generated is inversely proportional to the group
velocity walkoff. The generated field after the nonlinear crystal
is then written as

(15)

Finally, the output field in the back Fourier plane of
lens is obtained by performing a spatial Fourier transform
[86]:

(16)

where is the Fourier transform scale factor. The
result is

(17)

We now make the simplifying assumption that
. This is valid provided that the reference spectrum

does not vary significantly within the spectral resolution of the
pulse shaper, i.e., within the range of physically overlapping
frequencies present at any single positionat the nonlinear
crystal. We do not place any such restriction on the signal
spectrum. We can then rewrite the output field as

(18a)

where

(18b)

(18c)

(18d)

Physically, , , and represent the finite-
spatial (or temporal) window for time-to-space conversion,
the temporal output waveform, and the time-to-space mapping
function, respectively. Each term is discussed in further depth
below.

Let us first discuss the time-to-space mapping function
, which is the Fourier transform of .

Evaluating the transform yields

(19)

The output field is a spatial replica of the cross correlation
of the signal and reference field envelopes. It is important
to note that neither field is complex conjugated, unlike the
usual case of electric field correlations obtained, e.g., by using
an interferometer. In the limit where is much shorter
than , the spatial profile of the output electric field is
proportional to . Thus, the time-to-space mapping
function can be written

(20a)

(20b)
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where

(20c)

is the time-to-space conversion factor, with units
meters per second. This expression is the same as that de-
scribed for the case of time-to-space transformation using a
thin photorefractive film [67] except for a factor of 1/2, which
arises due to the difference in input and output frequencies
( and ).

Note also that the output field profile depends only on the
relative timing of the signal and reference pulses, not on the
absolute timing of either field. Common mode timing shifts of
both fields do not lead to any shifts in the output spatial pattern.
This is one simple manifestation of the correlation operation
expressed by (19). One can also perform experiments where
the reference pulse is itself patterned in time. In this case
the output spatial profile is the correlation of the two input
temporal waveforms.

We next discuss the spatial window function . Clearly,
this function reduces the intensity of the output image as
becomes too large. Since there is a linear mapping between
and , this means that there is a limited time window (centered
on the reference pulse) within which the signal pulse can be
imaged. The full-width at half-maximum of the output spatial
intensity is given by

FWHM (21)

The equivalent intensity full-width maximum time window is
given by

FWHM (22)

Physically, we can understand this windowing effect as fol-
lows. At any physical location at the nonlinear crystal,
there coexists a range of frequencies . The
SHG at a single spot at the crystal results from an integration
over all the frequencies contributing to that spot. As long
as the signal spectrum is smooth on the scale of, this
does not affect the generated second-harmonic field (we have
already assumed earlier in our derivation that the reference
spectrum is smooth on the scale of ). However, if the
spectrum does vary significantly within this , then that
variation is smoothed out by the averaging over a finite range
of frequencies. This determines the minimum-sized feature in
the frequency domain, which can accurately be converted into
a second-harmonic spatial pattern at the nonlinear crystal. It is
worth noting that the time window formula, (22), is exactly the
same as the window obtained in the analysis of pulse shaping
(6).

We now comment on the term . Since the output
image will usually be detected by a time-integrating detector

array, the detected signal will be proportional to

(23)

From Parseval’s theorem, we can write

(24)

This is independent of both and , and therefore, has no
effect on the detected image.

From this, we see that a finite phase matching bandwidth
(and hence a finite-group velocity walkoff) does not influence
the form of the detected image, since the-dependence of the
time integrated intensity is unaffected by the term.
However, this term does affect the overall amplitude of the
image and dictates the phase matching response in the time-to-
space geometry. We return to this point later when we discuss
the temperature tuning bandwidth of our experiments.

Finally, we comment on the time behavior of the output
image as determined by . For infinite phase matching
bandwidth, 1, the output is a Gaussian pulse
with an intensity FWHM duration equal to one half of the
time window given by (22). This pulse duration is again
determined by the spectral resolution of the apparatus, which
also determines the bandwidth of the quasi-monochromatic
output image. A restricted phase matching range narrows the
bandwidth and broadens the duration of the output pulse. In
addition, the pulse has a position dependent delay equal to

. The ratio of the delay to the spatial coordinate
is equal to one-half of the time-to-space mapping constant.
Once again, this is similar to a phenomenon arising in pulse
shaping, namely, in the absence of output spatial filtering, the
pulse-shaping temporal window is offset from 0 by an
amount proportional to the spatial offset [58].

C. Time-to-Space Conversion Experimental Results

We now report experimental results for the setup discussed
in Section III–A. The key parameters for these experiments
are: 6 cm, 16 cm, 600 mm , 857.7
nm, 1.05 mm, 33 , and 1.7 . From these we
calculate 13.1 m, 1.4 10 cm/Hz, and
9.16 10 cm . The angles given are for the signal beam.
The input angle for the reference was adjusted to give nearly
equal (but opposite) spatial dispersion.

Fig. 8 shows data used to determine the time-to-space
mapping constant of our setup. Here, both reference and signal
pulses were unshaped pulses directly from the Ti:sapphire
laser. A series of measurements were taken with a stepper
motor stage used to vary the delay of the signal pulse with
respect to the reference. A low pump power (40 mW) was
chosen for these measurements (as well as other measure-
ments unless otherwise noted) to satisfy nondepleted pump
conditions for the harmonic generation. Fig. 8 is a plot of the
horizontal position of the output spot, as measured on the CCD
camera, as a function of signal pulse delay for a delay range of
approximately 10 ps. A straight line dependence with slope 0.8
mm/ps is observed, in good agreement with the value 0.770
mm/ps calculated from (20c).
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Fig. 8. Displacement of output blue beam as a function of signal pulse
relative delay (with respect to reference pulse).

Fig. 9. Dependence of output blue power as a function of signal pulse
relative delay (with respect to reference pulse).

Fig. 9 shows the power in the output spot (in arbitrary units),
as a function of delay in the same measurement as for Fig. 8.
The time window, within which the second-harmonic intensity
remains at 50% of the intensity obtained at zero delay, is 3.9
ps. This is reasonably close the value of 3.58 ps obtained from
(22). The time window data plotted in Fig. 9 does show some
asymmetry not predicted in our analysis. This may arise from
deviations from the assumed Gaussian beam shape.

Fig. 10 shows actual time-to-space mapping images de-
tected by the CCD camera. In Fig. 10(a), the image shown is

(a) (b)

(c)

Fig. 10. Time-to-space mapping images detected by the CCD camera for an
unshaped reference pulse. (a) Unshaped signal pulse. (b) Pair of signal pulses
generated by inserting glass slide into the beam from the side. (c) Pair of
signal pulses generated by inserting glass slide into the beam from above.

(a) (b)

Fig. 11. Geometry for generating pulse pairs. (a) Glass slide inserted into
the beam from the side. (b) Glass slide inserted into the beam from above.

for the interaction of two identical pulses with zero time delay
between them. Fig. 10(b) shows the image obtained when a
pair of signal pulses is generated by inserting a thin glass slide
into part of the signal beam from the side [geometry shown
in Fig. 11(a)]. The time-to-space process converts the signal
pulse pair into a pair of two blue spots. The distance between
the two spots in Fig. 10(c) was measured to be 1.3 mm,
which corresponds to 1.63-ps time delay. This is in excellent
agreement with the predicted value of 1.667
ps, where is the speed of light, 1 mm is the thickness of
the glass slide, and 1.5 is its refractive index. Fig. 10(c)
shows another image of a signal pulse doublet, where this
time the doublet is created by inserting the glass slide into
the signal beam from above [geometry shown in Fig. 11(b)].
Since the two signal pulses arrive at the nonlinear crystal
at slightly different angles in the vertical direction, the two
output spots are slightly displaced from one another in this
same vertical direction. These measurements demonstrate the
possibility of further mixing space and time in time–space
processing, by using one spatial dimension for time-to-space
conversion and the second for pure space-domain processing.
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(a) (b)

Fig. 12. Time-to-space mapping images detected by the CCD camera for
identical reference and signal pulse doublets. The images correspond to the
correlation of the reference and signal waveforms. (a) Pulse doublets generated
by inserting glass slide into beams from the side. (b) Pulse doublets generated
by inserting glass slide into beams from above.

Fig. 13. Second-harmonic conversion efficiency, defined as output blue
power normalized to input signal pulse power, as function of average reference
pulse power. Signal pulse power is held constant at 5.3 mW. All powers are
measured at the second-harmonic crystal.

However, note that the space-domain processing is limited by
the phase matching acceptance angle for efficient SHG.

Fig. 12 demonstrates time-to-space conversion data for the
case when both signal and reference beams are shaped. Iden-
tical pulse doublets are obtained by inserting the glass slide
into the beam directly out of the laser before the beam is
split into signal and reference. According to (19), the time-
to-space conversion will yield an image determined by the
autocorrelation of the (identical) signal and reference fields.
The spatial image resulting from a pulse doublet input should
then consist of a symmetric three peak structure, with the
center peak more intense than the two outer peaks. The data
in Fig. 12 confirm this prediction, with the glass slide inserted
into the beam either from the side (a) or from the top (b).
In addition to demonstrating the correlation property of time-
to-space conversion, these data provide further evidence of
the ability to perform time–space processing in one transverse
dimension while performing pure spatial processing in the
second transverse dimension.

The IR signal-to-blue conversion efficiency of this system
was measured using a power meter placed at a close distance
from the output facet of the crystal. The conversion efficiency
of the signal beam is expected to depend linearly on the pump
power. Shown in Fig. 13 is the variation of the efficiency

as the average power of the reference (or pump) beam is
varied for a fixed signal average power of 5.3 mW arriving at
the nonlinear crystal. A linear dependence is observed. At a
pump power of 160 mW (again measured at the nonlinear
crystal), 3.12 mW of blue is detected corresponding to a
conversion efficiency of 58%. The data presented in Fig. 13
were obtained with the signal and the reference beam aligned
to propagate collinearly in the crystal. This means there is
some cross-talk due to the blue light generated by the reference
and the signal beams individually. Such crosstalk due to the
individual beam contributions are neglected since (a) only a
narrow range of input frequencies very close toare phase
matched, and (b) the blue light generated from the individual
beams is spread uniformly over the entire “time window” in
the plane of the CCD. Nevertheless, we have also performed
experiments in a noncollinear geometry that eliminates the
signal from individual beams. In this case, we measure a
conversion efficiency 2/3 as large as in Fig. 13.

We have analyzed the efficiency of the SHG inside the time
to space converter and have found that the predicted efficiency
is in reasonable agreement with the experimental results. Our
efficiency analysis will be published elsewhere [4]. The key
to this high-efficiency is the use of KNbO, which has a high
nonlinear coefficient and which can be temperature tuned for
noncritical phase matching allowing a long interaction length
in the nonlinear crystal.

Finally, we analyze the temperature dependence of the SHG
in our time-to-space converter. From (24), the output power

is proportional to

(25)

The temperature variation of the output power is given by

(26)

where is the slope of the phase matching peak (in
angular frequency units) vs. temperature curve, andis the
temperature at which the phase-matching peak coincides with

(i.e., at second-harmonic frequency ). Recall that
refers to the second-harmonic frequency (relative to the central
SHG frequency ) The phase matching spectral response
function is given by [84]

(27a)

where

(27b)

For a group velocity mismatch of 1.2 ps/mm and a 6.2-
mm crystal, we estimate the FWHM width of to be
0.073 nm, corresponding to 7.4810 rad/s. The measured
variation of the phase matching peak with temperature for



WEINER AND KAN’AN: FEMTOSECOND PULSE SHAPING 329

Fig. 14. Blue output power plotted as a function of crystal temperature for
fixed frequency input pulses. Circles and wider dash–dot curve: data and
Gaussian fit to the data. Narrower dash–dot line: theoretical temperature
response curve, computed solely from the pulse-shaper spectral resolution.

our crystal is 0.188 nm/C 1.91 10 rad/s/ C).
Therefore, for monochromatic input light, the temperature
tuning bandwidth should be 0.39C. This is in reasonable
agreement with the data in [57], which reported a temperature
FWHM of 0.53 C for a 5-mm KNbO crystal (which would
correspond to 0.43C for a 6.2-mm crystal).

The width of the term appearing in (26)
is roughly 1.56 10 rad/s, which is twice as wide as

. Therefore, the phase matching spectral response
is narrower than the pulse-shaper spectral resolution under our
experimental conditions. Thus, as a first approximation we can
replace in (26) as a delta-function, with the following
result for the temperature dependence of the output power:

(28)

The temperature response is determined by the spectral resolu-
tion function of the pulse shaper. Fig. 14 shows a plot of (28),
with a FWHM temperature width of 0.81C. Measured data
(together with a Gaussian fit to the data) are also plotted, giving
a 1.03 C temperature FWHM. Both values are substantially
above the 0.39C value calculated for conventional SHG with
CW light. We can better approximate the expected temperature
width if we take the finite width of into account. A rough
sum-of-squares convolution yields an expected temperature
width of 0.90 C, in reasonable agreement with our data. This
agreement confirms that the temperature acceptance range in
the current experiments is dominated by the finite spectral
resolution, which is related to the presence of a range of
spectral components at any individual spatial location in the
dispersed beam.

V. SUMMARY

We have described spectral methods for shaping, processing,
and time-to-space conversion of femtosecond optical pulses.
Pulse-shaping techniques, which are now relatively well es-
tablished, allow synthesis of nearly arbitrarily shaped ultrafast
waveforms. Spectral holographic processing techniques enable
storage and recall, time reversal, convolution, correlation, and
matched filtering of such shaped femtosecond signals. Hybrid
spectral holography systems can be used for time–space con-
version of femtosecond waveforms. In order to implement
more sophisticated processing of ultrafast pulse sequences,
including digital logic operations, we have proposed a new
generalized space–time processing concept in which input
pulse sequences are first converted into the space domain,
processed electronically using parallel smart pixel optoelec-
tronic arrays, then converted back into the time domain to yield
the processed output bit sequence. Such cascaded time–space
systems depend critically on the ability to perform time–space
conversions at the gigabit-per-second frame rates appropriate
for high speed communications. For this reason we are pursu-
ing time-to-space conversion experiments using a scheme [2],
[3] based on SHG within a pulse shaper, which is consistent
with these speed requirements. We have presented a detailed
analysis of this time–space conversion scheme in a form that
facilitates comparison with pulse-shaping theory and have
described a series of experiments validating the theoretical
analysis. By using a thick nonlinear crystal in a temperature
tuned noncritically phase-matched geometry, we have demon-
strated greater than 50% conversion efficiency in the second-
harmonic crystal, which is more than two orders of magnitude
higher than in previous experiments. This demonstration of
high efficiency should contribute to realization of generalized
time–space systems capable of performing sophisticated pulse
processing operations with realistic power budgets and at
frame rates suitable for high-speed communications.
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“Phase-encoding technique in time-domain holography: Theoretical es-
timation,” J. Opt. Soc. Amer. B, vol. 12, pp. 1448–1459, 1995.

[54] K. M. Mahoney and A. M. Weiner, “Modified femtosecond pulse shaper
using microlens arrays,”Opt. Lett., vol. 21, pp. 812–814, 1996.

[55] K. M. Mahoney and A. M. Weiner, “A femtosecond pulse shaping
apparatus containing microlens arrays for use with pixellated spatial
light modulators,”IEEE J. Quantum Electron., vol. 32, pp. 2017–2077,
1996.

[56] R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson,
“Analysis of picosecond pulse shape synthesis by spectral masking in
a grating pulse compressor,”IEEE J. Quantum Electron., vol. 22, pp.
682–696, 1986.



WEINER AND KAN’AN: FEMTOSECOND PULSE SHAPING 331

[57] M. B. Danailov and I. P. Christov, “Time-space shaping of light pulses
by Fourier optical processing,”J. Modern Opt., vol. 36, pp. 725–731,
1989.

[58] M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast
optical waveforms,”IEEE J. Quantum Electron., vol. 32, pp. 161–172,
1996.

[59] J. Paye and A. Migus, “Space-time Wigner functions and their applica-
tion to the analysis of a pulse shaper,”J. Opt. Soc. Amer. B, vol. 12,
pp. 1480–1491, 1995.

[60] I. Lorgere, M. Ratsep, J.-L. L. Gouet, F. Grelet, M. Tian, A. Debarre, and
P. Tchenio, “Storage of spectrally shaped hologram in a frequency selec-
tive material,”J. Phys. B: At. Mol. Opt. Phys., vol. 28, pp. L565–L570,
1995.

[61] Y. T. Mazurenko, “Holography of wave packets,”Appl. Phys. B, vol.
50, pp. 101–114, 1990.

[62] A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral
holography of shaped femtosecond pulses,”Opt. Lett., vol. 17, pp.
224–226, 1992.

[63] A. M. Weiner and D. E. Leaird, “Femtosecond signal processing by
second order spectral holography,”Opt. Lett., vol. 19, pp. 123–125,
1994.

[64] Y. T. Mazurenko, “Time-domain Fourier transform holography and
possible applications in signal processing,”Opt. Eng., vol. 31, pp.
739–749, 1992.

[65] K. Ema, M. Kuwata-Gonokami, and F. Shimizu, “All-optical sub-Tbits/s
serial-to-parallel conversion using excitonic giant nonlinearity,”Appl.
Phys. Lett., vol. 59, pp. 2799–2801, 1991.

[66] K. Ema, “Real-time ultrashort pulse shaping and pulse-shape mea-
surement using a dynamic grating,”Jpn. J. Appl. Phys., vol. 30, pp.
L2046–L2049, 1991.

[67] M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, and A. Partovi, “Time-to-
space mapping of femtosecond pulses,”Opt. Lett., vol. 19, pp. 664–666,
1994.

[68] P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Fain-
man, “All-optical parallel-to-serial conversion by holographic spatial-
to-temporal frequency encoding,”Opt. Lett., vol. 20, pp. 1728–1730,
1995.

[69] A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan,
T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating
multiple quantum well photorefractive devices,”Appl. Phys. Lett., vol.
62, pp. 464–466, 1993.

[70] D. Nolte and M. Melloch, “Bandgap and defect engineering for semi-
conductor holographic materials: Photorefractive quantum wells and thin
films,” MRS Bull., vol. 19, pp. 44–49, 1994.

[71] S. R. Forrest and H. S. Hinton, Eds.,IEEE J. Quantum Electron.(special
issue on smart pixels), vol. 29, pp. 598–813, 1993.

[72] A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology:
Bistable logic gates to optoelectronic smart pixels,”IEEE J. Quantum
Electron., vol. 29, pp. 655–669, 1993.

[73] K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng,
R. Leigenbuth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F.
Chrirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW mod-
ulators integrated with silicon CMOS,”IEEE Photon. Technol. Lett.,
vol. 7, pp. 360–362, 1995.

[74] M. Whitehead and G. Parry, “High-contrast reflection modulation at
normal incidence in asymmetric multiple quantum well Fabry–Perot
structure,”Electron. Lett., vol. 25, pp. 566–568, 1989.

[75] R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-
Perot reflection modulators with asymmetric mirrors,”IEEE Photon.
Technol. Lett., vol. 1, pp. 273–275, 1989.

[76] G. B. Thompson, G. Robinson, J. W. Scott, C. J. Mahon, F. H. Peters, B.
J. Thibeault, and L. A. Coldren, “1�18 array of low voltage, asymmet-
ric Fabry–Perot modulators for gigabit data transmission applications,”
presented at the IEEE/LEOS Summer Top. Meet. Smart Pixels, Lake
Tahoe, NV, 1994.

[77] S. J. B. Yoo, R. Bhat, C. Caneau, J. Gamelin, M. A. Koza, and T.
P. Lee, “High-speed 1.5 micron asymmetric Fabry–Perot modulators,”
presented at the Optical Fiber Communications Conf., San Diego, CA,
1995.

[78] J. C. Baumert and P. G¨unter, “Noncritically phase-matched sum-
frequency generation and image up-conversion in KNbO3 crystals,”
Appl. Phys. Lett., vol. 50, pp. 554–556, 1987.

[79] U. Ellenberger, R. Weber, J. E. Balmer, B. Zysset, D. Ellgehausen, and
G. Mizell, “Pulse optical damage threshold of potassium niobate,”Appl.
Opt., vol. 31, pp. 7563–7569, 1992.

[80] B. Zysset, I. Biaggio, and P. G¨unter, “Refractive indices of orthorhombic
KNbO3. I. Dispersion and temperature dependence,”J. Opt. Soc. Amer.
B, vol. 9, pp. 380–386, 1992.

[81] I. Biaggio, P. Kerkoc, L. S. Wu, P. G̈unter, and B. Zysset, “Refractive
indices of orthorhombic KNbO3. II. Phase-matching configurations for
nonlinear optical interactions,”J. Opt. Soc. Amer. B, vol. 9, pp. 507–517,
1992.

[82] O. E. Martinez, “Grating and prism compressors in the case of finite
beam size,”Opt. Soc. Amer. B, vol. 3, pp. 929–934, 1986.

[83] J. Comly and E. Garmire, “Second harmonic generation from short
pulses,”Appl. Phys. Lett, vol. 12, pp. 7–9, 1968.

[84] W. H. Glenn, “Second-harmonic generation by picosecond optical
pulses,”IEEE J. Quantum Electron., vol. QE-5, pp. 281–290, 1969.

[85] S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary
phenomena and space-time analogy in nonlinear optics,”Soviet Phys.
JETP, vol. 28, pp. 748–757, 1969.

[86] J. W. Goodman,Introduction to Fourier Optics. New York: McGraw-
Hill, 1968.

[87] K. Kato, “High efficiency second harmonic generation at 4250–4680Å
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