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We report femtosecond time-to-space transformation by means of a potassium niobate nonlinear optical crystal
inside a femtosecond pulse shaper. We achieve an upconversion efficiency higher than 50%, a more than 500-
fold increase as compared with previous results. We also present theoretical guidelines for estimating the
efficiency of such time-to-space converters. © 1998 Optical Society of America [S0740-3224(98)01603-8]
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1. INTRODUCTION
In recent years powerful techniques for femtosecond
waveform synthesis and processing have been demon-
strated based on spatial filtering of optical frequency com-
ponents spectrally dispersed within a femtosecond pulse
shaper.1,2 In essence these techniques transform a one-
dimensional parallel optical pattern into a serial signal in
the ultrafast time domain. Several groups have also re-
ported the converse—namely, all-optical time-to-space (or
serial-to-parallel) transformation of femtosecond optical
pulses by spectral holography.3,4 However, one key prob-
lem associated with this approach is slow response (mi-
croseconds at best). A related technique for time-to-
space conversion of picosecond pulses uses the excitonic
optical nonlinearity in ZnSe film material.5 Although
this material has the advantage of fast response time
(;13 ps), its operation wavelength is 442 nm, and it has
to be cooled to cryogenic temperatures. A third scheme,
proposed by Mazurenko, Fainman, and coworkers,6,7 re-
lies on the instantaneous nonlinear effect of sum fre-
quency mixing (SFM) by means of a nonlinear optical
crystal within a pulse shaper. This scheme is an impor-
tant advance because of the combination of fast response
and operation at convenient wavelengths and tempera-
tures. However, in previous short-pulse experiments in
which angle-tuned type-I phase matching is used in an
LBO crystal,7 the conversion efficiency was rather low
(;0.1%). In the present paper we report achieving fem-
tosecond optical time-to-space mapping with a greater
than 50% conversion efficiency by use of temperature-
tuned noncritical phase matching (NCPM) in a thick po-
tassium niobate (KNbO3) nonlinear crystal (NLC). This
increase in efficiency by more than 500-fold may enable
systems using time-to-space mapping in conjunction with
smart-pixel optoelectronic-device arrays to perform so-
phisticated ultrafast pulse-processing operations repeat-
able at communication rates.
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2. EXPERIMENTS
The experimental arrangement, which is similar to that
in Ref. 7, is shown in Fig. 1. A short pulse (;125 fs wide)
emitted by a mode-locked Ti-sapphire oscillator is split
into two beams, a featureless reference pulse er(t) and a
signal beam es(t), which can be shaped. The two beams
are diffracted by the single diffraction grating (600 lines/
mm) such that the 11 diffraction order from one beam is
parallel to the 21 order from the other. The two dif-
fracted beams pass through lens L1 (with focal length f1
5 6 cm) and are spectrally dispersed in the back Fourier
plane of the lens. We have utilized both a collinear as
well as a noncollinear geometry, in which the two beams
are displaced vertically by a few millimeters at the grat-
ing. The two beams interact in the KNbO3 NLC, which is
mounted on a thermoelectric cooler for precise tempera-
ture control. Since the dispersions of the two beams are
equal in amplitude and opposite in sign, the high-
frequency components of the signal beam spatially over-
lap and mix with the low-frequency components of the ref-
erence beam, and vice versa. This interaction in a
nonlinear crystal, while satisfying the phase-matching
condition, results in generating a blue SFM beam that os-
cillates at the optical frequency vSUM 5 2vc and is quasi-
monochromatic, where vc is the center frequency of the
input pulses. For a sufficiently short reference pulse, the
spatial profile of the blue beam at the output of the NLC
is proportional to the Fourier transform of es(t). By per-
forming a spatial Fourier transform with lens L2 (with fo-
cal length f2 5 16 cm), a spatial replica of es(t) is obtained
and recorded with a CCD camera.

Our experiments are performed using a 5 mm 3 3 mm
3 6.2 mm a-cut KNbO3 crystal. KNbO3 is known to pos-
sess a high nonlinear coefficient8 (d32 ; 20 pm/V) and a
large damage threshold,9 and to allow noncritical type-I
phase matching for blue generation at ;430 nm by tem-
perature tuning. These properties make this crystal an
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attractive choice for our application. Because of its large
group-velocity mismatch (;1.2 ps/mm for 860 to 430 nm
conversion) and narrow phase-matching bandwidth (;0.7
nm for crystal length of 6.2 mm), this NLC has been use-
ful only for doubling cw and, to some extent, picosecond
pulsed lasers.10,11 Since our experiment converts femto-
second input pulses into quasimonochromatic upcon-
verted pulses, the narrow phase-matching bandwidth is
not a major issue. This permits the use of the large non-
linear coefficient in a NCPM geometry with no spatial
walkoff to allow high-conversion efficiency and is an im-
portant contribution in our work. In our experiments the
fundamental beam propagates along the crystallographic
axis a with its polarization along the b axis, generating a
nonlinear polarization with a second-harmonic beam po-
larized along the c axis. In this case the fundamental
wavelength can be tuned between 840 nm and 940 nm for
temperatures between 238 °C and 180 °C.12 Here we
tune the center wavelength lc of the laser to 857.7 nm,
which allows type-I NCPM for the quasimonochromatic
output at 428.85 nm at room temperature.

Shown in Fig. 2 are the images, in the detector plane, of
the blue beam in two cases as the Fourier transforms of
the signal and the reference pulses interact in the crystal.
In Fig. 2(a) the image shown is for the interaction of two
identical pulses with zero time delay between them. On
the other hand, Fig. 2(b) shows the image in the case of

Fig. 1. Schematic of the experimental setup for time-to-space
conversion. G, 600 lines/mm diffraction grating; L1, L2, Fourier
transform lenses; Es, signal beam; Er, reference beam; NLC,
KNbO3 nonlinear crystal.

Fig. 2. Images of the SFM blue beams for the interaction of (a)
two identical pulses, and (b) one short pulse with two time-
delayed signal pulses.
two signal pulses generated by insertion of a thin glass
slide into part of the signal beam. The time-to-space pro-
cess converts the pulse doublet into two blue spots. Each
one of the blue spots is a result of the interaction of one
signal pulse and the reference pulse. To demonstrate the
linearity of the time-to-space mapping, Fig. 3 shows the
displacement of the center of the blue beam in the detec-
tion plane as the time delay between the signal and the
reference is varied. The calibration constant is esti-
mated to be 0.80 mm/ps, and it is in good agreement with
the value 0.776 mm/ps calculated from the expression
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Dt

5
f2cd cos ud

f1lc
S lSUM

lc
D 5

f2cd cos ud

2f1lc

, (1)

where lSUM is the wavelength of the SFM beam. It is in-
teresting to find that, except for the difference in the ratio
lSUM /lc , this expression is the same as that derived for
the case of time-to-space transformation using thin pho-
torefractive material.3 We should note that in Fig. 2(b),
the distance between the two spots was measured to be
;1.3 mm, corresponding to a 1.63-ps time delay. This is
in excellent agreement with the predicted value of t
5 (n 2 1)s/c 5 1.667 ps, where c is the speed of light,
s 5 1 mm is the thickness of the glass slide inserted into
the input of the signal beam to generate the pulse dou-
blet, and n 5 1.5 is its refractive index.

Also shown in Fig. 3 is the intensity of the SFM beam
as the signal pulse is delayed with respect to the refer-
ence. This measurement shows that the time window,
within which the SFM beam intensity remains at >50%
of the peak intensity obtained at zero delay, is T 5 3.9 ps.
The finite time window arises because of the finite spot
sizes of individual frequency components focused at the
Fourier plane, which limits the spectral resolution of the
optical system. An expression for the resulting window
has been derived in the context of pulse shaping 2,13 and is
given by

T 5
2Aln2w inlc

cd cos u in

. (2)

Here w in 5 1.05 mm is the measured radius of the input
beam, d is the periodicity of the grating, and u in 5 33° is
the angle of incidence. Using these values in Eq. (2) we

Fig. 3. Variation of the blue power and the displacement of the
blue spots as the time delay between the signal and the reference
pulses is changed.
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obtain T 5 3.66 ps, in excellent agreement with the data.
If desired, the time window can be increased by use of a
larger groove density or by an increase of the spot size of
the beam at the grating.

The IR signal-to-blue conversion efficiency of this sys-
tem was measured with a power meter placed close to the
output facet of the crystal. The conversion efficiency of
the signal beam is expected to depend linearly on the
pump power. Shown in Fig. 4 is the variation of the ef-
ficiency as the average power of the reference (or pump)
beam is varied for a fixed signal average power of 5.3 mW.
A linear dependence is observed. At a pump power of
160 mW, 3.12 mW of blue is detected, corresponding to a
conversion efficiency of 58%. The data presented in Fig.
4 were obtained with the signal and the reference beams
aligned to propagate collinearly in the crystal. This
means there is some cross-talk because of the blue light
generated by the reference and signal beams individually.
Such cross talk due to the individual beam contributions
are neglected since (a) only a narrow range of input fre-
quencies very close to vc are phase matched, and (b) the
blue light generated from the individual beams is spread
uniformly over the entire ‘‘time window’’ in the plane of
the CCD. Nevertheless, we have also performed experi-
ments in a noncollinear geometry that eliminates the sig-
nal from individual beams. In that case we measured a
conversion efficiency ;2/3 as large as in Fig. 4. In addi-
tion we have measured conversion efficiency versus tem-
perature and found a FWHM temperature tuning range
of 1.03 °C for fixed input center wavelength. This is in
good agreement with our calculations, which are not de-
scribed here.

3. CONVERSION EFFICIENCY ANALYSIS
We now estimate the efficiency expected in such time-to-
space conversion experiments and discuss the key param-
eters important for optimizing the efficiency. For nonlin-
ear frequency mixing with Gaussian beams in which a
signal beam at vs and a reference beam at vr generate a
SFM beam at vSUM (5vs 1 vr), the power conversion ef-
ficiency h is given by14

h 5
PSUM

Ps

5
vSUM

2vs

sin2~GLeff! ' sin2~GLeff!, (3)

where

Fig. 4. Variation of the conversion efficiency as a function of the
average power of the reference pulse.
G 5 S 2vsvSUMdeff
2 Ir

nsnrnSUMc3e0
D 1/2

. (4)

Here Ps , Ir , and PSUM and ns , nr , and nSUM are the in-
tensities, powers, and refractive indices associated with
the signal, the reference, and the SFM beams, respec-
tively; deff is the effective nonlinear coefficient, Leff is the
effective interaction length in the crystal, and a nonde-
pleted reference beam is assumed. In our experiment
the optical frequency components of each input beam are
spectrally dispersed at the NLC. The degree of spectral
dispersion can be characterized by a parameter N, which
is proportional to the ratio of the spatial extent of the dis-
persed beam to the beam radius w0 of an individual fre-
quency focused at the nonlinear crystal.2 At any given
spot in the NLC the pulse is stretched in time to a dura-
tion T 5 Ntp , where tp is the input pulse duration and T
is the time window of the system. Both tp and T refer to
the intensity full width at half-maximum. The beam ra-
dius w0 is related to the input beam size, w in by

w0 5
f1lc cos u in

pw in cos ud

. (5)

Since the reference pulse with energy Ur is dispersed over
an area of roughly Npw0

2/(2A2) at the NLC (see Appen-
dix A), the reference intensity Ir in Eq. (4) can be written
approximately as

Ir 5 S 2A2Ur

pw0
2N2tp

D 5
2A2Urtp

pw0
2T2

, (6)

and therefore

GLeff 5 S 4A2vsvSUMdeff
2 UrtpLeff

2

n3c3e0pw0
2T2 D 1/2

, (7)

where we have set n 5 nr ' ns ' nSUM .
It is well known that, in the absence of spatial and tem-

poral walkoff, optimum focusing is achieved for L
' 2.84b,14 where b 5 2pnw0

2/lc is the depth of focus
and L is the actual crystal length (6.2 mm). This condi-
tion is approximately satisfied in our experiment. The
effective interaction length Leff is determined by the mini-
mum of the crystal length L and the depth of focus
b. Substituting Leff 5 b into Eqs. (3) and (7), one obtains

h 5 sin2~GLeff! 5 sin2F S 90.5p2deff
2 Urtpb

n2clc
3e0T2 D 1/2G . (8)

Substituting in the parameters of our experiment (Ur
5 2 nJ, tp 5 125 fs, b 5 2.8 mm, n 5 2.278, and T
5 3.9 ps), we predict GLeff ' 0.44p and h ' 96%.
Given the approximate nature of our theoretical treat-
ment, this is in reasonable agreement with our data.
This agreement validates our theoretical approach for ap-
proximating the conversion efficiency of this time-to-
space conversion scheme.

4. DISCUSSION AND SUMMARY
To identify a figure of merit for time-to-space conversion,
we consider how the conversion efficiency can be opti-
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mized for fixed Ur , tp , T, and lc , since we assume that
these parameters will be determined by the system re-
quirements. Clearly one wishes to maximize the quan-
tity deff

2 L/n2 while maintaining the optimum focusing
condition. One can achieve the desired time window T at
the same time as optimum focusing by adjusting both the
input beam size and the focal length f1 . Clearly we de-
sire a material that has a large nonlinear coefficient
(deff /n) and that permits noncritical phase matching,
which eliminates spatial walkoff to allow for long interac-
tion length. Potassium niobate is an excellent example
of such a material for the wavelength range considered
here. For high-speed fiber applications in which lc
' 1.55 mm, periodically poled lithium niobate15 would be
an attractive nonlinear material for similar reasons.

In conclusion, we have presented an efficient, ultrafast
time-to-space transformation system using the effect of
SFM inside a femtosecond optical-pulse shaper. Effi-
ciency of more than 50% is achieved with type-I noncriti-
cal phase matching in a thick KNbO3 nonlinear crystal.
This high efficiency may permit the construction of sys-
tems with time-to-space conversion used to perform ul-
trafast pulse processing in real time at frame rates com-
patible with high-speed communications.

APPENDIX A
The spatial dependence of the reference intensity at the
nonlinear crystal can be written in the form

uEru2 ; exp~22x2/weff
2 !exp~22y2/w0

2!, (A1)

where x is the direction of spatial dispersion, y is the
other transverse direction, and weff is an effective beam
radius, which accounts for the spatial dispersion. We
can relate weff to the full width at half-maximum band-
width of the power spectrum (B) by

A2 ln 2 weff 5 U]x
]nUB 5

l2f1

cd cos ud

B. (A2)

Here n is the optical frequency and ]x/]n is the spatial
dispersion. For Gaussian pulses, the time–bandwidth
product is given by

Btp 5
2 ln 2

p
' 0.44. (A3)

Using Eq. (A3) and the definition T 5 Ntp , we can sub-
stitute into Eq. (A2) with the result that

weff 5
A2 ln 2

p

l2f1

cd cos ud

N
T

. (A4)
Now using Eqs. (2) and (5), we can eliminate T in favor of
w0 , as follows:

weff 5
w0N

A2
. (A5)

From Eq. (A1), the effective area Aeff is given by

Aeff 5
p

2
w0weff , (A6)

where we define effective area by the requirement that an
elliptical beam with area Aeff and constant intensity equal
to the actual on-axis intensity have the same power as the
actual Gaussian beam. From Eq. (A5), the result is

Aeff 5
Npw0

2

2A2
. (A7)

ACKNOWLEDGMENT
The authors gratefully acknowledge support from the
U.S. Department of Defense Focused Research Initiative,
U.S. Air Force Office of Scientific Research grant F49620-
95-1-0533.

REFERENCES
1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt.

Soc. Am. B 5, 1563 (1988).
2. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995), and

the references cited therein.
3. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, and A. Partovi,

Opt. Lett. 19, 664 (1994).
4. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. L. Yu, and

Y. Fainman, Opt. Lett. 20, 1728 (1995).
5. K. Ema, M. Kuwata-Gonokami, and F. Shimizu, Appl.

Phys. Lett. 59, 2799 (1991).
6. Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V.

E. Yashin, and S. A. Chizhov, Opt. Lett. 21, 1753 (1996).
7. P. C. Sun, Y. T. Mazurenko, and Y. Fainman, J. Opt. Soc.

Am. A 14, 1159 (1997).
8. See, for example, J.-C. Baumert and P. Günter, Appl. Phys.

Lett. 50, 554 (1987).
9. U. Ellenberger, R. Weber, J. E. Balmer, B. Zysset, D. Ellge-

hausen, and G. Mizell, Appl. Opt. 31, 7563 (1992).
10. Y. Lu, Q. Zhao, Y. Li, H. He, Q. Zou, Z. Lu, and Z. Gang,

Opt. Lett. 32, 713 (1993).
11. E. S. Polzik and H. G. Kimble, Opt. Lett. 16, 1400 (1991).
12. I. Biaggio, P. Kerkoc, L. S. Wu, P. Günter, and B. Zyssett, J.

Opt. Soc. Am. B 9, 507 (1992).
13. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J.

Tomlinson, IEEE J. Quantum Electron. 22, 682 (1986).
14. See, for example, Nonlinear Optics, P. G. Harper and B. S.

Wherrett, eds. (Academic, New York, 1977).
15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. Beyer, IEEE

J. Quantum Electron. 28, 2631 (1992).


