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Dispersion Compensation for Ultrashort Pulse
Transmission Using Two-Mode Fiber Equalizers

C.-C. Chang and A. M. Weiner, Senior Member, {EEE

Abstract— We numerically simulate ultrashort pulse propa-
gation in dispersion compensated fiber links using two-mode
equalizing fibers. By choosing a proper length ratio between
the conventional single-mode fiber and the compensating two-
mode fiber, both the dispersion and the dispersion slope can be
eliminated simultaneously. As a result, dispersion compensated
propagation of sub-picosecond pulses should be possible for
distances in excess of 100 km. Our analysis shows that for
sub-picosecond pulses, dispersion-limited propagation distances
offered by this technique may significantly exceed those possible
with soliton propagation. We also evaluate nonlinearity limits due
to self-phase modulation.

1. INTRODUCTION

ITH THE INTRODUCTION of Er-doped fiber am-
plifiers operating at 1550 nm, fiber loss no longer
presents a fundamental limit to achieving long transmission
distance. Chromatic dispersion then becomes the major factor
in limiting picosecond and sub-picosecond pulse transmission
for ultrahigh bit rate time-division multiplexed (TDM) net-
works (e.g., [1]) as well as for code-division multiple-access
(CDMA) schemes based on spectral phase coding [2]. In
TDM networks both nonlinear (soliton) propagation and linear
compensation techniques can be used to combat dispersion,
while in CDMA only linear methods are permissible, since the
code words do not propagate as solitons. However, dispersion
compensation is difficult in the sub-picosecond regime since
compensation of both second- and third-order dispersion (i.e.,
both the dispersion and the dispersion slope) is necessary [3].
In this Letter we analyze the application of two-mode
dispersion equalizing fibers [5], [6] for the transmission of
ultrashort pulses. We first explore the dispersion characteristics
of two-mode fiber equalizers and show that both the dispersion
and the dispersion slope can be compensated simultaneously at
a specific wavelength if the correct length of equalizing fiber
is used. We then investigate dispersion limits for picosecond
and sub-picosecond pulse propagation in such compensated
fiber links. Finally, we briefly discuss nonlinearity limits for
dispersion equalized links and compare our computed results
to short pulse soliton propagation limits. Our results show
that fiber links utilizing two-mode fiber dispersion equaliz-
ers can accommodate linear propagation of sub-picosecond
pulses over distances of tens to hundreds of kilometers (e.g.,
30 km for 0.6-ps pulses and 150 km for 0.9-ps pulses).
For comparison, linear transmission of sub-picosecond pulses
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in dispersion-shifted fiber (DSF) is severely limited (e.g.,
7 km maximum distance for 0.9-ps pulses). Additionally, for
sub-picosecond pulses the predicted propagation limits for
dispersion equalized fiber links are substantially longer than
predicted soliton propagation limits.

II. TWO-MODE FIBER DISPERSION COMPENSATOR

Research aimed at upgrading standard single mode fibers
(SMF) for use in state-of-the-art systems experiments at
1550 nm (where SMF exhibits a large anomalous disper-
sion D=17 ps/nm/km) has received considerable attention
recently, and several dispersion compensation schemes have
been investigated [4]. Several groups have utilized special
equalizing fiber with large normal dispersion at 1550 nm
to equalize the anomalous dispersion in the SMF [5]-[8].
Here we consider the possibility of sub-picosecond dispersion
compensation using two-mode dispersion equalizing fiber [5],
[6]. The two-mode fiber compensator [5], [6] makes use of
the fact that higher-order spatial modes have large negative
(normal) waveguide dispersion near the cut-off wavelength.
For dispersion compensation a mode converter is placed after
the SMF span to convert the fundamental (LFp;) mode to
the required L, mode in the equalizing fiber. Since the
dispersion slope as well as the dispersion of the LP;; mode
are opposite to that of the LF,; mode in the standard fibers,
simultaneous cancellation of second- and third-order disper-
sion can be achieved. This allows simultaneous dispersion
compensation of multiple WDM channels [6] and can also
enable propagation of sub-picosecond pulses over substantial
fiber lengths, a possibility we examine in our numerical
studies below. Simultaneous second and third order dispersion
compensation for sub-picosecond pulses has also been reported
by Stern et al. using a bulk optics approach [3]; the use of fiber
equalizers proposed here could provide an all-fiber solution.

The composite link of a SMF and a two-mode equalizing
fiber can be regarded as a fiber with equivalent dispersion
D., given as

Deq = (RXDSAIF + Dcnmp)/(l + R) (1)

where R is the length ratio of the SMF to compensation fiber,
Dspr the dispersion of the SMF and Do,y the dispersion
of the compensation fiber. We have calculated the equivalent
dispersion as a function of wavelength, using dispersion data
for the two-mode fiber (specifically for the LP} mode)
reported in {6]. Fig. 1 shows calculated dispersion curves for
the optimal length ratio R, = 13.054, as well as for other
length ratios (R = R,p;+ 0.35%,R = R+ 0.70%). For the
optimal length ratio, the dispersion curve has zero dispersion
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Fig. 1. Various concatenated dispersion curves. Curves A-E correspond to

fiber length ratio R=13.152, 13.103, 13.054, 13.005, and 12.956, respectively.
Curve C (R=13.054) has zero dispersion and dispersion slope at A=1542.6 nm.

and dispersion slope at 1542.6 nm (curve C in Fig. 1). As the
length ratio changes slightly, the dispersion curve shifts up or
down significantly. This effect could be used experimentally
to fine tune the link for the optimum dispersion compensation.

III. NUMERICAL SIMULATIONS

In this section we calculate dispersion-limited propagation
distances as a function of initial pulse width for fiber links
using two-mode equalizing fibers. We assume that power
levels in the fiber are sufficiently small that we can disregard
nonlinear effects and consider only linear dispersion. Loss is
also ignored since it doesn’t affect the pulse shape. The pulse
shape after traveling a distance of z can be easily solved by
the Fourier transform technique as follows:

oc
u(z,t) = i/ U(0,w)exp[—jB(w)z + jwi|dw  (2)
2r J_ o

where U(0,w) is the Fourier transform of the normalized
input field amplitude «(0, t). S(w) is the propagation constant,
which is derived from the concatenated dispersion function
Deg(X). Due to the broad bandwidth of pulses in the sub-
picosecond regime, we utilize the exact equivalent dispersion
curve rather than the usual Taylor expansion treatment.

Fig. 2 shows calculated pulse shapes at z = 5 km assuming
input Gaussian pulses centered at 1542.6 nm with a 700-fs
intensity full width at half maximum (FWHM) duration.
Curves are shown for concatenated links with the optimum
SMF to equalizing fiber ratio (R,,;), as well as for links
with slightly different length ratios (R/R,,: = 1.0035, 1.007),
corresponding to dispersion curves C, B, and A in Fig. 1,
respectively. For the optimal ratio R,,; = 13.054, the output
pulse exhibits very little broadening (the input pulse is plotted
as the dashed line D as a reference). For comparison, the output
pulsewidth using SMF only without equalizing fibers is 400 ps,
a broadening of ~ 570 times relative to the input pulse. As
we can see from Fig. 2, a length difference of 0.35% causes
the output peak power to drop by ~ 50%. This indicates that
accurate adjustment of the fiber length ratios is crucial to the
success of this technique.
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Fig. 2. Pulse shapes restored by dispersion compensator after traveling
distance of 5 km. The solid curves A, B, and C show the pulse shapes
corresponding to the dispersion curves A, B, and C in Fig. 1, respectively.
The dashed-line curve D is the initial pulse with FWHM= 700 fs.
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Fig. 3. Transmission distances vs. initial pulse widths for two-mode fiber
dispersion compensator (line A), soliton propagation limited by self-frequency
shift (line B), and dispersion-shifted fiber (line C). Dashed line D indicates the
distance at which nonlinear phase shift reaches 0.5 radians for the two-mode
fiber dispersion compensator.

As a pulse keeps broadening with increased distance, its
peak intensity decreases correspondingly. We define the point
at which the output pulse peak intensity is reduced to one
half of the zero-dispersion value as the dispersion-limited
propagation distance for the total dispersion-equalized link.
The dispersion-limited propagation distance can then be
obtained from (2) and is shown in Fig. 3 as a function
of initial pulse width (solid line A). Here we consider the
compensator with optimal length ratio (curve C in Fig. 1)
and assume that all the pulses are centered at this optimal
wavelength (1542.6 nm). The dispersion limit (line A)
shows a slope very close to four and can approximated by
L = 230AT* , where AT is the FWHM in picoseconds, and
L is the propagation length in km. This proportionality stems
from the fourth-order dispersion of the fiber link, which
dominates the remaining uncompensated dispersion.

For comparison line C in Fig. 3 shows maximum transmis-
sion distance vs. pulse width for a DSF, assuming Gaussian
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puises centered at the zero-dispersion wavelength. The dis-
tance is again taken as that distance for which the peak
intensity is reduced to one half of the dispersionless value.
The broadening is dominated by the dispersion slope, which
results in a slope of three in the log-log plot. The propagation
distance is severely limited (e.g., ~ 3 km for 0.6-ps pulses).

IV. DISCUSSION

In our analysis so far we have neglected nonlinear effects
such as self-phase modulation (SPM). However, even at low
power levels, nonlinear phase shifts could accumulate during
propagation over very long fiber links. Therefore, we have
estimated the amount of SPM in fiber links with disper-
sion compensation at the receiver end. If we postulate a
maximum acceptable nonlinear phase shift, this imposes an
additional nonlinearity limit on the maximum transmission
distance. The dashed line D in Fig. 3 indicates this limit
for a 0.5 radian nonlinear phase shift. Here we assume a
TDM system with on-off keying and data bits spaced by five
pulse widths, 1000 photons/bit receiver sensitivity, and optical
amplifiers placed every 50 km along the link. The details of
this calculation will be presented elsewhere. For pulsewidths
smaller than 0.75 ps, the nonlinear phase shift is less than 0.5
radians over the dispersion-limited propagation distance and
can be neglected. For longer pulses the maximum transmission
distance is limited by the nonlinear phase shift rather than
dispersion. Even accounting for nonlinearities, however, our
analysis indicates the possibility of dispersion-compensated
sub-picosecond pulse propagation over distances up to a few
hundred kilometers.

It is also worth comparing these results with the predicted
propagation limits for solitons. For sub-picosecond soliton
pulses, propagation is limited by the soliton self-frequency
shift, in which the Raman (or time-delayed) portion of the
nonlinear refractive index leads to a continuous downshift of
the mean frequency as the pulses propagate along the fiber.
This also affects the timing of the pulses and eventually
degrades the data sequence. From the theoretical work of
Gordon [9], this self-frequency shift can be approximated
as Av = 0.001297\2DL/AT?, where Av is the frequency
shift in terahertz, A is the wavelength in microns, D is
the dispersion in ps/km/nm, and L is the propagation
distance in kilometers. Since solitons can only be supported
in the anomalous dispersion regime, the pulse must be
centered at least one spectral width away from the zero
dispersion wavelength. This leads to a minimum dispersion
of approximately D = 0.3155A2/(c AT), where S is the
dispersion slope (0.05 ps/nm?/km for DSF). If we adopt
the criterion that the frequency shift should be less than
one-sixth of the spectral width [1], we find the distance
a soliton can travel in a DSF at 1550 nm is limited by
L = 135AT" . This is plotted as line B in Fig. 3. Based on
our assumptions, dispersion-equalized fiber links can support
linear sub-picosecond pulse propagation over distances
approximately two times larger than possible with solitons.

V. SUMMARY

We have analyzed picosecond and sub-picosecond pulse
propagation in dispersion compensated fiber links, in which
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two-mode dispersion-equalizing fiber is assumed to com-
pensate for the dispersion accumulated in a conventional
single-mode fiber span. For proper ratios of fiber lengths,
both second- and third-order dispersion can be eliminated
simultaneously. Our results indicate that distortionless linear
propagation of sub-picosecond pulses should be possible over
morethan one hundred kilometers. Such sub-picosecond prop-
agation distances would be more than one order of magnitude
longer than possible using linear pulse propagation at the
zero dispersion wavelength in dispersion-shifted fibers. Fur-
thermore, for sub-picosecond pulses, linear propagation using
dispersion-equalized fiber links may allow longer distance
transmission than nonlinear propagation using solitons. Of
course, this technique is very sensitive to the ratio of the
SMF to the two-mode equalizing fiber length. In order to make
the system more robust with respect to parameter variations,
an auxiliary spectral pulse shaping setup [10], [11] can be
used to remove small phase variations remaining after the
fiber equalizer or to further extend the propagation distance.
Prospects for sub-picosecond dispersion compensation over
distances exceeding 100 km should open new possibilities
for ultrashort pulse code-division multiple-access as well as
ultrahigh bit rate TDM.
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