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Abstract—We analyze a new technique for encoding and decoding of
coherent ultrashort light pulses. In particular, we discuss the temporal
and statistical behavior of pseudonoise bursts generated by spectral
phase coding of ultrashort optical pulses. Our analysis is motivated by
recent experiments that demonstrate high resolution spectral phase
coding of picosecond and femtosecond pulses and suggest the possibil-
ity of ultrahigh speed code-division multiple access (CDMA) commu-
nications using this technique. We trace the evolution of coherent ul-
trashort pulses into low intensity pseudonoise bursts as a function of
the degree of phase coding. For random coding we find that the en-
coded pulse obeys Gaussian statistics and that the intensity probability
distribution function is a negative exponential. These results are uti-
lized to analyze the performance of a proposed CDMA optical com-
munications system based upen encoding and decoding of ultrashort
light pulses. We derive the bit error rate (BER) as a function of data
rate, number of users, and receiver threshold; and we discuss the per-
formance characteristics for a variety of system parameters. We find
that performance improves dramatically with increasing code length.
Ultrashort light pulse CDMA could provide tens to hundreds of users
with asynchronously multiplexed, random access to a common optical
channel.

I. INTRODUCTION

DUE TO ECONOMIC advantages, maturing technol-
ogy, and high information capacity, single-mode fi-
ber-optic transmission media will be embedded in future
telecommunications networks. A desirable feature for
these future optical networks would be the ability to pro-
cess information directly in the optical domain for pur-
poses of multiplexing, demultiplexing, filtering, amplifi-
cation, and correlation. Optical signal processing would
be advantageous because potentially it can be much faster
than electrical signal processing and because it would ob-
viate the need for photon-electron-photon conversions.
Several new classes of optical networks are now emerging
[1]. For example, code-division multiple access (CDMA)
networks using optical signal processing techniques were
recently introduced [2]-[9]. CDMA is a type of spread
spectrum communications [10] in which multiplexing is
achieved by assigning different, minimally interfering
code sequences to different user pairs. In fiber optic
CDMA, users communicate by imprinting their message
bits upon their own unique code, which they transmit
asynchronously (with respect to the other transmitters)
over a common channel. A matched filter at the receiver
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end ensures that data are detected only when they are im-
printed on the proper code sequence (see Fig. 1). This
approach to multiplexing allows transmission without de-
lay and handles multiaccess interference (contention) as
an integral part of the multiplexing scheme.

In this paper we analyze a novel ultrashort pulse optical
CDMA network. Our analysis is motivated by recent ex-
periments which demonstrate encoding and decoding of
femtosecond pulses and which suggest the possibility of
ultrahigh speed CDMA communications using this tech-
nique [8], [9]. We first examine the temporal and statis-
tical behavior of pseudonoise bursts generated by spectral
phase coding of ultrashort optical pulses. Then, we apply
the statistical results derived here to perform a bit error
rate analysis of the proposed ultrashort pulse CDMA sys-
tem.

Before beginning the analysis, we first summarize the
experimental results on encoding and decoding of ultra-
short pulses and review the proposed scheme for ultrash-
ort pulse CDMA, shown schematically in Fig. 2. In the
transmitter a coherent ultrashort pulse representing one
bit of information is directed to the optical encoder, which
consists of a pair of diffraction gratings placed at the focal
planes of a unit magnification, confocal lens pair. This
apparatus was previously utilized for high resolution,
temporal shaping of coherent ultrashort pulses [11]-{14].
The first grating spatially decomposes (with a certain res-
olution) the spectral components which constitute the in-
put ultrashort pulse. A pseudorandom, spatially patterned
phase mask is inserted midway between the lenses at the
point where the optical spectral components experience
maximal spatial separation. Thus, the mask introduces
pseudorandom phase shifts (address codes) among the dif-
ferent spectral components. After the phase mask, the
spectral components are reassembled by the second lens
and second grating into a single optical beam. After
emerging from the grating and lens apparatus, the tem-
poral profile of the encoded pulse is given by the Fourier
transform of the pattern transferred by the mask onto the
spectrum. A pseudorandom phase mask transforms the in-
cident ultrashort pulse into a low intensity pseudonoise
burst.

In the CDMA network, each transmitter has a distinct
phase mask and broadcasts its encoded pulses to all those
receivers that share the same optical channel. A receiver
consists of a decoder and an optical threshold device. The
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Fig. 1. A schematic diagram of an optical code division multiple-access
communications system with an all-optical encoder and decoder.
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Fig. 2. Proposed scheme for optical CDMA based on spectral encoding
and decoding of ultrashort light pulses. Only one transmitter station and

one receiver station are shown.

optical decoder is similar to the optical encoder except
that its phase mask is the conjugate of the encoding mask.
Thus a pulse is properly decoded when the encoding and
decoding masks are a complex conjugate pair. In this case
the spectral phase shifts are removed and the original co-
herent ultrashort pulse is reconstructed. On the other hand,
when the encoding and decoding masks do not match, the
spectral phase shifts are rearranged but not removed, and
the pulse at the output of the decoder remains a low in-
tensity pseudonoise burst. The threshold device is set to
detect data corresponding to intense, properly decoded
pulses and to reject low intensity, improperly decoded,
pseudonoise bursts.

We now illustrate encoding and decoding by referring
to an experiment in which 75-fs optical pulses were en-
coded by using a 44-element pseudorandom binary phase
mask [9]. Fig. 3(a) depicts an intensity autocorrelation
measurement of the incident, uncoded pulses together with
that of the encoded pulses. The contrast ratio of =25:1
illustrates the dramatic reduction in intensity that accom-
panies encoding. In order to demonstrate decoding, a sec-
ond phase mask was placed adjacent to the first mask.
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Fig. 3. Experimental intensity autocorrelation measurements of uncoded,
coded, and decoded pulses, from [9]. (a) The uncoded, incident pulse

and an encoded pulse. (b) Successfully and unsuccessfully decoded
pulses.
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When the second mask is phase-conjugate to the first, de-
coding is successful, and the initial pulse is restored.
When the second mask does not match the first, decoding
is unsuccessful and low intensity, pseudonoise behavior
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is retained. Intensity autocorrelation measurements of
such successfully and unsuccessfully decoded pulses,
shown in Fig. 3(b), exhibit a contrast similar to that ob-
served for encoding alone. Encoding and decoding was
subsequently demonstrated for longer codes composed of
127 elements; and using 1-in optics, encoding should the-
oretically be possible for code lengths as high as 2000
[14].

At this point we comment on the effect of the transmis-
sion channel in the proposed ultrashort pulse CDMA sys-
tem. Although so far we have implicitly assumed that the
phases spectrally encoded onto the input pulse remain in-
tact after transmission, any real CDMA network must
transport encoded pulses to a plurality of potential users
while maintaining the integrity of the code. Any trans-
mission medium except the vacuum is dispersive and po-
tentially nonlinear, and both effects can significantly dis-
tort an ultrashort pulse. One possible CDMA con-
figuration which completely avoids these difficulties
would employ free space optical interconnects. Such a
configuration, which might occupy a small optical plat-
form, would serve as a multiple access switch at a node
in a larger network of more conventional design. Of
course, in order to construct a pure ultrashort pulse
CDMA network connecting remote locations, single-
mode optical fibers will be required, and dispersion will
place a limit on the maximum practical fiber length. For-
tunately, in the low power limit where nonlinear effects
are negligible, the grating configuration that is used for
coding and decoding can also be used to pre- or post-com-
pensate for fiber dispersion [15]. Recent calculations show
[16] that a 0.3-ps pulse tuned close to the zero-dispersion
wavelength can propagate up to 10 km in a single mode
fiber and still be recovered with minimum distortion by
grating compensation. Therefore, we expect that fiber dis-
persion need not be a serious problem for an ultrashort
pulse CDMA system. In our analysis we will assume that

any effects due to dispersion or nonlinearity of the trans-

mission channel can be safely neglected.

It is the purpose of our analysis to determine the bit
error rate (BER) of an ultrashort pulse CDMA system as
described above. To obtain the BER, it is first necessary
to investigate the statistics of interference at the receiver
due to improperly decoded signals. In this paper we first
look at the temporal and statistical properties of encoded
(or unsuccessfully decoded) pulses from a single user. We
extend these results to the case of a varying (statistical)
number of interfering improperly decoded pulses and de-
rive the BER as a function of various system parameters,
such as the number of users, the individual bit rates, the
threshold, and the length of the codes.

In Section II of this paper we discuss statistically the
effect of random coding on a band-limited optical pulse.
Furthermore, we compare the effect of different levels of
coding using computer simulation techniques. We show
that under random encoding the pulse feature completely
disappears and a low intensity background noise appears.

In Section III we study the first and second degree of
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coherence (the field and intensity autocorrelation func-
tions) for an encoded pulse and highlight some striking
similarities that exist between the randomly encoded pulse
and the output of a typical free-running multimode laser.

In Section IV we study the probability distribution
function for the pseudonoise bursts produced by encoding
and discuss the conditions under which pseudonoise bursts
behave like random light. In particular, for a randomly
encoded pulse with a random initial phase and transmis-
sion time, the statistics are modeled as Gaussian and the
intensity probability distribution function is a negative ex-
ponential.

In Section V we derive the bit error rate (BER) as a
function of data rate, code length, number of users, and
receiver threshold; and we discuss the performance char-
acteristics for a variety of system parameters.

We conclude this paper in Section VI. The Appendix is
devoted to detailed mathematical analyses that are needed
to support the results of Section V.

II. STATISTICAL ANALYSIS OF ENCODED ULTRASHORT
LicgaT PULSEs

We now analyze the statistics of single encoded pulses.

We assume that the starting ultrashort pulses are charac-
terized by a baseband Fourier spectrum 4 (w) given by

VP, -Ww w

—_—, for— <= w < > :
Aw) = ¥ 2 (1)

0, elsewhere

where P, is the peak power of the ultrashort pulse and W
is the total bandwidth of the band-limited source. The
temporal pulse shape a(¢) is a sinc function:

a(t) = VP, sinc <g/t>

(2)
where sinc (x) = sin x/x. The field amplitude a(¢) is
normalized so that | a(¢) |* gives the instantaneous power
P(t), whence

P(t) = Py sinc? <%V t>. (3)
Equation (3) describes an isolated ultrashort light pulse
with a duration 7, inversely proportional to the bandwidth
of the band-limited source, i.e., 7. = (27 /W).

To encode a pulse we multiply the starting spectrum
A(w) by a phase mask consisting of N, distinct chips,
each of bandwidth @ = (W/N,) (see Fig. 4). The phase
of each chip may be adjusted independently; the example
given in Fig. 4 shows the special case of a binary phase
code. The time domain representation of the encoded field
amplitude C(1) can be written as

\/_' N
C(t) = sinc <g t> Tiowzw exp {—i(th + gpn)}

= G(r) V(1). (4)
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Fig. 4. (a) Spectrum for a band-limited signal, corresponding to an un-
coded ultrashort pulse. (b) A typical spectral phase code. An amplitude
of +1 corresponds to a phase of 0; an amplitude of —1 corresponds to
a phase of . W/Q = N, is the number of chips in the code.

Here ¢, represents the nth element of a code consisting
of Ny = 2N + 1 chips, and

G(1) = sinc (% t)

V(l) — % nzZ_N exp {—i(th + <P,,)}- (6)

(5)

and

Thus (4) is expressed as the product of two signals G (t)
and V(). The signal G(r) is a real envelope function
which determines the temporal width of the encoded pulse
and is independent of the code elements. V(1) is a peri-
odic pseudonoise signal with period T = 27 /Q, its tem-
poral shape depends on the code elements ¢,. Note that
if ¢, = 0 for all n, (4) reduces to (2).

In the following we concentrate our attention on the
temporal and statistical behavior of the periodic signal
V(t). Roughly one period of V(#) fits within the envelope
function G (t); hence the encoded signal C(t) corre-
sponds to one period of the periodic signal V(¢).

At this point we introduce some notation. The intensity
signal I(r) is defined as the square of the periodic part of
the encoded signal; I(t) = | V(2)|*. Also we define V,, (1)
and I,(t) as the laser output for the case ¢, = 0 for all n:

Vv,(t) = %nENexp {—i(th)} (7)
and
p, ¥ N

L(1) = N—%nsz:Z_Nexp {—i(n - m)Qt} (8)

V,(t) and I,(t) represent a periodic train of ultrashort
pulses with period 7 and with a pulse duration (7.) in-

versely proportional to No@2. Thus, we may think of V(1)
and I,(t), respectively, as the representations of the field
amplitude and the intensity of an ideal mode-locked laser
with a pulsation period T, peak power Py, and without a
phase mask. Note that, a(t) = G(1) V,(t) and P(1) =
G*(t) I,(1). Analogously we may think of V (), with ¢,
+ 0, as the output of a free-running multimode laser with
aperiod T, and | C() |> = G*(1) I(1).

Our previously reported encoding and decoding exper-
iments [8], [9] utilized binary phase masks, where the
phase of each chip was set to either 0 or 7. Following that
precedent we assume here also that each phase code ele-
ment ¢, is restricted to two values, namely 0 or w, with
probabilities p and g respectively, such that p + ¢ = 1.
The ¢, are taken to be a set of independent identically
distributed random variables with probability density
functions defined as

P,(¢) = pd(e) + qd(e — 7) (9)

where § denotes Dirac’s delta function. This random cod-
ing scheme allows us to satisfactorily model the statistics
of the encoded (or unsuccessfully decoded) pulses in our
proposed CDMA system without restricting ourselves to
any particular deterministic code structure. In particular,
for purely random sequences (p = g = 0.5), the unsuc-
cessfully decoded pulses can be effectively modeled as
Gaussian random processes. The assumption of random
coding and the resulting Gaussian statistics are expected
to be valid for CDMA systems incorporating large num-
bers of users with long codes [17], [18].

Using (6) the ensemble average of V(t) can be written
as

\/_g N
(V) =0 B e {=inan)} (exp (—ien))

=(p—qV,(1) (10)

where ¢ - ) denotes the ensemble average. Forp = ¢ =
0.5, which corresponds to random encoding, the ensem-
ble average is zero. A more informative result is obtained
when one considers the intensity. /() can be written as

N N
=2 3

N%n=me=—N

- exp {—i((n - m)Q + ¢, — gom)}
P N N

=Fg<N°+ DYDY

S n=-Nm#n=-N
- exp {——i((n - m)Qt + ¢, — ga,,,)}). (11)

Thus the intensity signal I(¢) is the sum of a time-inde-
pendent part Py/N, and a time-varying part which de-
pends upon the phase code. We now calculate the ensem-
ble average I(¢) and examine the effect of the phase code
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by varying the probabilities p and ¢. Thus:
N N

um>=%<m+@—qf2 )

n=—-Nm#n=-N

- exp {—i(n - m)Qt}>
= 1(0)), + (p — @ [B() = (KD)) |. (12)

Here (), refers to the time average over one cycle (T =
27/Q), and (I(1)), = Py/N, is the time average laser
intensity. Equation (12) expresses ¢/ (t) ) as the sum of
a low level background with a replica, of amplitude (p —
)%, of the ideal mode-locked pulse 1,(t). For example,
if there is no coding, then p = 0 and (I(¢)) = L,(t). In
the case of random coding p = ¢ = 0.5 and ¢ I(#)) =
(1(1)), = (Py/Ny). Here the ideal mode-locked pulse
1,(¢) disappears, and the ensemble average is equal to the
time-average intensity. For other values of p and g, the
ensemble average output intensity will have a peak value
between that of the uncoded pulse (Py) and that of a ran-
domly encoded pulse (Py/N,). The maximum of the en-
semble average occurs at time ¢ = 0, and can be written
as

<um>=%upr—mﬂ+%m—qf (13)

Fig. 5 illustrates six examples that show the effect of
different degrees of coding on an ideal band-limited pulse.
For these examples, (4) was used to generate the real sig-
nal for P, = 1 and @ = 1 and for various values of p and
N,. Fig. 5 confirms that for large Ny, G%(0) 1(0) /P, =
(p — q)*, in agreement with (13). These examples illus-
trate how the ideal mode-locked pulse feature disappears
as p and g approach 0.5, leaving behind a weak back-
ground intensity. This finding is in close correspondence
with results previously obtained for imperfectly mode-
locked lasers with nonidentical mode phases [19]-[21].

The time-dependent second-order moment for the in-
tensity signal /(z) can be shown to be

(ﬁm>=<%>@%@6—ﬂﬂl—@—qﬁ
0

PP Por o v

+(p q)lp(t)+Ng(l (p—4q))

- L (21) + <1P7%>(p -9 ((p—-q - 1)
IDIDIED

n¥Em#+k+£l
© exp {i(n—m+k—l)9t}. (14)

1,(2t) represents L,(t) compressed in time by a factor of
2, but with half the period, so that the peak intensity and
the time-average intensity are the same for both. The
fourth term in (14), which contains No(Ny — 1)(N, —
2)(No — 3) terms, corresponds to mixing among those
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Fig. 5. Intensity profiles of encoded signals generated by spectral phase
coding. The phase code consists of N, distinct frequency chips. These
traces are representative encoded signals produced by using a random
number generator to pick the spectral phases. (@) Np =41, p =0 (no
coding). (b) Ny =41, p = 0.9. (¢c) N, = 41, p = 0.75. (d) Ny = 127,
P=025()No=127,p = 04. (f) Ny = 127, p = 0.5.

modes that are different from each other and disappears
under random coding, (p = g = 0.5) and no coding, (p
=0orp =1). If p = 0 (no coding), then {I%(¢)) =
I*(t) = I(t) and for time 7 = 0 we have 12(0) = P3.
Butif p = ¢ = 0.5, the second order moment consists of
a time-independent term, approximately equal to
2P3/N2%for Ny >> 1, and a time-varying term (Py/N3)
1,(2t).

In many applications, such as second harmonic gener-
ation measurements of ultrashort pulse durations, we are
interested in the time average of the second order mo-
ment. Forp = ¢ = 0.5and (,(2t) ), = Py/N, the time
average of the second-order moment is equal to

uﬂm>x=%§Q—5i>

2P}
= —5 15
NO 3 ( )

The root-mean-square for the randomly encoded signal
I(t)is

(), = 10))" = 2 = (1) 19)

The size of fluctuations is equal to the average intensity
of the whole laser emission, and its value reduces as the
code length increases.

for Ny >> 1.
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1. Tue FirsT AND SECOND DEGREE OF COHERENCE
FOR THE ENCODED LIGHT PULSE

In this section we calculate the first and second degree
of coherence (also known as the field and intensity auto-
correlation functions) of the encoded signal.

The ensemble autocorrelation for the encoded electric
field E(t) = V(1) exp ( —iw.t), where w, is the carrier
frequency, can be expressed as

(E(t) EX(t + 7))

Py

= exp (iwc‘r)[ NOO V(1) +(p — ‘1)2

. {Vp(t) V(t + 1) — % V,,('r)ﬂ. (17)

Note that if 7 = 0, (17) reduces to (12). The ensemble
autocorrelation for the encoded electric field is in general
time-dependent, except in the case of random encoding
(p = g = 0.5). In this case, the time average is equal to
the ensemble average. For a randomly encoded pulse, the
degree of first-order coherence g’ () is given by

(E(r) EX(t + 7))
(E(r) EX(1))

= exp (iw.7) 7B,

We observe that if 7 = 0, | g (0)| = I; and if 7] =
T/N, = 7., where 7, is the coherence time of the encoded
pulse, then for Ny >> 1, |g"(7)| = O until the next
period T. The shape of the first-order coherence function
of an encoded pulse is governed by the ideal mode-locked
pulse shape.

The duration of ultrashort light pulses is typically de-
termined by performing intensity autocorrelation mea-
surements [22]; for this reason we examine the intensity
autocorrelation function of the encoded signal. The en-
semble average intensity autocorrelation can be written as
follows:

(1) I(1 + 7))

_ g% (No(No = 2)(1 = (p — 9)))

g"(r) =

(18)

F(p - L) L+ )+ ]’;— (1-(p—q))

. [IP(T) + 1,(2t + )] + %%(p - q)2

-((p—q)Q—l)ZZZ 2

cexp {i[(n = m)Qr + (k = D)2 + N1}
(19)

If 7 = 0, (19) reduces to (14) as expected. If p = 0, then
(19) reduces to
(I() I(t + 7)) = L(1) L(t + 7) (20)

which corresponds to the intensity autocorrelation of the
ideal mode-locked pulse. For a randomly encoded signal
(p = 0.5), (19) reduces to

p2

() I(t + 7)) = N_%(NO -2)

+ % [L(r) + L2t + )], (21)

With (1,(2t + 7)), = Py/Np, the time average of the
ensembled autocorrelation function is expressed as

(1) It + 7)) = IPT% <1 - Nl()) + <§—%>Ip(¢).

(22)
If 7 = 0, then (22) is equal to (2P3/N§) (1 — (1/2Np))
= (2P}/N3%) for Ny >> 1. If | 7| = 7, then [,(7) = 0
and (22) reduces to (P2/N3)(1 — (1/Ny)) = (P§/N3)
for Ny >> 1. Therefore, the peak to background contrast
ratio R is given by

(),
(I + 1))

2, forr, << |7| <T

(23)

Furthermore, the degree of the second-order coherence
can be expressed as

(1) 12+ ))),
(1)),

1 L(7 1
L) _1

g () =

27 2P, 2

Equation (24) is true for Ny >> 1.

The effect of coding on the intensity autocorrelation is
illustrated in Fig. 6, which shows examples of gP(r)
obtained for various code lengths and degrees of coding.
The six examples correspond to the six intensity traces
shown in Fig. 5 and include the effect of the envelope
function G (¢) from (4).

If p = 0, the intensity autocorrelation function is equal
to that of an ideal mode-locked laser pulse with no back-
ground [see Fig. 6(a)]. Fig. 6(b) illustrates the intensity
autocorrelation for a mode-locked pulse with an encoding
parameter of p = 0.9. In this case, the intensity autocor-
relation has some noisy background due to the coding that
was introduced. Note that a strong central spike still ex-
ists. Forp = g = 0.5, the intensity autocorrelation func-
tion consists of a ‘‘coherence spike’’ superimposed on a
pedestal, with an overall length which is proportional to
the duration of the encoded pulse envelope function [see

(24)
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Fig. 6. Intensity autocorrelation traces for the encoded signals shown in
Fig. 5. (@ No = 41, p = 0. (b) N, = 41, p = 0.9. () Ny =4l,p =
0.75. (d) No = 127, p = 0.25. () Ny = 127, p = 0.4. (f) N, = 127, p
= 0.5.

Fig. 6(f)]. The coherence spike arises because the en-
coded signal contains a series of sharp noise spikes with
a minimum time duration proportional to the inverse of
the source bandwidth. As predicted by (23), the contrast
ratio between the height of the coherence spike and the
height of the pedestal is 2: 1. We measured similar inten-
sity autocorrelation in our spectral phase coding experi-
ment, although in the experiment the contrast ratio was
somewhat less than 2: 1. Experimental contrast ratios be-
low 2: 1 may be an indication that the deterministic codes
employed are not perfect examples of random coding. A
detailed analysis of pseudonoise bursts generated using a
particular set of deterministic codes would have to take
into account any structure built into the codes selected and
is beyond the scope of this paper.

The intensity autocorrelation shown in Fig. 6(f) is quite
similar to intensity autocorrelations corresponding to noise
bursts generated from poorly mode-locked lasers [21]-
[25]. The presence of a coherence spike on a larger du-
ration pedestal, the 2:1 contrast ratio, as well as the re-
lation between the second and first order coherence func-
tions of (24), are expected for any Gaussian noise burst.
Thus, random binary spectral phase coding of ultrashort
pulses produces pseudonoise signals statistically similar
to other forms of random light. However, spectral phase
coding of ultrashort pulses generates a deterministic ran-
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dom-like signal which can be reconstructed into a coher-
ent ultrashort pulse, as shown by our experiment; there-
fore, we elect to call such deterministically generated
pseudonoise bursts pseudorandom light [26].

IV. ProBaBILITY DENSITY FUNCTION FOR THE
ENCODED LIGHT PULSE

Our discussion of pseudorandom light is not complete
without a study of the probability distribution function.
We further generalize the expression given in (6) by in-
cluding two statistically independent random variables,
namely ¢ and 7, with probability density functions P, (¢')
and P, (), respectively, associated with ambiguities in
the transmission time and the initial phase of the encoded
light. P,.(¢') is defined on the interval (—T'/2, T'/2),
where 7' < T, and P, (1) is defined on the interval ( —II,
IT), where IT < . This extension is particularly relevant
to our analysis of asynchronous CDMA systems based on
encoding and decoding of ultrashort pulses. Including
these random variables, ¢’ and 7, (6) can be rewritten

Vit —t') =o,(t —1') —io,(t —1'). (25)

Here a (1 — t') and «, (¢ — t') are the real and imaginary
parts of the complex amplitude V(¢ — ¢') and are defined
accordingly as

VB 2
a(t—1t) = TOO n:ZEN cos (nQ(r —t') + ¢, + 1)
(26)
and
N/
ay(t —1t') = TOO'I:ZEN sin (nQ(r — t') + ¢, + 7).

(27)

The intensity 7(¢ — ¢t') is expressed as I(t — t') = o(t
-t') + 0‘3( t — t'). To calculate the probability distri-
bution function for 7, it is sufficient to find the joint dis-
tribution function Pyo, (0, o). We first consider the
simplest case, i.e., P,.(¢') = §(¢') and P,(n) = 8(n).
Using the method described in [21] or by invoking the
central limit theorem, it can be shown that the joint dis-
tribution function is, in its most general form, a time
varying function and is expressed approximately as

Paxa)-(ax’ Qy, t)

_ 1 (O‘x — T’)2 a,%
"2y P { w7 ) ()
where T/, &2 and ¥'? are defined as
T = (p - q)V,(1)
V,(2t
N »( )>
VP,

2N,
2 V(2
v =(1-(p ))%(1 - \/(IT:))
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V,(2t) represents V(1) compressed in time by a factor
of 2 but with half the period, so that the peak and the time
average are the same for both. From (28) we see that the
real and imaginary parts of the encoded mode-locked pulse
are joint Gaussian random processes.

In the joint probability distribution function, we have
kept the code parameters p and g as general as possible.
We can illustrate the behavior of the above joint distri-
bution function by evaluating (28) for certain special
cases. For example, in the first case of interest, we choose
p =0orp = 1 (no coding). In this case then &> = ¥

= 0and T' = V,(¢). Using the fact that
lim e WE=mP 2T — 5(g —m)  (29)
a0 V270

where 8 denotes the Dirac’s delta function, then the prob-
ability distribution function reduces to

Pa)((xy(ax’ oy, t) = 5(O‘x - Vp(t)) 6(0‘)')'

Thus , (1) = V, () and oy (7) = 0.

The second case we evaluate is for p = g = 0.5 (ran-
dom encoding). Then T' = 0 and ®'> = (Py/2N,) (1 +
(V,,(ZI)/*/ITo)) and ¥'? = (Po/2No)(1 — (V,(21)/
\/FO) ). It is apparent that the probability distribution
function is a time varying function; and in general, pseu-
donoise bursts generated by spectral phase coding using
0 or = are not stationary processes. We observe that the
time dependency of the probability distribution function
is due to the variances &' and ¥'?. We note that the time
varying variances for an encoded mode-locked pulse have
a mode-locked like pulse shape. Therefore, the major
changes as a function of time take place in the vicinity of
|t] < 7. = (27/Nof), for which &' takes its maximum
value and ¥'? takes its minimum value. For example, at
time t = 0, > = (Py/Ny), ¥'> = 0, and (28) reduces
to a simple Gaussian distribution function

(30)

N,
Mo exp

Paxzxy(ax’ Qy, 0) = 27rP0

(31)
But fort = 7., V,(2r) = Oand &7 = ¥'* = (Py/2N,).

Equation (28) then reduces to
o N()O(/% NO (15
PUR TR

No
(32)

P ex
The above probability function remains independent of
time until the next period (at ¢ = T/2). The encoded
mode-locked pulse with no ambiguity in its transmission
time and initial phase is a stationary process for most of
its duration, except for the brief period 0 < |f| < 7.
We now consider the general case where ¢’ and 7 are
taken as random variables. For Ny >> 1, the effect of ¢/
and 7, in the context of a multiuser interference (CDMA)
signal, will not negate the Gaussian approximation. In

Pmay(ozx, ay, t = 7.) =

485

fact, the Gaussian approximation becomes even more jus-
tified [17]. A probability density function can be approx-
imately modeled for this case also and is expressed as fol-
lows:

P&x&y(ax’ Qy, t)

2 2
_ 1 (le - T) ay
= 270w P { 287 2\1/2} (33)

where T, &, and ¥ are defined as

T=(p—q)]{V,(r - t’))t,(cos n)n

Po
2N,

(cos 2n) (V,(2(t = 11)))
VP,

+(p = (Bl = 1)) (05" 0,

~ (Yt = 1)), Ccos 1))

®=(1-(p-4q))

1+

v (1= (-0 5
{ cos 211)"( V,(2(t — t’))>:'
JP,
+(p = g (Lt = 1)) (sin’ ) .

(*), and (-) . are ensemble averages with respect to
7 and t', respectively. For P, (n) = 8(n) and P.(1') =
8(t"), then (33) reduces to (28). As the last example we
consider p = g = 0.5, with #' a random variable uni-
formly distributed on (—7/2, T/2), and 7 a random
variable uniformly distributed on ( —=, w). This corre-
sponds to a randomly encoded pulse with complete am-
biguity in its transmission time and initial phase. We find
that T = 0 and

P
2Ny
Thus the variances are time-independent and (33) reduces

to
N() NO(anc + aﬁ)
— - (35
7TPO exp { PQ ( )

Equation (35) is true for all time z. Note that, forp = q
= 0.5, 7 = 0, and ¢' uniformly distributed on the interval
(~=T/2,T/2)orp = g = 0.5, ¢ = 0, and 5 uniformly
distributed on the interval (—x, 7), one achieves a prob-
ability density function similar to (35). Therefore, the
randomly encoded mode-locked pulse with an unknown
time of transmission or initial phase based on our statis-
tical model is a stationary process and can be assumed to
be an ergodic process, for which time and ensemble av-
erages for first, second, and higher moments are inter-
changeable. The probability distribution function defined

P =¥ = (34)

Paxzx)-(ax’ Qy, t) =
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in (35) indicates that the real and imaginary parts of the
encoded signal are joint Gaussian random variables and
are statistically independent. Hence, in this case the in-
tensity signal I has the chi-square probability distribution
function and can be shown to be

%ex ~% for7 =0
P, p P, | or] =

0, forI < 0.

P(I) = (36)

This intensity probability distribution function is typical
for all polarized random light [27]-[32]. Hence, we claim
that the encoded mode-locked pulse appears to be random
light to a receiver with no knowledge of the code, time of
transmission, and its initial phase.

V. PERFORMANCE ANALYSIS

In our system performance evaluation we assume that
all users have identical bit rate and signal format and the
effects of quantum and thermal noise are neglected. In
essence, system performance degrades due to the unde-
sired users’ signals that are present in our multiple access
channel. Furthermore, we consider the simplest network
protocols; it is assumed transmitters and receivers are
paired, and communication between each mth (where 1
=< m =< M) transmitter and receiver pair is continuous,
where M is the number of users. Fig. 7 depicts a typical
coherent ultrashort light pulse CDMA transmitter (en-
coder) and receiver (decoder) pair. From Fig. 7, our
transmitter consists of a band-limited signal source, a data
source, and a spectral-phase encoder. The output of the
band-limited source, a train of ultrashort pulses of dura-
tion 7, and period 7}, is multiplied (modulated) by a data
source that takes on two values, namely ‘0" or *‘1,”’ for
on-off keying. If the data are ‘0,”’ then no energy is
transmitted and the output of the spectral-phase encoder
is zero. On the other hand, if the data are ‘‘1,”’ then the
ultrashort pulse is sent to the spectral-phase encoder. The
spectral-phase encoder adds a determinate phase shift to
each spectral component of the electric field of the ul-
trashort light pulse. This set of spectral phase shifts rep-
resent an encoding of the light pulse, hence the term spec-
tral-phase encoder. In the coherent ultrashort light pulse
CDMA, the shifted versions of a maximal-length shift
register sequence ( better known as m-sequences [18]) can
be used as the signature sequences, provided that the
number of active users on the channel is less than or equal
to the length of the m-sequence in use. If the number of
users is greater than the code length then the original Gold
sequences that are in widespread use in multiple-user
communication systems can be employed [33]. The resuit
of spectral phase coding is to spread the incident ultra-
short pulse into a longer duration lower intensity pseudo-
noise burst [8], [9]. For an ideal source, the electric field
representation for the mth transmitted signal is expressed
as

=]

E (1) = % di" V,(1 = jT,) (37)
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where d"™ = (d™) is the mth data sequence that takes
on 0>’ or *‘1”’ for every j. V,(t — jT,), the encoded
unit pulse with a duration equal to T's for every j, is de-
fined as the mth address signal and can be approximately
expressed as

JP, Y
V(1) = —00 =23N exp (—i(nQr + (™)),
for%srs; (38)

Here P, is the peak power of the incident ultrashort pulse,
o™ is the nth spectral code element of the mth user’s
address code, and Ny = 2N + 1 is the total number of
code elements. For our analysis we assume that each code
element randomly takes on either of two values (0 or =)
with equal probability, i.e., we model the codes as binary
random sequences. This random coding scheme allows us
to satisfactorily model the statistics of the encoded (or
unsuccessfully decoded) pulses in our proposed CDMA
system without restricting ourselves to any particular de-
terministic code structure, such as m-sequences or Gold
sequences. In particular, for purely random sequences, the
unsuccessfully decoded pulses were effectively modeled
as Gaussian random processes. The assumption of ran-
dom coding and the resulting Gaussian statistics are ex-
pected to be valid for CDMA system incorporating large
number of users with long m-sequences or Gold se-
quences [17]. The encoded pulse is spread over a char-
acteristic time T = 27 /Q, where Q is the frequency sep-
aration between adjacent spectral code elements. Since the
duration of the incident ultrashort pulse is 7. = 27 /N,Q,
where Ny is the total bandwidth, we conclude that 7 =
Ny7., i.e., spectral phase coding spreads the original pulse
by a factor N,. In general, the period of the data source
(T,) may be even longer than the encoded pulse duration
(T), and we introduce a parameter K = T,/ T which rep-
resents this difference (see Fig. 8).

Fig. 7 shows a typical receiver for the coherent ultra-
short pulse CDMA communications system. The mth re-
ceiver is assumed to be a correlation receiver (matched
filter) which is matched to the mth signal; in particular,
the mth optical decoder is similar to the mth optical en-
coder, except that the decoder’s spectral-phase code is the
complex conjugate of the encoder’s spectral-phase code.

The result of the mth encoded signal E, (¢) passing
through the kth decoder is designated E,,; (¢). In an ul-
trashort pulse CDMA network, in which users send their
information asynchronously, the electric field represen-
tation of the output of decoder k can be expressed as

r(t) = Ekk(t) + mé:k Emk(t - tr’nk)' (39)
Ew (1), representing the desired, successfully decoded
signal, is a replica of the original ultrashort pulse with
duration 7. and peak power P,. The second term of (39)
represents the total multiaccess interference signal at the
output of decoder k. The unsuccessfully decoded signals
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Fig. 8. A schematic timing diagram for coherent ultrashort pulse CDMA.
(a) Train of coherent ultrashort pulses. (b) Train of encoded ultrashort
pulses.

E (1), for m # k, remain low intensity pseudonoise
bursts with average power Py/N, and duration 7. With
our assumption of random coding, the statistics of the un-
successfully decoded E,(t) signals are identical to the
statistics of the encoded E,(t) signal. f,, denotes the
(random) time delay between the arrival of the mth and
the kth encoded signals at the decoder k. We assume that
tj, = 0, i.e., perfect synchronization is maintained be-
tween the desired transmitter and receiver pair.

If we define the intensity signal I(t) = r(¢) r*(¢), then
for on-off keying, the decision can be made by comparing
(1) against a threshold level ;. For our data signal for-
mat the desired sampling instants are at t = 0, Ty, 2T,
. jT, -+ . At these times (| — jT,| < 7./2) the
signal E (1) is equal to \/i’:) if d](-k) = ‘1"’ and zero if
d® = <0"; at other times (|t — jT,| > 7c/2), Eu (1)
is zero independent of dj(-k). The conditional probability
densities of the intensity at any of the desired sampling

times (¢ = jT,) are given as follows (see the Appendix):

N
P(1/dD =0, 1) = =2 = Mo/iP0 (40)
1P,
and
N, 2NVIP,
PAI/dYD = 1.1) = =0 g~Woti+Po)/tPol
(1/do 1) lPoe o\ =p

(41)
where I(x) is the modified Bessel function of the first
kind and zeroth order and where [ = 1. For times not
coincident with desired sampling times (|t — jT,| >
7./2), the conditional probability density function is
given by (40), independent of d\". From (40) and (41)
the conditional probability densities are conditioned on
the fact that / other users are sending the data ‘‘1’’ at the
sampling instant.

In order to calculate the BER we further assume that
the receiver detects a ““17’ if the decoded intensity ex-
ceeds the threshold at any time within an interval of du-
ration 87, and a ‘0>’ otherwise. The threshold could be
implemented by using a nonlinear optical device based on
an ‘‘instantaneous’’ nonlinearity such as the optical Kerr
effect [34], [35]. Electronics in the receiver examine the
output of the optical nonlinear device over a duration B7,,
limited by the speed of the electronics. 8 = 1 corresponds
to the “*ideal’’ thresholder, active only at the instant when
the desired data are expected. If we further assume that
on-off keying occurs with equal frequency (each with
probability 1), then the average probability of error is
1(Pry + Pyp), where Pp, is the probability that the in-
terference alone crosses the threshold in any of 8 sam-
pling instants (false alarm), and Pyp is the probability that
the combination of a transmitted ‘1’ and interference do




488

not cross the threshold (missed detection). The error rate,
obtained from (40) and (41), is as follows (see the Ap-
pendix):

e (O ()04

(1= () - p(l)))} (42)
where
Y(1) = 1 — e UnNo/IPo) (43)
and
2Ny [2N,],
p(l)=1-— Q< /TO T{)“) (44)

Here (/) and p (/) can be identified with 1 — Pr, and
Puyp, respectively, and Q(a, b) is Marcum’s Q function

[36], defined as
2.2
X exp <%>10(ax) dx.

®

Q(a, b) = S

Fig. 9 shows the BER versus threshold for a CDMA
system employing a code length N, = 128 and K = 100,
for different number of users (M ) and 8. For 8 = 1 (ideal
detection scheme), the minimum errors achievable for M
=20and M = 100 are =10"° and =2.8 x 1077, re-
spectively. The minimum error rate is achieved for I, / P,
= %, with the optimum threshold depending only slightly
on M. For 8 = 128 (not ideal but *‘practical’’ detection
scheme) the degradation in system performance for M =
20 and M = 100, compared to the case with 8 = 1, is
about one order of magnitude. The optimum threshold for
this case is slightly greater than the previous case.

Fig. 10 shows the minimum BER versus the number of
users (M) for different values of K and N, such that the
product of KN, is fixed at 12800. The minimum BER de-
grades as the number of users increases. For example, for
6 =1, K =25, and Ny = 512 our system can support up
to one hundred users at error rate =107'" and 500 users
at error rate = 10" provided that the bit rate of each in-
dividual user will not exceed 1/7.KN,, where 7, is the
duration of an uncoded pulse generated by the ultrashort
light pulse generator. For 7. = 80 fs (0.8 ps), the indi-
vidual bit rate would be 1 Gbits /s (100 Mbits /s), and
the total system transmission capacity would be several
hundreds (tens) of gigabits per second.

From Fig. 10 we see that, for a fixed number of users
operating at fixed individual bit rates, the system perfor-
mance improves drastically with increasing the code
length (Np). For example, for M = 200 and 8 = 1, the
minimum error rates achieved for K = 400, N, = 32 and
K =125 Ny=512are =2.0 X 10 *and =1.8 x 1078,
respectively. The latter BER is four orders of magnitude
better than the former. Intuitively, one can argue that by
increasing code length, the intensity of the original pulse
is spread over longer time and the instantaneous intensity
is more effectively reduced, thereby decreasing the prob-

) (45)
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Fig. 9. BER versus normalized threshold (1, /P,) for code length N, =
128, K = 100. Curves are shown for M = 20 and M = 100, and for 8
= 1 (solid lines) and 8 = 128 (dashed lines).

ability of false alarm while improving the probability of
detection. This example highlights the importance and the
dependency of our CDMA system on the code length.
From the optics point of view the challenge would be to
design a system with a code length as large as possible.

VI. CONCLUSION

In this paper we studied the temporal and statistical be-
havior of phase encoded ultrashort light pulses, and ex-
amined their performance in the context of a newly pro-
posed optical code-division multiple access com-
munications systems. Under random encoding and un-
known time of transmission and initial phase, the encoded
pulses were modeled to obey Gaussian statistics and that
the intensity probability distribution function is a negative
exponential. We calculated the performance of the newly
proposed coherent ultrashort light pulse code-division
multiple access communications systems as a function of
data rate, code length, number of users, and receiver
threshold. Furthermore, by increasing the code length
(i.e., Np) the system performance improves drastically;
hence more users can be supported. Our calculations give
an enticing indication of the potential for ultrashort pulse
CDMA to provide hundreds of users with asynchronously
multiplexed communications at rates up to the gigabit-per-
second range.

APPENDIX

In this Appendix we will describe the mathematical de-
velopment of the BER expression derived in Section V.
It is convenient to represent the total received signal r(¢)
as described in (39), during the time interval (—7/2,
+T/2). The probability density function P (I, t) of the
total received signal I(t) = r*(¢) r(t), may be deter-
mined from the conditional probability density function
P(1,t/d$", ) of the total received signal, subject to the
hypothesis that / users, other than the desired (kth) user,
have transmitted binary data ‘1’ during the given inter-
val, by use of the relation

P(L 1) = ({P(L,1/d", 1)),) o (AD)
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Fig. 10. BER versus number of users (M) for different values of K and
Ny, such that the product KN, is fixed at 12 800. (a) K = 400, N, = 32,

and 8 =1,16. (b)K =
= 512,and 8 = 1, 50.

Here [ is a random variable with a binomial distribution

P(l) = <Ml_ 1>r1(1 -9

where ¢ = 1/2K, and K = T, /T was defined in Section
V.

To calculate the conditional probability distribution
function P (1, t/do , 1), it is sufficient to find the COl'ldl—
tional joint distribution function P,A,‘(rx, o t/do , D),
where r, and r, are the real and 1mag|nary parts of the
received 51gna1 r(t), defined as in (39). The real and
imaginary parts of the received signal are modeled as
jointly Gaussian and from (35) the conditional joint dis-
tribution function can be expressed as

P, (rery,t/de’ 1)

(A2)

Here 6> = Py/2N,. Note that for I = 0, which occurs
with probability (1 — ¢)™~', then the joint distribution
function reduces to

P (re 1y 1/dG0, 1= 0) = 8(r, = dv, (1)) 8(r,)
(A4)

and the conditional probability density function P(I,
t/dgk), I = 0) can be expressed as

P(I,t/dP, 1 = 0) = (1 — d°L(1)).  (AS5)

From the above equatlon ifdy 0 = 0 then /= 0 (with prob-
ability one), and if do = 1then I = I,(¢) (with proba-
bility one), for —T/2 <t < T/2.

From (A3) the conditional probability density function

100, Ny = 128, and B = 1, 50. (c) K = 25, Ny

for [ = 1 is expressed as

—[No(l+df)")lp(r))/1P0]

P(I,t/d, 1) =

2NN IdSLL (1)
<f—¢> w

1P,

where Io(x) is the modified Bessel function of the first
kind and zeroth order. Note that the conditional probabil-
ity densny functlon is derived as a function of time and
the data do For example, for do = 0, which we assume
it occurs with probability 1/2 for memoryless sources,
then the above density functlon reduces to (40). On the
other hand at # = 0 and d3’ = 1, then the above density
function reduces to (41). For d(k) 1and |2] = 7./2,
then I,(t) = 0, then the distribution function reduces to
(40), s1nce I(x) = 1 forx << 1in (A6).

From (A2) and (A6) the probability density function

P(I, t/dg()) can be expressed as

P(Lt/df’) = (1= )" '8 (1 -

(k)l (t))

M-1
+ E‘ P()p(I, t/dP, ). (A7)

From (A1) and (A7) the unconditional probability density
function is expressed as
P(I 1) = 3[P(1, t/dy = 0) + P(I,1/dy’ = 1)].
(A8)

To determine the BER, we first determine the bit-error-
rate conditioned on [ [i.e., BER(/)], and use the relation
BER = (BER(/) ), to calculate the average system per-
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formance. For our data signal format the desired sampling
instant is at ¢+ = 0. At this time the signal L(t=0) =
Py. Furthermore we assume ideal detection scheme; B8 =
1 in (42); then

BER(!) = P,(I = I,/dy" = 0,1) P,(d)° = 0)
+ P (I < Iy/d¥ = 1,1) P,(d = 1)

1l

HPra(l) + Pyp(1)]. (A9)

Here Pp, (1) and Py, (1) correspond to the probabilities
of false alarm and miss detection. Using (40), (41), (A2),
and (A9), then one achieves the BER as described in 42)
forB = 1.

We now discuss the case where 8 = 1. In order to cal-
culate the BER we postulate that the receiver detects a
1" if the decoded intensity exceeds the threshold at any
time within an interval of duration 87. and a “‘0’’ other-
wise. Under the hypothesis that dék) = 0, then

Pra(l) = P(Iy = Iy/1) + P.(I; < I,,/1)
“P.(L = I/I) + P(I, <I, I, < In/1)
“P(L = Iy/l) + -
+P(I < Iy, I, < I, *
“P(Iy = In/1).

v

%

ol < Iy/l)
(A10)

Here [;, for 1 < i < @, is the value of the instantaneous
intensity at the ith coherence cell within the interval
(=(B1:/2), B7./2). For y (1) = P,(I, < I,/1), where
v (1) is defined as in (43), and since the instantaneous
intensities within each coherence cell are statistically in-
dependent, then the conditional probability of false alarm
Pr,(1) can be expressed as

Pry(l) = 1 = 4P(1). (A11)

Similarly, using (A6) the probability of detection or prob-
ability of missed detection Pyp(l) = 1 — Pp(1), can be
expressed as

Pup(1) = ~*7'(1) p(1) (A12)

where p (1) is defined as in (44). Using (A2), (A1l), and
(A12), then BER = 3[{ Pry(1)); + { Pyp(1) )] = 5[ Pp4
+ Pypl, and it is expressed as in (42).
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