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Photorefractive quantum wells operating by means of the Franz—Keldysh effect were designed to diffract a
bandwidth of approximately 8 nm, nearly matching that of 100-fs pulses, with little dispersion in the diffracted
pulses. Large diffraction bandwidths are engineered by adjustment of the well width of the quantum wells in
a specific nonuniform distribution across the thickness of the device. The causal relationship between the real
and the imaginary parts of the refractive index leads to an excitonic spectral phase with linear dependence on
wavelength, resulting in almost distortion-free diffraction. These features render photorefractive quantum-
well devices suitable candidates for femtosecond pulse-shaping and spectral holography applications, without
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1. INTRODUCTION

Photorefractive quantum wells (PRQW’s) have high sen-
sitivities, small saturation intensities, and short response
times compared with those of bulk photorefractives.!
These properties are desirable in applications such as dy-
namic femtosecond pulse shaping and femtosecond spec-
tral holography.>®> PRQW’s have been used to study fem-
tosecond diffraction from quasi-static excitonic gratings,*
pulse shaping® and femtosecond processing.® Adaptive
applications include all-order dispersion compensation.’
PRQW'’s functioning at the resonant exciton wavelength
have been shown to be useful for a wide variety of narrow-
band applications, such as optical coherence
tomography,®® optical image processing,'® and ultra-
sound detection.’! However, these devices previously
suffered from a limited diffraction bandwidth that re-
sulted from the narrow linewidth of the resonant electro-
optic response of quantum-confined excitons in quantum
wells. The narrow bandwidth can limit the usefulness of
the devices for femtosecond applications. The operating
bandwidth of a typical GaAs/AlGaAs photorefractive
multiple-quantum-well (MQW) device at room tempera-
ture, because of phonon broadening of the excitonic tran-
sition and inhomogeneous broadening that results from
well thickness and well-barrier interface disordering, is
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typically of the order of 4 nm. The size of this bandwidth
must be compared with that of a 100-fs pulse, which is ap-
proximately 10 nm (or ~5 THz) at 800 nm.

The large bandwidths of ultrafast pulses could conceiv-
ably be of use in fiber-optic communications, and there is
ongoing research for the development of simple and ro-
bust pulse-shaping techniques and appropriate materials
for use in high-bit-rate communications.'> Pulse shaping
and control of ultrafast pulses are of interest not only
from the practical point of view of implementing high-bit-
rate communications by use of ultrafast laser sources!?
but also more fundamentally for realizing processes such
as coherent control of quantum dynamics and chemical
reaction pathways.!'* A variety of optical materials, in-
cluding pixelated liquid-crystal arrays,? rf-driven acousto-
optical modulators,’® charge-transfer polymers,'® and
semiconductor waveguide modulators,!” have been used
for femtosecond pulse shaping and ultrafast pulse switch-
ing. Bandgap engineered broadband semiconductor
MQW devices have been used as fast saturable absorbers
for the Kerr-lens mode locking of solid-state lasers.'®1?
PRQW?’s operate in a different regime from fast saturable
absorber MQW?’s, in which the nonlinearity is due to band
filling. The operation of photorefractive MQW’s relies on
the resonant electro-optic response at the exciton transi-
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tion, and the diffractive response of these devices is in-
trinsically of limited bandwidth. Therefore the diffrac-
tive bandwidth of a PRQW has to be specifically
engineered for femtosecond applications.

We demonstrate the feasibility of achieving large dif-
fraction bandwidths in photorefractive four-wave mixing
by use of photorefractive MQW devices. The Kramers—
Kronig relationship between the change in absorption
and index that is due to applied electric fields ensures a
nearly linear dependence on frequency of the spectral
phase of the diffracted pulses. Therefore the large
changes in the spectral phase in the vicinity of the exci-
tonic resonance do not preclude transform-limited diffrac-
tion. In Section 2 of this paper we describe the optical
properties and electro-optic response of PRQW devices
and the principles of broadband device design. In Sec-
tion 3 we present the results of femtosecond diffraction
experiments, and in Section 4 we discuss the linearity of
the excitonic spectral phase in PRQW’s, which is of para-
mount importance for achieving broadband dispersionless
diffraction.

2. BROAD-BANDWIDTH QUANTUM-WELL
DESIGN AND ELECTRO-OPTIC
CHARACTERIZATION

The photorefractive effect! is a low-intensity nonlocal op-
tical nonlinearity that is sensitive to spatial variations in
optical illumination: A spatially variable pattern of pho-
togenerated charge leads, by means of charge transport
and subsequent charge trapping at deep level defects, to a
space-charge field. In PRQW’s a resonant electro-optic
effect converts the space-charge field grating into a spa-
tially varying pattern of the complex refractive index. If
the spatial variation is one dimensional, the complex in-
dex grating is

i(x, w) = (w) + Afi(w)f(Kx + ¢), (@8]

where 7i(w) = n(w) + ia(w)/2k is the complex refractive
index, « is the absorption coefficient, n is the refractive in-
dex, and £k is the light-wave vector in vacuum; f repre-
sents the spatial variation of the interference grating.
The grating vector is K, and ¢ is the phase shift, which is
generally nonzero, between the intensity and index grat-
ings. The electro-optic effect that is responsible for the
induced grating in quantum wells can be either the
Franz—Keldysh effect or the Stark effect, depending on
the orientation of the applied electric field relative to the
quantum-well plane. In what follows, we focus on the
Franz—Keldysh effect, in which the electric field is applied
parallel to the plane of the quantum wells. Electroab-
sorption A« and electrorefraction An vary quadratically
with the applied electric field for small applied fields.
The electric field of a short pulse has the form E(t)
= e(t)exp(—iw,t), where e(t) is the pulse’s temporal en-
velope and w, is the pulse’s central frequency. In the
spectral domain the electric field E(w) is the Fourier
transform of E(¢). Let a pulse E;,(w) be incident upon
the thin-film quantum well and assume that the grating
function f(Kx + ¢) is a harmonic function (this is a good
approximation, because the strongest diffraction occurs
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from the fundamental harmonic of a periodic grating).
At the exit plane the electric field of the transmitted pulse
(in all orders) is

E (o) = E;(w)exp(iikL)exp(iAfikL)cos(Kx + ¢),
(2)

where L is the thickness of the device. The output elec-
tric field is expanded as?

+oo

Eou(0) = Ep(w)exp(iikL) D, i, [Af(w)kL]. (3)

m=—w

Equation (3) contains all diffracted orders, including the
transmitted beams. In thin-film (Raman—Nath) diffrac-
tion, the first diffraction order occurs for m = 1, and the
diffracted field amplitude is

E (w) = Ey(w)exp(iikL)id ((AkL)exp(iKx + &),
4)

which for small grating amplitudes be written as
E (w) = Y2E(w)exp(inkL)(AR kL)
AaL

= 1/2Ein(w)exp(iﬁkL)<AnkL + i ) (5)

where we have used the approximation oJ,,(z) = (2/2)%/
m! for small z. Note that the diffracted pulse acquires a
spectrally dependent phase (the excitonic spectral phase)
A w), defined as

Aa(w)

tan 9(&)) = 2kA—n(a))

(6)
The diffracted intensity is proportional to

1
|E 4(w)]? = ZIEin(mlzexp(—aL)

)

2

X ([An(w)]2 + } )(kL)Q. (7
Two quantities can be defined to characterize the diffrac-
tion efficiency of the device. The ratio 7,
= |Ey(@)|*/|E(w)|? between the diffracted and the inci-
dent beam intensities is the input diffraction efficiency.
Output diffraction efficiency 7,,; is defined as the ratio of
the diffracted and the transmitted beams on the device
and depends only on the electrorefraction and electroab-
sorption spectra:

nout(w) = 1/4|kLAﬁ(w)|2
= Ys{[An(w)kL]? + [Aa(w)L/2]%}. (8)

In a typical PRQW,?° the diffraction is limited to a 3—4
nm range about the heavy-hole exciton transition. To
achieve diffraction of pulses with durations of 100 fs or
shorter without considerable bandwidth narrowing re-
quires broadening of the spectral distribution of the com-
plex electrorefraction, A7i(w). This amounts to specifi-
cally designing the spectral distribution of the excitonic
oscillator strength.

There are two possible approaches to the problem of en-
gineering the density of states in quantum wells. In the
first approach, when there is coupling between the wells,
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the superlattice exhibits a dense spectrum of critical
points, which has associated with it a dense distribution
of excitonic transition energies. One implementation of
this idea is quasi-periodic (Fibonacci) superlattices, in
which spatial quasi-periodicity leads to a dense and frac-
tal set of excitonic transitions.?! However, the useful-
ness of such structures as broadband devices is limited by
the concentration of oscillator strength to the low-energy
edge of the miniband,?*?® which results in bandwidths
comparable with those of standard quantum wells.

Here we take an approach to designing a broad spec-
trum of excitonic transitions that relies on the grading of
the quantum confinement of the carriers in isolated quan-
tum wells along the growth direction of the device. This
simple process constitutes a controlled inhomogeneous
broadening of the excitonic transition. Its implementa-
tion is however not trivial because of the dependence of
the electro-optic response on a number of factors, such as
exciton oscillator strength and exciton sensitivity to the
applied electric field, which in turn depend on the exciton
linewidth and the exciton binding energy. A realistic de-
vice design has to take into account the variation of these
parameters with carrier confinement, or well width.

We can achieve the grading of carrier quantum confine-
ment most easily by modulating either the confining po-
tential (barrier heights) or the well widths. In this case
the electro-optic response of the quantum-well device is a
convolution over the individual quantum wells or, equiva-
lently, along the direction normal to the wells (growth di-
rection), y:

Afipor(w) = j AR(w,y)g(y)dy, 9)

where the distribution function of quantum-well types
g(y) is normalized: [g(y)dy = 1. This equation is sub-
ject to physical conditions. An important physical con-
straint is the concentration of oscillator strength in exci-
tonic transitions to the low-energy side of the their
spectrum whenever there is Coulomb interaction between
carriers in extended states, as in the case of
superlattices.?> This effect precludes simple designs,
such as that of a graded gap epilayer. Also, a distribu-
tion of quantum wells with linearly varying transition en-
ergy could not yield large bandwidths because the exciton
oscillator strength is conserved on broadening, and Eq. (9)
integrates to zero through the center of the distribution.

If the distribution of change in index A7i(w, y) is known
as a function of well widths or barrier heights, integral
equation (9) is an inverse problem for the function g(y),
with the constraint that g > 0. Because of this, the in-
version of Eq. (9) is not a simple problem, and in practice
one must use other methods, such as iterative procedures,
to arrive at a distribution function close to the solution.
Once the amplitude of the desired diffraction efficiency
|A7i(w)| is known, the real and imaginary parts of the
electrorefraction are fixed by the Kramers—Kronig rela-
tions and can be determined from the excitonic spectral
phase, given by?*

2w += In|Afi(w')|
0(w) = Pf do’, (10)

T 0 w/Z _ (,02
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where P signifies the principal value of the integral.
Therefore a desired diffraction spectrum uniquely deter-
mines a spectral distribution of electrorefraction, which in
turn can be inverted by use of Eq. (9) to yield a specific
device design. This signifies that arbitrary bandwidth
can be designed with quantum-well devices, a condition
that can be useful in pulse-shaping applications.

In the structure shown in cross section in Fig. 1, the
well widths have been adjusted in four discrete monolayer
steps to modulate the heavy-hole exciton transition wave-
length over a 4.5-nm range. The device consists of four
multiwell segments of GaAs/Al;Gaj;As quantum wells.
The well widths were 76.4, 73.6, 70.8, and 67.9 A (1 A
= 0.1nm), corresponding to 25, 26, 27, and 24 monolay-
ers, and with repetitions, respectively, of 6, 12, 18, and 16
periods. The barriers were uniformly 100 A wide. The
Al,5Gay5As and AlAs layers serve as stop-etch layers
used in the chemical etching of the opaque GaAs
substrate.?’ For this device, the distribution function
g(y) is simply a sum of four step (Heaviside) functions
with variable step size. The device operates in transmis-
sion, under an applied electric field parallel to the quan-
tum wells. The well widths were chosen to be integral
multiples of GaAs atomic monolayers. Therefore the de-
vice was not optimized for a spectrally flat diffraction ef-
ficiency, which would require a continuous distribution of
(fractional monolayer) well widths.

The absorption and differential transmission spectra of
the broadband device are shown in Fig. 2 along with the
corresponding curves for a standard MQW device. The
absorption and differential transmission measurements
were performed with a tungsten lamp as the incoherent-
light source and with a double-pass monochromator and
lock-in detection. The heavy-hole transition wavelengths
for the individual four layers of the broadband device are
indicated in the figure. The spectral features that are
due to the various discrete excitonic levels cannot be dis-
tinguished in the absorption and differential transmis-
sion spectra shown in Fig. 2; apart from their having a
wider spectral extension, these spectra are similar to the
corresponding spectra of the standard narrow-band
quantum-well device. The electroabsorption and elec-

i-GaAs 50A
i-Alp3Gap7As 10004
w=764A 6 periods
736A 12 periods
70.8 A 18 periods 0.89m
679 A 16 periods
i-Alp3Gag7As 10004
i-Alg sGag sAs 50004 stop-etch
i-AlAs 2004 layers
n-GaAs 0.5pm
semi-insulating GaAs substrate

Fig. 1. Cross section of the four-layer MQW device, with the
widths of the quantum wells explicitly indicated. The GaAs well
widths range from 24 to 27 monolayers. All barriers were
100-A Al ;Gay 7As.
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100A Al ;Ga, ;As quantum wells). (b) Differential transmission
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Fig. 3. (a) Change in absorption coefficient and in index of re-
fraction of the broadband device for an applied electric field of 10
kV/ecm. (b) Calculated output diffraction efficiency for the same
applied field.

trorefraction of the broadband structure that are due to
an applied field of 10 kV/cm are presented in Fig. 3(a).
The strong variations and oscillations of the electroab-
sorption would in general be expected to distort and chirp
the diffracted pulse, as we discuss in Section 4 below.
Figure 3(b) shows the predicted output diffraction effi-
ciency, calculated from the electroabsorption data by use
of Eq. (8). The device was designed for a diffraction effi-
ciency bandwidth comparable with the bandwidth of the
ultrashort pulses used in our experiments but was not
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optimized for a flat spectral dependence of the diffraction
efficiency: The double peak at the maximum of the dif-
fraction efficiency spectrum is due to the monolayer dis-
creteness of the distribution function g(y) chosen in our
design.

3. FOUR-WAVE MIXING
CHARACTERIZATION

To characterize femtosecond pulse diffraction from the
broadband structure, we performed degenerate four-wave
mixing measurements,* using ultrashort pulses gener-
ated by a mode-locked Ti:sapphire laser with nominal
pulse durations of 100 fs. The approximately Gaussian
incident pulses have a bandwidth of 8.8 nm and a dura-
tion of ~110 fs. These values correspond to a time—
bandwidth product of 0.414, which is indicative of nearly
transform-limited pulses.

In the four-wave mixing experiments the grating fringe
spacing was fixed at 20.6 um and the total incident inten-
sity was 5 mW/cm?, with a beam ratio close to unity. The
applied electric field was 10 kV/ecm. The diffraction spec-
tra for two different input central wavelengths are A\,
= 834.5nm [Fig. 4(a)] and 840.0 nm [Fig. 4(b)]. The
bandwidth and the spectral shape of the diffracted beam
can be adjusted by tuning of the central wavelength of the
incident pulses. The diffracted bandwidth of 8.3 nm in
Fig. 4(a) is close to the bandwidth of the incident pulse;
however, we do not expect the diffracted pulse to be trans-
form limited, because the input diffraction efficiency was
not flat across the input pulse spectrum.

To characterize the time dependence of the diffracted
and transmitted pulses we used electric-field cross corre-
lation between the signal pulse and a known (transform-
limited) reference pulse. Electric-field cross correlation
has the advantage that it can be used to characterize the
low diffracted pulse powers available in our experiments.
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In electric-field correlation, a signal pulse interferes with
a reference pulse delayed by a (variable) time 7, and the
average measured intensity is

Ixcorr(T) = 1sig + Iref + 2 VIsigIrefRe

X

exp(—iwcr)j egg(t)ens (t — mdt|, (11)

where the correlation function vy, .(7) = [ eg(t)ef (¢
— 7)dt contains information about the time dependence
of the signal pulse. The FWHM of the correlation 7,
= [2(74% + T?)]Y2 can be used to extract the signal
pulse duration when both pulses are transform limited.
The electric-field cross correlations of the transmitted
and diffracted pulses for the two central wavelengths are
shown in Fig. 5. We achieved the time delay between the
diffracted (transmitted) and the reference pulses by using
a motorized translation stage with a resolution of 0.1 um.
The width of the electric-field cross-correlation trace for
the diffracted pulse centered about 840.0 nm is consistent
with a pulse duration of 185 fs, corresponding to broaden-
ing by a factor of 1.7, whereas the cross-correlation width
for diffracted pulses centered about 834.5 nm is consis-
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tent with a pulse duration of 164 fs, which represents a
broadening of the incident pulses by a factor of approxi-
mately 1.5.

To compare the diffractive performance of the broad-
band four-layer device with that of a standard MQW de-
vice with one type of quantum well, we show in Fig. 6
the diffraction spectra and electric-field cross correlation
for the four-layer device and for a GaAs/GaAs/
Aly 1GaygAs MQW device from Ref. 4. The bandwidth of
the broadband structure is 2.3 times larger, and the du-
ration of the pulse, extracted from the cross-correlation
width, is 1.8 times shorter than for the standard struc-
ture. The pulses diffracted from the standard MQW de-
vice were shown* to be nearly transform limited, with a
flat spectral phase. This property is desirable from the
point of view of using MQW photorefractive devices in
femtosecond applications, and in Section 4 we explain
why we expect the spectral phase of the diffracted pulse
to be nearly linear for any MQW device.

4. SPECTRAL INTERFEROMETRY AND
EXCITONIC SPECTRAL PHASE

The spectral phase of the diffracted pulses can be mea-
sured by spectral interferometry. Spectral interferom-
etry is the analog in the frequency domain of electric-field
cross correlation, and in practice the spectral resolution is
sufficient to ensure signal pulse retrieval. For a fixed de-
lay 7 between the signal and the reference pulses, the os-
cillatory part of the spectrogram obtained by interfering
the signal and reference pulses is

Isig(w) = Let(0)
= 2 Re[egig(®)eef (w)exp(—iwT)], (12)

S(w,7) = Itor(w,7) —

where e (w) stands for the Fourier transform of e, (#).
If the spectral phase of the reference pulse is known, the
positions of the peaks in the interferogram [Eq. (12)] con-
tain information about the phase of the signal pulse, and
therefore both the spectral amplitude and phase of the
signal pulse can be extracted.

The spectral interferograms for the transmitted and
diffracted pulses are shown in Fig. 7, together with the
extracted phases. The linear spectral dependence of the
phase, which leads only to a delay in time and does not
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Fig. 7. (a), (b) Spectral interoferograms and extracted phases of
the transmitted spectra with the reference pulse spectrum for
two central wavelengths of the incident pulse and (c), (d) the
curves for the corresponding values of A.. The delay between
the measured and the reference pulses was 1.0 ps for all inter-
ferograms except for (d), for which it was 2.0 ps.
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distort the pulses, has been subtracted out. The spectral
phases of both transmitted pulses are nearly independent
of wavelength near the excitonic transition, with small
(< 0.2-rad) phase variation across the center of the trans-
mitted spectrum, consistent with the fact that the trans-
mitted pulses experience little broadening. The spectral
phase of the diffracted pulses shows stronger variation
with wavelength, mainly in the wings of the diffracted
spectra, but still smaller than 0.5 rad across the center of
the spectrum. For the incident pulse centered about
834.5 nm, the quadratic (5.4 X 10 3-rad/mm? and the
larger cubic (1.9 X 1073-rad/mm?®) terms in the spectral
phase of the diffracted pulses lead to relatively small
phase distortions.

The spectral phase of the diffracted pulse, defined in
Eq. (6), varies by ~5.57 across the heavy- and light-hole
transitions. However, this variation is mostly linear in
wavelength (as shown in Fig. 8) and thus leads to a time
delay with little distortion for diffracted femtosecond
pulses. Because a diffracted phase with large nonlinear
terms (quadratic or higher order) leads to chirped pulses,
it is important to know whether the small contribution of
higher-order phase terms in the diffracted pulses in our
experiments is a coincidence or a general property of
quantum-well devices.

The wavelength dependence of the excitonic spectral
phase is determined by the Kramers—Kronig relations
and causality,?* which connects the real and the imagi-
nary parts of the complex electrorefraction A7i(w). To
estimate the degree to which the excitonic spectral phase
is linear in wavelength, we can write the imaginary part
of the electrorefraction as a sinusoidal function in fre-
quency with a slowly varying amplitude A(w) and a
slowly varying phase factor ¢ (w):

Im(A7) = A(w)cos[wk + ¢o(w)], (13)

with « a constant. Because of the oscillatory nature of
the electroabsorption as a function of wavelength, this is
a good approximation, as shown by the dotted curve in
Fig. 8. The electrorefraction can be written as a Hilbert
transform:

1 fx Im[Afi(w’)]

Re[Afi(w)] = —P do'. (14)
T

e 0 — @

The derivative of Eq. (14) with respect to frequency is

J ~ 1= ImfAR(0)]
gRe[An(w)] = ;'lex —(w, _ w)2 do
o« Im[A7i(w)], (15)

because the denominator is a sharply peaked function
about w and can be approximated by a Dirac & function.?’
A similar relationship holds for the derivative of the
imaginary part of the index. Therefore the real part of
the electrorefraction is approximately proportional to the
derivative of the imaginary part and vice versa, as can be
seen from Fig. 8. In consequence, the excitonic spectral
phase from Eq. (6) can be written as
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mostly linear in wavelength, although it varies by 5.57 rad
across the heavy- and light-hole transitions. The slowly varying
amplitude and phase approximation for the electroabsorption
[Eq. (14)] is shown by the dotted curve.

1 de
tan[ O(w) + 7/2] = tan[wk + e(w)]{ 1 + ——)
K dw
1 0A
- — . (16)
KA dw

The deviations from linearity of the spectral phase are de-
termined by the terms (1/«) (d¢p/dw) and (1/kA) (/A/dw) in
relation (16). In typical MQW devices the energy differ-
ence between the heavy- and light-hole transitions and
the exciton linewidth are such that Eq. (13) is a good ap-
proximation and these terms are small (in our case, both
are everywhere smaller than 0.125); therefore the spec-
tral phase is linear to a high degree. The capability to
design broadband photorefractive MQW devices is there-
fore limited neither by the bandwidth of the diffraction
spectrum, which can in principle be designed to have ar-
bitrary bandwidths and line shapes, nor by the require-
ment that the diffracted pulses be transform limited.

5. CONCLUSIONS

We have demonstrated broadband, low-dispersion diffrac-
tion from suitably designed photorefractive multiple-
quantum-well devices. The low quadratic dispersion of
the diffracted pulses is due to the fact that the real and
the imaginary parts of the electro-optic response of the
photorefractive quantum wells form an approximate sinu-
soidal Hilbert-transform pair. Dispersion-free diffrac-
tion is a general property of multiple-quantum-well de-
vices and opens the possibility of engineering arbitrary
diffraction spectra. The wide range of operating wave-
lengths, diffraction bandwidths, and diffraction line
shapes attainable through bandgap engineering, together
with the linearity of the diffracted spectral phase, makes
photorefractive quantum wells candidates for broadband
dynamic holographic materials with potential use in
pulse-shaping and spectral holography applications.
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