n

Check for
updates

Vol. 43, No. 4 / 15 February 2018 / Optics Letters 743

~ Optics Letters

Arbitrary shaping of biphoton correlations using
near-field frequency-to-time mapping

Hsuan-Hao Lu,"?t

Ocaca D. OpELE,"*" DaNEL E. LeairD,"? AND ANDREW M. WEINER

1,2,3,%

'School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, USA
2Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47906, USA
3Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906, USA

*Corresponding author: amw@purdue.edu

Received 7 November 2017; revised 4 January 2018; accepted 8 January 2018; posted 9 January 2018 (Doc. ID 312524);

published 7 February 2018

Frequency-to-time mapping (FTM) is a technique used to
mirror the spectral shape of an optical waveform in the time
domain. The regular approach, based on the far-field con-
dition, requires large amounts of dispersion for successful
mapping. However, when the far-field condition is insur-
mountable for achieving a desired temporal profile, another
technique, termed near-field FTM, can be employed to as-
sist with the mapping. For the first time, we demonstrate a
shaper-assisted near-field FTM using entangled photon
pairs. By pre-modifying the two-photon spectral amplitude
and phase before propagating the photon pairs through
dispersion, we can achieve arbitrary temporal correlations
in the near-field region. © 2018 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (190.4410) Nonlinear
optics, parametric processes; (260.2030) Dispersion; (320.5540)
Pulse shaping.
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At the quantum level, light can play an important role in advanc-
ing technologies for secure communication, solving computa-
tionally hard problems and improving measurement sensitivity
beyond the classical limit [1]. In this regard, there has been
an increased interest in developing techniques for controlling
the different attributes of quantum states of light. The spec-
tral-temporal wave function is a property of single and entangled
photons that has been studied extensively in recent years;
manipulation of this probability amplitude using dispersion
[2-4], Fourier-transform pulse shaping [5,6], electro-optic
modulation [7-9], and nonlinear mixing [10,11] have been
demonstrated, and are even being tied to specific applications
in quantum information processing [12-14].

Using dispersion, a well-known technique for manipulating
the temporal correlations of entangled photons is frequency-to-
time mapping (FTM), whereby a considerable amount of
dispersion allows the temporal correlation to take on the shape
of the biphoton spectrum [2,15]. For proper mapping of the
spectrum into the temporal domain, the temporal fzr-field con-
dition typically must be met: the second-order spectral phase
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constant should be much larger than the square of the Fourier-
limited temporal width of the biphoton wave packet [2]. But
what if, for a given spectral shape and desired temporal dura-
tion, the far-field limit is beyond reach?

In this Letter, we adopt a technique from classical photonics,
termed near-field FTM [16], to demonstrate arbitrary shaping
of the temporal correlations of broadband biphotons. Here,
successful FTM is achieved through spectral amplitude and
phase preadjustment along with smaller amounts of dispersion
(compared with the far-field approach). Moreover, unlike far-
field FTM, which leads to spreading of the correlations over a
large temporal window, typically on the ns scale, the near-field
technique can be used to address a narrower temporal range (a
few ps) as it does not require substantial dispersion. Our work is
an addition to the recent efforts in developing various means to
tailor the temporal correlations of biphotons.

Consider an entangled photon pair generated from sponta-
neous parametric downconversion (SPDC) of a monochro-
matic pump. The second-order correlation function of the
SPDC photon pair is given by G (1) = |y(z)|>, where
w(7) is referred to as the effective biphoton wave packet
[17]. Prior to any manipulation, the two-photon temporal wave
packet y;, (7) is related to the two-photon spectral amplitude
¢, (Q) through the Fourier transformation

vl = [ A, @ (1)
Propagation of the biphoton in a dispersive medium with a net

quadratic spectral phase constant, 4, [ps]* modifies the wave
packet as follows [2]:

Vou(®) / 4P, (Q) e 25, @)

which we can also formulate in the time domain to yield a
Fresnel integral:

V@) x 7 [y @y i ()

The expression of the biphoton wave packet [Eq. (3)] bears a re-
semblance to the complex envelope of a classical pulse propagating
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through dispersion; it is on this account that we adopt the math-
ematical procedure in [16] for the following discussion.

If the net dispersion parameter is much larger than the
square of the temporal width of the biphoton wave packet
(far-field condition), the first complex exponential term under
the integral in Eq. (3) can be dropped as an approximation.
Consequently, it would be possible to write the resulting wave
function as

Voul®) / de'yr () 142, @)

which results in G(()i)[(‘r) = |¢hin(Q = 7'/A,)|?, meaning that
the temporal correlation is now essentally a scaled-replica of
the biphoton spectrum. Demonstrations of far-field FTM have
already been shown using different biphoton sources. In [2], the
authors show far-field mapping of continuous broadband spectra
from type-I and type-II SPDC, while in [15] strong dispersion
was used to map a biphoton comb structure from a microring
resonator into temporal correlations. In addition, we show far-
field FTM after spectral-amplitude shaping of SPDC biphotons.
Using a pulse shaper, we program three rectangular filters with
bandwidths of 50, 100, and 150 GHz, on both signal and idler
photons, as can be seen in Fig. 1(a). After propagating them
through a chirped fiber Bragg grating with A, = 5200 ps?,
which easily meets the far-field condition, the temporal correla-
tion now resembles the biphoton spectrum, as shown in
Fig. 1(b).

On the other hand, if 4, is not large enough to meet the far-
field condition (i.e., operation is in the near-field regime), we
can still obtain the expression in Eq. (4); this time, we eliminate
the first complex exponential term under the integral in Eq. (3)
by replacing the input wave packet with a modified version,

Yar (7)) = pin(7) x 67720, (5)

Therefore, irrespective of the amount of dispersion available,
we are able to map a target shape to the temporal domain
by preadjusting the biphoton wave packet before propagating
it through dispersion. Indeed, the expression in Eq. (5) points
to the utilization of quadratic temporal phase (a time lens)
[18,19] for preadjustment. However, in our experiments, we
realize the functionality of the time lens by applying the fre-
quency-domain equivalent of the expression in Eq. (5) using
a programmable pulse shaper; this Fourier approach is termed
virtual time lensing [16]. Hence, our near-field shaping
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Fig. 1. Depiction of far-field frequency-to-time mapping. (a) The
biphoton spectrum measured after three rectangular filters are applied
on both the signal and idler sides. (b) The temporal correlation of the
biphotons after propagating through a chirped fiber Bragg grating
with A4, = 5200 ps®. The blue markers are the measured data points
(acquired using a pair of single-photon detectors and an event timer),
while the red dashed trace is the theoretical prediction.
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procedure is as follows: (Step 1) compute w (') =
Win(t') x exp(it’? /2A,); (Step 2) Fourier transform y,¢(z")
to its frequency-domain equivalent ¢,¢(€2); (Step 3) apply
the near-field frequency-domain mask to the biphoton using
a pulse shaper; (Step 4) propagate the biphoton through the
dispersive medium with the net dispersion constant A,.

Our experimental setup is shown in Fig. 2(a). We couple a
continuous-wave pump laser at ~774 nm into a 67-mm-long
periodically poled lithium niobate (PPLN) waveguide that is
temperature controlled at ~140°C for quasi-phase matching
under the type-0 configuration. Frequency-degenerate broad-
band entangled photons centered around 1548 nm are gener-
ated through the SPDC process, and an internal efficiency of
10~ per coupled pump photon is measured. The residual
pump is removed with a series of colored filters, and the gen-
erated biphotons are fiber-coupled into a pulse shaper [20]
(Finisar WaveShaper 1000S) capable of independent amplitude
and phase control at 10 GHz resolution over the band from
191.250 to 196.275 THz.

Figure 2(b) provides the biphoton spectrum obtained di-
rectly after the collimator by an optical spectrum analyzer
(OSA; Yokogawa), before passing through the 2.5 THz pass-
bands set by the pulse shaper (dashed lines) for both the signal
and idler photons (the signal and idler are defined as the higher
and lower frequency bands, respectively). The pulse shaper is
also used to compensate for undesired dispersion from the non-
linear crystals as well as connecting fiber links, and will sub-
sequently be used to apply amplitude and spectral phase
filters for the near-field mapping demonstrations. Upon leaving
the pulse shaper, the biphotons are sent into the second PPLN
waveguide (whose phase-matching peak is aligned with the first
through temperature control), where the signal and idler pho-
tons are recombined via sum-frequency generation (SFG), also
with a conversion efficiency of 1073 [21]. The SFG photons at
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Fig. 2. (a) Experimental setup. (b) The biphoton spectrum mea-
sured directly after the first collimator. The dashed lines represent
the 2.5 THz signal and idler passbands of the pulse shaper.
(c) The measured temporal correlation function when the setup
dispersion is compensated by the pulse shaper. The error bars give
the standard deviation of five 1 s measurements, and the dashed curve
represents the theoretical result. SPDC, spontaneous parametric
downconversion; SFG, sum-frequency generation.
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774 nm are detected on a silicon single-photon avalanche pho-
todiode (PicoQuant 7-SPAD) with a dark count rate less than
20 s!, while the unconverted biphotons are filtered out. To
sweep the delay necessary for the temporal correlation measure-
ment, we use the pulse shaper to apply an additional linear
spectral phase onto the signal spectrum, the slope of which cor-
responds to a relative delay between the signal and idler.
Recording the upconverted photon counts then provides us
a direct measurement of G () with subpicosecond resolution
[5,21]. As shown in Fig. 2(c), a single-peak correlation function
with a full width at half-maximum (FWHM) of ~400 fs is re-
corded at the optimized dispersion compensation. Each data
point in the correlation plot is the average of five measurements
after dark-count subtraction, with the error bars showing the
standard deviation and dashed lines representing the expected
results based on theory. The correlation width in Fig. 2(c) is
also an indicator of the finest temporal feature achievable with
our setup, since the pulse shaper is incapable of increasing the
optical bandwidth. Detailed analysis, albeit in the context of RF
arbitrary waveform generation, can be found in [16].

To perform FTM, we start with programming the desired
spectral shapes on the biphoton spectrum via the pulse shaper.
Since frequency entanglement ensures that the net transfer
function on the biphoton is the product of the complex filters
applied to the signal and idler photons, we choose to shape only
signal photons and always leave the idlers untouched in these
experiments. For our first demonstration, we implement a
series of Gaussian filters with a linewidth of 210 GHz
(FWHM) and a spacing of 600 GHz. Figure 3(a) shows the
measured biphoton spectrum after applying the filters to the
signal half. The temporal correlation is subsequently stretched
by a quadratic spectral phase (with 4, = 0.6 ps?) programmed
on the shaper, which emulates a 30-m-long Corning SMF-28e
fiber. The output stretched temporal correlation, shown in
Fig. 3(b), is seriously distorted as the far-field limit is strongly
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Fig. 3. (a) Biphoton spectrum measured after three Gaussian pass-
bands, with a FWHM of 210 GHz and spaced by 600 GHz, are ap-
plied via the pulse shaper. (b) The temporal correlation measured after
a quadratic spectral phase with an 4, value of 0.6 ps? is applied on the
spectrum in (a). (c) The preadjusted biphoton spectrum (solid; ob-
tained by OSA) and extra spectral phases (dashed; programmed on
the pulse shaper) needed to facilitate near-field FTM. (d) The mea-
sured temporal correlation utilizing the near-field FTM method is
in good accordance with theoretical prediction.
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violated; as discussed in [16], the far-field condition is satisfied
only when A, > 1/25f?, where 5f is the finest spectral fea-
ture. In our case, since the smallest biphoton spectral feature is
210 GHz, the far-field condition is satisfied only for a
dispersion constant larger than 7.2 ps?. However, we can cir-
cumvent the far-field condition by utilizing the near-field
approach. We use the pulse shaper to apply the frequency-
domain equivalent of y¢(z") to the biphotons. Figure 3(c)
shows the new biphoton spectrum; the amplitude and phase
shapes are based on the absolute value squared and the phase
of ¢,¢(Q), respectively. The output temporal correlation in
Fig. 3(d) now shows clearly mapped Gaussian peaks after being
stretched again by the quadratic spectral phase.

Next, to show the flexibility of the near-field FIT'M method,
we implement a pair of triangular shapes (FWHM of each tri-
angle is 300 GHz) on the biphoton spectrum and the corre-
sponding results are shown in Figs. 4(a)—4(d). Here, again,
the far-field condition is violated, which results in a measured
temporal correlation that is distorted after being stretched
by the same amount of the quadratic spectral phase
(4, =0.6 psz, while 3.5 ps2 is the minimum needed for
far-field mapping). However, clear mapping can be achieved
once the specific complex filter is computed in advance and
applied to the biphotons before the dispersive propagation.
A closer look at the results also reveals that the orientation
of the triangles in the correlation plot [Fig. 4(d)] is flipped
when compared to the applied masks [Fig. 4(a)]. This is
due to the sign of A,; the oppositely signed dispersion constant
will ensure that the orientation of the triangles in the temporal
measurement is the same as that of the initial spectral masks.

At this point, it is also worth noting that the optical power
spectrum shaped for near-field FTM mirrors the distorted
temporal correlation, as can be observed in Figs. 3(b), 3(c), and
4(b), 4(c). The spectral mask applied to the biphotons for near-
field FTM is the frequency-domain counterpart of y,¢(z") in
Eq. (5), which can be written as

hor@) = [ dyiy (6 e, ©)
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Fig.4. (a) Biphoton spectrum and (b) the temporal correlation mea-
sured after amplitude filtering and a quadratic phase with an A4, value
of 0.6 ps* applied. (c) The preadjusted biphoton spectrum and (d) the

measured temporal correlation utilizing the near-field FTM method.
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Fig. 5. (a) Biphoton spectrum measured after a rectangular filter,
with a FWHM of 1 THz, is applied on the signal side. The measured
temporal correlations after a quadratic phase with A4, values of (b) 0.8,
(c) 1.2, and (d) 1.6 ps? applied after the near-field FTM correction
show good agreement with the theoretical curves. The measured
FWHM values are 4.4, 6.7, and 8.9 ps, respectively.

Thus, we can observe a one-to-one correspondence when we
compare the form of ¢,¢(2) to that of y(7) in Eq. (2), which
explains the similarity between the distorted temporal correla-
tion and the near-field corrected optical power spectrum.

We also emphasize that the near-field mask is complex,
composed of not only an amplitude but also a phase that varies
depending on the specifications of the target temporal correla-
tion. As can be seen, the applied spectral phase in Fig. 4(c) is
distinct from that applied in Fig. 3(c). Even though the phases
here are only a few radians, they are vital for successful imple-
mentation of this technique, whereas in the far-field limit, the
correlation is insensitive to the spectral phase of the input.

Finally, for a target shape, the near-field FTM method pos-
sesses a strong tunability in controlling the temporal correlation
width, while maintaining the total photon flux. Although the
preadjusted complex biphoton spectrum ¢,¢(Q2) is dependent
on the amount of dispersion available [Eq. (6)], the spectral
energy remains constant. This can be understood through
Parseval’s theorem,

- / 4O Q)2 = / W@ @

which allows us to compute the spectral energy of the biphoton
in the temporal domain. Since using Eq. (5) |y, (z))|> =
lwin(z))|?, we can infer that the spectral energy of the near-
field corrected biphoton is always equal to the energy of the
input wave packet and does not depend on dispersion.
Experimentally, we illustrate this property of strong tunability
by using different dispersion values to obtain a rectangular
target shape. Figure 5(a) provides the biphoton spectrum after
applying a rectangular filter with a FWHM of 1 THz. We then
compute and preadjust the biphoton spectrum to explore the
near-field FTM for three different dispersion parameters,
A, = 0.8, 1.2, and 1.6 ps?, insufficient to meet the far-field
condition. The corresponding measured temporal correlations
shown in Figs. 5(b)-5(d) demonstrate excellent mapping to
the target waveform, with a FWHM of 4.4, 6.7, and
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8.9 ps, respectively, in close agreement with theoretical predic-
tions. Moreover, the maximum coincidence counts recorded in
Figs. 5(b)-5(d) are ~1400, ~930, and ~700 per 5 s, respec-
tively, from which we obtain a correlation width-height product
of 6160, 6231, and 6230 counts per 5 s, respectively. This sug-
gests that the total photon-pair flux stays almost constant, even
in the presence of different A, values.

In summary, we have shown that the proposed near-field
FTM scheme can create arbitrary temporal correlation functions
in the picosecond region. By preadjusting the complex biphoton
spectrum with a Fourier-transform pulse shaper, the target shape
can be mapped onto the biphoton temporal waveform after
propagating through a small amount of dispersion. Unlike
amplitude-only filtering, which results in a reduction of the bi-
photon flux to achieve longer temporal correlations, this near-
field mapping approach synthesizes both amplitude and phase
filtering for the efficient shaping of biphotons.
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