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Abstract

Most buildings are designed using wind loading codes rather than wind tunnel testing.  
This paper discusses some of the experiences of using a range of international codes 
in an international design practice.  A comparison of wind loads predicted by a range 
of wind loading codes for two building types, a city centre tall building and an 
isolated low-rise building with a long-span roof, are then presented.

Introduction

Code-based predictions of wind loading may be used throughout the design of a 
building, or may just be used as an intermediate step before wind tunnel testing is 
conducted.  Most buildings fall into the first category, with the decision to wind 
tunnel test usually being made on the basis of unusual form or size of the building.  
Perceptions of unusual form or size or the necessity for wind tunnel testing are also 
based on local experience and past experience of wind tunnel testing.  

For example, in Hong Kong, as in the rest of the world, it is unusual to wind 
tunnel test residential buildings.  In Hong Kong, however, most residential buildings 
are around 150 m high, a height that would almost guarantee wind tunnel testing in 
most other countries.  In Hong Kong, with this percentage of tall buildings located 
around steep topography in a typhoon region, it would be reasonable to expect that 
there would be a very advanced wind loading code.  In fact, the opposite is true and 
Hong Kong currently has one of most basic wind codes in the world.     

Wind engineering education is still quite rare, and most engineers have no 
more education about wind engineering than a working knowledge of use of local 
codes.  The extent to which engineers understand building aerodynamics is thus often 
directly related to the complexity of the code with which they are familiar.  As the 
simplest codes are the ones which are the ones which are going to cover the fewest 
number of cases it is, perversely, the users of those codes who are least equipped to 
recognise where the code is not appropriate or to suggest alternative design 
approaches.

It is now common for overseas engineers to work on projects in countries with 
which they are not familiar.  An example later in this paper is of a building in Beijing 
being designed by engineers in Sydney.  At the initial design stage many engineers 
will use the wind design codes with which they are familiar to gain an initial estimate 
of loads and/or responses.  Obviously to do this requires the input of a site-specific 
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wind speed consistent with the code being used.  If the use of a different code during 
initial design leads to significantly different results to the local code (which will most 
likely have to be used for design submissions) then this can have a significant impact 
on the design process.  It is therefore important for design engineers to understand the 
limitations of any design codes that may be used.  Similarly, knowledge of the 
limitations or conservatisms inherent in different codes informs the decision on where 
wind tunnel testing is necessary or where it can result in significant design 
economies.

This paper illustrates two examples of code calculations for different building 
types: a high-rise building in a densely built-up urban environment and a large-span 
low-rise structure in fairly open terrain.

Wind loading codes

Wind loading codes come in many shapes and forms, sometimes being stand-alone 
documents, sometimes part of larger loading codes and sometimes part of structural 
design codes (Figure 1).

Figure 1.  Selection of wind loading codes used in this paper.

This paper does not seek to provide an exhaustive comparison of the features of 
different wind codes, as such information is readily available elsewhere (e.g. Holmes 
2001, Kijewkski & Kareem 1998, Mehta 1998).  However, some of the key features 
for engineers seeking to mix-and-match elements of different codes are highlighted 
below.  These are the areas where potentially costly mistakes are often made.



Basic wind speeds and pressures.  The starting point of any wind code is to define a 
basic wind speed or pressure.  Some codes are based on gust wind speeds, some on 
10-minute mean wind speeds, some on hourly mean wind speeds and some on fastest 
mile wind speeds.  Alternatively, some codes use dynamic pressure as a starting point 
and this, again, may be expressed in terms of a mean or a gust value.  It is vital the 
wind speed or pressure used is consistent with the code in terms of averaging time.

It is also common to find anomalies in the wind speeds between adjacent 
regions covered by different wind codes.  An example of this is Hong Kong and 
Macau, with the Macau design wind pressures between 10 m and 30 m in height in 
open terrain being 40% higher than those in the Hong Kong code.  This is partially 
due to the pressures in the Macau Code being nominally 200-year return period 
pressures compared with the 50-year pressures in the Hong Kong Code.  However, a 
meteorological analysis suggests that the increase in pressure due to the increased 
return period should only be around 30% higher.  Neither of these values are 
particularly consistent with analyses of typhoon data for the region.  It is therefore 
important to use a wind speed that will be acceptable to the local regulatory authority, 
rather than a best-estimate wind speed.

Pressure coefficients. The pressure coefficients in wind loading codes are 
necessarily tied to the averaging time of the wind speed or pressure.  Care needs to be 
taken, however, not to just use pressure coefficients from one code directly with 
another.  For example, BS6399 gives clear zones of different pressure coefficients for 
use with a gust pressure to give cladding design pressures.  AS/NZS1170.2, however, 
requires the pressure coefficients to be multiplied by a local pressure factor to reflect 
the variation in pressure over a surface.  GB50009-2001 is based on a mean basic 
pressure, but the pressure coefficients are designed to be used with a gust pressure, 
another factor being introduced to convert the mean basic pressure to a gust pressure.

Some codes present nett pressure coefficients (e.g. Hong Kong) while most 
present external pressure coefficients that need to be combined with an internal 
pressure coefficient to determine a nett pressure.  In this case, it needs to be 
remembered that the negative external wall pressures in codes refer to sidewalls.  For 
wall pressures, the worst nett pressure is likely to occur from an opening in the 
windward wall causing a positive internal pressure with the negative external pressure 
on the side wall.  In practice, this is quite likely to happen as areas of positive 
pressure are most likely to be struck by debris.  On long-span roofs, however, the 
worst loading case is often caused by negative internal pressure that can lead to a nett 
downward wind force that acts in the same direction as the self-weight, live loading 
and any snow loading.

Dynamic response mechanisms.  Most wind loading codes now have methods for 
calculating along-wind response of tall buildings.  Of course, for slender buildings it 
is the cross-wind response mechanism that is most likely to result in the largest 
dynamic responses.  This is covered by far fewer codes, and in a much more varied 
way than the along-wind response.  As a result the predictions vary widely between 
codes.  Interestingly, although the Chinese wind loading code does not cover cross-
wind response, there is a section on this and a calculation method in the steel tall 



building code.  Also, as this is a response mechanism with which many structural 
engineers and architects are unfamiliar (as it doesn’t appear in many codes), the 
results of wind tunnel tests showing loads and responses larger than those given in 
code predictions can be the source of some disbelief.   Most designers do not realise 
that wind codes do not always give conservative results.

Sample codes and example calculations

Calculations have been conducted using a range of codes for two example buildings: 
a high-rise building located in built-up terrain and a low-rise building with few 
surroundings.  The codes used for the two buildings described below were:

ASCE7-98: The U.S. national standard for minimum design loads.  This has since 
been replaced by ASCE7-02.  This is based on a 3 second gust wind speed.

AS/NZS1170.2:2002: The Australia/New Zealand wind loading standard.  This code
uses a gust wind speed and contains both along-wind and cross-wind loading 
predictions.  The cross-wind prediction mechanism is based on wind tunnel tests of 
isolated sharp-edge rectangular plan-form buildings.  

GB50009-2001: The Chinese national loading code.  This uses a 10 minute mean 
pressure and has an along-wind loading method.

Hong Kong Wind Code 1983: The current code of practice on wind effects in Hong 
Kong.  This is the most basic of the wind codes examined and does not contain any 
dynamic response method, but assumes highly correlated gust loading.  The code is 
based on gust pressures. 

Draft Hong Kong Wind Code 2003: The current draft of the revised code of practice 
for wind effects in Hong Kong.  It is expected to be issued by early 2004.  Design 
wind pressures at upper levels have been reduced, and a dynamic response factor has 
been introduced using an hourly mean pressure as its starting point.

NBCC1995: The Canadian national building code.  This starts with an hourly mean 
wind pressure and has both along-wind and cross-wind calculation mechanisms based 
on hourly mean wind speed.  Unlike the AS/NZS code, the cross-wind prediction 
method is semi-empirical.

Example Building 1 – High-rise. The high-rise building is a 180 m high office 
building with plan dimensions of approximately 65 m by 33 m.  The building is 
located in a densely built-up urban environment on Hong Kong Island (see Figure 2).  
The structure has a conventional reinforced concrete core and perimeter columns.  
Wind tunnel testing was conducted to investigate wind-induced structural loads and 
responses and local pressures on the building envelope.  Based on past experience, it 
was expected that the wind tunnel tests would result in a reduction in structural loads.  



It was also expected that cladding design loads could be decreased over large parts of 
the building, while identifying areas where pressures would be higher than code 
predictions.

Figure 2.  Building 1 – October 2003.

The results of the comparison are shown in Figure 3.  This shows along-wind base 
moments predicted by a range of codes, normalised to the wind tunnel test results.  
The basic wind speeds were all normalised to a given 10 m gust wind speed.  The 
results show a high level of consistency between the codes.  Each of the codes gives, 
as desired, slightly conservative results.  The Canadian code predicts a higher load 
than other codes. for this city centre building.

The cladding pressure tests showed, as expected, a number of areas where 
pressures were under-predicted by codes, particularly near building discontinuities 
and around the base.
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Figure 3.  Comparison of along-wind base moments about one axis of Building 1.

Building 2 – Low-rise. Building 2 is a large sports building being designed in 
Beijing.  It has dimensions of approximately 185 m by 185 m by 31 m (see Figure 4).  
The structure design is based on a common natural pattern, that of the natural 
formation of soap bubbles and was inspired by the solution of Weaire and Phelan 
(1994).  Thus, the structure appears very organic and random, but is in fact highly 
repetitive and buildable.  Although this is a relatively complex structural form, the 
exterior of the building is very aerodynamically simple, being a large cuboid.

The cladding initially proposed for the structure was bubble-like ETFE.  The 
cost of ETFE is dependent on the number of layers of material and this led to a desire 
to predict as accurately as possible the areas of roof that would be subjected to high 
enough pressures to require more expensive panels.  It is to be expected that wind 
code approaches would be fairly accurate for this type of structure.  However, wind 
tunnel testing will be conducted in order that measurements can be taken to coincide 
with actual irregular cladding panels.  At the time of writing, the wind tunnel testing 
had not yet been conducted.



Figure 4.  Building 2.  (Picture © PTW & CSCEC)

Code comparisons of external pressure coefficients for cladding design are shown in 
Figure 5.  These do not include an allowance for internal pressure, with the exception 
of the Hong Kong code in which only ‘total’ pressures are given based on an 
assumption of a fully sealed building. It can be seen that there are wide variations 
between the predictions from each of the codes.  For cladding, ASCE7-98 has the 
most onerous loads near the corner of the building.
Most of the codes show only a narrow edge effect, with the exception of 
AS/NZS1170.2, which shows a gradual reduction in pressures across the building.  
The edge effect is designed to reflect the extent of the separation bubble over the roof.  
This is largely dependent on the height of the building, rather than its depth.  It is 
expected, and hoped, that the wind tunnel tests will show a fairly narrow edge zone.
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Conclusions

Consulting engineers working in an international environment often use a wide range 
of national codes and standards.  Many are not familiar, however, with wind loading 
and find it difficult to combine elements of different codes.  The differences in 
predictions between different codes can also lead to difficulties if the design code 
used for submission of design documents is not the one used for preliminary design.  
This paper describes some of the differences and presents examples of typical 
buildings for which code calculations have been conducted.

The authors commend current efforts towards international standardisation of 
code formats.  This is a necessary step towards ensuring a consistent level of design 
performance around the world.
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