Shear Design of Prestressed Concrete: A Unified Approach
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Abstract: Design methods for the shear resistance of reinforced and prestressed concrete beams are based on empirical evidence. Due to
different approaches in their development, different equations are used to calculate the shear strength of reinforced and prestressed
concrete. Recent research has provided a simplified approach for the shear design of reinforced concrete that eliminates many of the
shortcomings of current design procedures and corresponds well to a wide range of test results. The objective of this research was to
investigate the applicability of this new approach to prestressed concrete. The applicability of the shear model was evaluated by a
comparison of its results with the experimental strengths of 86 specimens which failed in shear. This investigation indicated that the shear
model is applicable to prestressed sections. For design purposes, the shear model was simplified to develop a design expression that

unifies the design of reinforced and prestressed concrete sections.
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Introduction

The behavior of structural concrete beams subjected to shear has
been investigated since the advent of reinforced concrete. Due to
the number of variables involved, however, a general shear theory
has been evasive. Consequently, design is based on empirical evi-
dence which has resulted in a multitude of design equations for
the design of structures in shear. For instance, the ACI 318 Build-
ing Code (ACI 318 2005) provides five different equations to
evaluate the concrete contribution to shear resistance, V., for non-
prestressed members and three different equations to evaluate V,
for prestressed members. To calculate V. according to the
AASHTO design specifications is dependent on the version of
specifications used. In general, the 17th Ed. of the Standard
Specifications (AASHTO 2002) conforms to the ACI building
code. However, the AASHTO LRFD (AASHTO 2005) bridge de-
sign specifications introduced substantially different provisions
for shear design and provided a new method that designers must
consider.

The AASHTO LRFD specifications are based on the modified
compression field theory and on strut-and-tie modeling. There are
advantages to the LRFD method such as unified treatment of
nonprestressed and prestressed members. However, the LRFD
specifications have been identified as being complex, requiring
time-consuming iteration, producing illogical answers in some
situations, and providing excessive amounts of reinforcement for
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certain cross sections (NCHRP 2002). ACI 318, while generally
providing ease in calculation, has also been identified as having
several shortcomings including lack of conservatism for lightly
reinforced cross sections, for sections utilizing high strength con-
crete, and for large sections (Reineck et al. 2003; Tompos and
Frosch 2002).

Recent research has developed a model and simplified design
equation for calculating the shear strength of nonprestressed
members which eliminates many of the shortcomings of current
design methods (Tureyen and Frosch 2003). The equation recom-
mended for the design of nonprestressed members is as follows

V.=5\fbye (V.=042\fb,c) (1)

The applicability of this design equation is supported by com-
paring the computed shear strengths with the experimental
strengths of 339 specimens as shown in Fig. 1. As an additional
benefit, the design equation was shown to be applicable to both
steel and fiber reinforced polymer (FRP) bar reinforced beams.
The effective reinforcement ratio is plotted on the horizontal axis
which is simply the reinforcement ratio (p) multiplied by the
modular ratio to account for the varying modulus of elasticity of
FRP reinforcement. This design equation is simple and shown to
provide conservative results while maintaining a fairly uniform
factor of safety.

To provide perspective on the improvement provided by this
equation, Fig. 2 presents results provided by the commonly used
design equation

V.=2\fb,d (V,=0.17f.b,d) (2)

As shown, the factor of safety varies with the effective rein-
forcement ratio, and unconservative results can be obtained for
low ratios, especially FRP reinforced beams which have low ra-
tios resulting from the modulus of elasticity of this reinforcement

type.

Research Objective

The objective of this study was to investigate the applicability of
the shear model and simplified design method developed for re-
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Fig. 1. Results of Eq. (1) (nonprestressed)

inforced concrete members to prestressed concrete members. A
primary goal was to develop a simple design procedure that can
be used for the calculation of shear strength for both nonpre-
stressed and prestressed sections enabling unification and simpli-
fication of design procedures.

Shear Strength

For prestressed members, there are two primary modes of crack-
ing in shear: web shear and flexure shear. Web-shear cracking
initiates in locations of high shear that are also subjected to low
flexural stress. This cracking mode is typically observed in the
end regions of thin-webbed prestressed members and occurs
when the principal tensile stresses in the web exceed the tensile
strength of the concrete. According to the ACI code (ACI 318
2005), the web-shear strength (V) can be computed according to
Eq. (3a). Alternately, a principal stress analysis can be conducted
con_sidering _an assumed concrete tensile strength limit of

4\f7 (033VF)

Vew= 35\FL +03f,0b,d, + V, (3a)
(Vo= (0.29\F! +0.3f,)b,d, + V) (3b)

Flexure-shear cracking is the result of shear causing flexural
cracks to “turn over” and incline towards the loading due to in-
clined tension cracking. According to the ACI code, the flexure-
shear strength (V) can be computed according to Eq. (4a)
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Fig. 2. Results of Eq. (2) (nonprestressed)
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Fig. 3. Free body diagram at cracked section
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While both modes must be considered, the focus of this re-
search study is on the flexural-shear strength.

Prestressed Beam Database

A database of prestressed concrete sections was generated to
evaluate the applicability of the shear model. Composed of rect-
angular and I-sections without transverse reinforcement from tests
conducted by Sozen, Zwoyer, and Siess (Sozen et al. 1959), the
database was examined to eliminate failures which were not
caused by diagonal tension. A total of nine sections were elimi-
nated because they were reported to have failed in flexure while
four sections were eliminated because they showed signs of web
shear. In these four sections, diagonal-tension cracks formed in
locations where flexural cracks were not present. Considering
only diagonal-tension failures, the database contained 37 rectan-
gular sections and 49 I-sections. The range of variables for these
specimens is as follows: concrete strength, f., from 1,750 to
7,990 psi (12.1-55.1 MPa), effective depth, d, from 8.0 to
11.1 in. (203-282 mm), and a/d ratio from 2.70 to 6.73. All
specimens were simply supported and tested with either one or
two concentrated loads to provide regions of constant shear. It is
interesting to note that these are the same specimens that were
considered in the development of the existing ACI provisions.

Shear Model Analysis

In the current ACI 318 design equation, the effective area which
resists shear is b,,d. The proposed shear model, however, provides
a different effective shear area for the calculation of V. A free
body diagram at a cracked section is shown in Fig. 3. Because the
cracked concrete cannot provide bond to the tension reinforce-
ment, the tension force (7) must remain constant over the crack
width Ax. To maintain horizontal equilibrium, the compression
force (C) must also be constant over the cracked section. Consid-
ering moment equilibrium, a shear couple (VAx) is present on the
section. To resist this moment, the resultant of the compressive
force on the larger moment side shifts upward. This is accom-
plished by shifting the neutral axis upward and increasing the
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Fig. 4. Mohr’s circle

flexural stress, creating the moment CAy. Consequently, a shear
stress distribution, shown in Fig. 3, is created from this shift and
is distributed through the compression zone. The shear stresses
were computed considering equilibrium of horizontal slices
across Ax. According to this model, shear resistance is provided
through the compression zone at the cracked section.

Considering the flexural and shear stress distributions (Fig. 3),
each point along the depth of the section has a corresponding
flexural stress (o) and shear stress (7). For this state of stress, the
principal tensile stress was determined from Mohr’s circle (Fig. 4)
according to Eq. (5)

2
~fi=7- (g) +7? (5)

Eq. (5) can be solved for the shear stress resulting in Eq. (6).
The critical shear stress (7.,) that causes cracking in the compres-
sion zone is determined by setting the principal tensile stress
equal to the tensile strength (f,,) of the concrete

g 2 o 2
Ter = \l(z"'fct) _<5> (6)

The flexural stress, o, at each location along the depth of the
compression zone was substituted into Eq. (6) to evaluate the
corresponding 7. If the applied T as provided from the shear
stress distribution exceeds T, a crack can form inside the com-
pression zone. This process was repeated for increasing levels of
moment above the cracking moment until a crack developed in
the compression zone. Crack initiation inside the compression
zone was identified as causing a flexure-shear failure.

The accuracy of the shear model analysis is dependent on the
assumptions on which it was based. The primary assumptions for
this analysis were the stress-strain relationship and the tensile
strength of concrete. The stress-strain relationship for concrete
was taken as Eq. (7) as provided by Hognestad (Lin and Burns
1981). The tensile strength of concrete was taken as
6\’f(’ (0.5 V’]TL’,) which is consistent with the derivation of the shear
model provided for reinforced sections (Tureyen and Frosch

2003)
2
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Fig. 5. Comparison of shear model with test results

Using this analysis method, the shear strength of the speci-
mens included in the database was calculated (Wolf 2003). As
shown in Fig. 5, the measured shear strength was divided by the
calculated shear strength for each specimen and plotted versus the
initial axial precompression. The initial axial precompression
shown is the compressive stress in the concrete (after allowance
for all prestress losses) at the centroid of the section.

While this method is fairly accurate, it can be noted that the
shear strength of several sections is unconservative. The primary
cause of this overestimation of shear strength is the assumed ten-
sile strength, 6\f! (0.5 \']T(’) If a lower value of tensile strength is
used, it is possible to increase the level of conservatism to any
level desired.

For comparison purposes, the shear strengths of the specimens
were also calculated using the ACI approach [Eq. (4)]. As shown
in Fig. 6, slightly more scatter is provided by this approach. In
particular, there is an inconsistency in the accuracy provided for
nonprestresssed sections as compared with the prestressed. A sta-
tistical comparison of the results is provided in Table 1. These
results indicate that the proposed shear model provides reasonable
results while providing a means to unify the calculation procedure
for nonprestressed and prestressed sections.
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Fig. 6. Comparison of ACI method with test results

1514 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / NOVEMBER 2007



Table 1. Statistical Results

Calculation method

Statistical

Section shape parameter ACI 318 Shear model Design equation
Rectangular Average 1.45 1.08 1.49
SD 0.26 0.15 0.22
cov 0.18 0.14 0.15
I-Section Average 1.62 1.18 1.45
SD 0.48 0.22 0.23
cov 0.30 0.19 0.16
All Average 1.55 1.14 1.47
SD 0.40 0.20 0.23
cov 0.26 0.18 0.16

Simplified Method

While the results provided by the shear model analysis compare
very well with the test results, multiple calculations are required
to determine V_ which can be time consuming. Therefore, an
investigation was performed to simplify the shear model for de-
sign purposes. Rather than analyzing local stresses over the depth
of the compression zone, the goal of this investigation was to
determine an average shear strength that causes a flexure-shear
failure.

To determine the average shear strength, the rectangular speci-
mens from the prestressed beam database were isolated to deter-
mine a coefficient of V/fé, defined as K, which would provide
conservative results. Considering an average shear strength over
the compression zone, the equation for shear strength can be rep-
resented as

V= K\fb,c )

For the initial investigation, only rectangular sections were
considered. For rectangular sections, an average shear stress can
be considered over the entire compression zone. [-beams in the
database were not considered because the contribution of the
flanges to shear strength was uncertain. Considering the analytical
results for V;, K was computed for each specimen using the neu-
tral axis depth, ¢, that corresponds to the applied moment at the
predicted failure shear. The resulting K was plotted as shown in
Fig. 7. As shown, the analytical K values range from approxi-
mately 5 to 10.

Considering Eq. (6), shear strength is a function of the flexural
stress in the compression zone. Therefore, K was defined in terms
of the applied moment to account for the influence of flexural
stress on flexure-shear strength. The general equation for K was
considered as

K=5+av-1) 9)

where a=variable to modify for the influence of flexural stress on
shear strength; and v=multiple of the cracking moment,
Mapplied/Mcr-

After investigating varying a values, o equal to 0 was selected
because it returned consistent, conservative results. Therefore, Eq.
(9) simplifies to K=5 and is independent of the applied moment.
Consequently, flexure-shear strength can be estimated using Eq.
(10). This equation is identical to that proposed for nonprestressed
sections [Eq. (1)]

Va=5Vflbye (Vi=042Fb,c) (10)
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Fig. 7. K factors

While this simplification provides ease for the determination
of the shear strength of rectangular sections, a complication still
exists for flanged sections regarding the appropriate area of the
compression zone that should be considered. A database of 150
nonprestressed concrete sections (Kani 1979; Placas and Regan
1971; Farmer and Ferguson 1967; Laupa et al. 1953) was used to
determine the contribution of the flanges to flexure-shear strength.
Nonprestressed concrete T-beams were evaluated because, unlike
prestressed concrete sections, the neutral axis depth of reinforced
concrete sections is constant for moments above the cracking mo-
ment which allows it to be eliminated as a variable in the analysis
to determine an effective shear area. Shear failures in reinforced
beams are considered prior to flexural yielding as well as being
located in lower flexural stress regions; therefore, neutral axis
migration following yielding does not have to be considered. For
prestressed sections on the other hand, the initial tension gener-
ated by prestressing causes the neutral axis depth to vary with
increasing applied moments. At the cracking moment, the neutral
axis depth of a section is deeper in the section than the neutral
axis depth at a higher moment.

Knowing the shear which caused the beam to fail, the required
effective shear resistance area can be determined (Tureyen et al.
2006). The effective shear resistance area (A.y) is composed of
the web portion of the compression zone and an additional area of
the flange. Several investigations were performed to determine a
conservative, simple method to evaluate A.g. It was determined
that the contribution of the flanges should be limited by an effec-
tive flange width (b.g,), similar to current provisions used for
flexure in ACI 318. Using the T-beam database, the effective
flange width for shear was defined as

beff,v=bw+tf (11)

An example of the effective shear area is shown in Fig. 8. For
rectangular sections Ay is equal to b,,c. For flanged sections, if
the neutral axis is located in the web, A is equal to b,,c plus, tjz».
If the neutral axis is located in the upper flange, A is equal to
beff,vc' —

Considering an average shear strength (K\f.), the number of
calculations required to evaluate the shear strength of a pre-
stressed section is significantly reduced. Using the simplified
analysis, the neutral axis depth at a given moment is the only
calculation required. Once the neutral axis depth is known, A
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Fig. 8. Effective shear area

can be easily determined, and the shear strength can be computed

as the average shear strength, S\s’z (0.42\572) times the effective
shear area A [Eq. (12)]

Va=5VfAer  (Vii=0.42Vf Aetr) (12)

This simplified method was used to compute the shear
strengths of the beams included in the prestressed beam database
to evaluate its performance. The measured shear strengths were
again divided by the computed shear strengths and plotted versus
the initial axial precompression (Fig. 9). As shown, the simplified
method provides consistent and conservative results across the
range of axial precompression included in the database. Further-
more, it performs with nearly the same level of accuracy as the
complete shear model (Fig. 5). The statistical results in Table 1
also support the excellent performance of this expression. It
should be noted that the equation performs equally well for both
rectangular and flanged sections.

As reflected by the range of variables considered in the data-
base, consistent results are provided across a range of concrete
strengths, initial axial precompression stresses, and a/d ratios.
Unfortunately, it was not possible to evaluate the presence of a
size effect as the effective depths only ranged from 8.0 to 11.1 in.
(203-282 mm). However, analysis of the reinforced concrete da-
tabase (Tureyen and Frosch 2_003) dem_onstrates that the use of an
average shear strength of 5V (0.42vf!) provides a lower bound
across a range of effective depths from 4.3 to 43.2in.
(102—1,097 mm). Additional testing is needed for larger pre-
stressed beams unreinforced in shear.
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Fig. 9. Comparison of design equation [Eq. (12)] with test results
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Fig. 10. Design example

Design Example

To illustrate the design process using the proposed design expres-
sion as well as to compare with results provided by current prac-
tice, an example problem was evaluated. Consider a simply sup-
ported beam subjected to a dead load of 0.45 kip/ft (6.6 N/mm)
and a live load of 1.5 kip/ft (22 N/mm) over its entire 70 ft
(21.3 m) span (Fig. 10). The moments and shears for this loading
were computed based on the ACI 318-05 load and resistance fac-
tors. Based on the moment diagram, the cross section was appro-
priately sized. Material properties and dimensions, as well as the
effective flange width for shear, are shown in Fig. 11. Because the
effective flange width is only a function of section geometry, it
can be determined directly for the cross-sectional dimensions.
Consequently, the effective shear area is simply a function of the
neutral axis depth.

As stated earlier, the neutral axis depth of prestressed concrete
sections varies with applied moment. Therefore, the neutral axis
depth and subsequently the shear strength are dependent on the
applied moment. For each section along the length of the beam,
the neutral axis depth was calculated based on the factored mo-

£ =5 ksi (34 MPa)
Sre = 155 ksi (1070 MPa)
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Fig. 11. Selected cross section
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Fig. 12. Design shear strengths

ment at that location using a strain-compatibility analysis. For
sections where the moment is greater than or equal to the cracking
moment, the shear strength is controlled by flexure-shear (V).
For these regions, the shear strength was computed according to
Eq. (12). The effective shear area, Ay, was determined over the
length of the beam based on the computed neutral axis depth at
that location. For moments less than the cracking moment, the
section is not cracked and the shear strength is controlled by web
shear (V) which was computed according to the alternative
method provided by ACI. The shear strengths computed using the
proposed method are plotted in Fig. 12. As shown, the shear
strength drops as the moment is increased with the lowest capac-
ity being calculated at midspan. For comparison, the flexure-shear
strength calculated using ACI 318 (V; ocp) is also provided. For
locations greater than approximately 27 ft (8.2 m) from the
support, the ACI minimum, 1.7\f.b,c (0.14\s’7[,bwc), controls.
Overall, the shear strength calculated using the proposed method
follows the same trend as the ACI method but computes shear
strengths consistently higher than that computed using the ACI
318 method. While this provides less conservatism than current
practice, the proposed method is conservative as previously
discussed.

As an alternative procedure, rather than computing V;, over
the length of the beam, only the minimum shear strength needs to
be calculated. This alternative procedure provides a uniform and
conservative shear strength for locations where the applied mo-
ment exceeds the cracking moment. Furthermore, it provides sim-
plification in that only one neutral axis depth need be considered.

For this example, the concrete alone is not capable of resisting
the applied shear. At locations where the applied shear exceeds
the shear strength (V,>V.,), transverse reinforcement should be
provided to prevent a shear failure. The spacing and amount of
the vertical reinforcement should be determined such that
V,=V.+V; as currently provided by the ACI 318 provisions. The
concrete contribution V; or V., as appropriate, is added to the
shear reinforcement contribution V, to provide the total shear
strength.

Calculation of V,,

As previously discussed, ACI 318 provides two methods for the
calculation of web-shear strength in prestressed members. The
alternative approach provided in ACI 318, Section 11.4.3.2 pro-
vides for a principal stress analysis of an uncracked section.
Using a tensile strength of 4\e"f7_ (0.33 \'/]T(’,), the web-shear strength
of the section can be determined. The other approach is provided
by Eq. (3) [ACI 318, Eq. (11-12)]. This equation provides an

approximation of the principal stress analysis (Lin and Burns
1981). For the design example, the web-shear strength,
V.w=105 kips (467 kN), is presented based on that calculated
using the alternative approach recommended by ACI 318. Similar
results are provided if Eq. (3) is used [V, =109 kips (485 kN)].

It should be noted that the ACI approach used to calculate
web-shear strength is based on mechanics using a principal stress
analysis. This analysis of the uncracked section is consistent with
the shear strength model presented by Tureyen and Frosch (2003)
and the shear model presented here for analysis of flexure-shear
strength. However, for consideration of flexure-shear strength, a
principal stress analysis is conducted for the cracked section.

While ACI 318 recommends a tensile strength of 4vf/ (0.33 \"]T’ )
for the web shear analysis, the shear model was developed using
a tensﬂe strength of 6 f 0.5V ) A tensile strength of
6\ f 0.5y f ) is reasonable for analysis purposes; however, a
lower value such as suggested by ACI is appropriate to provide
conservatism as discussed earlier and illustrated by Fig. 5.

Comparison of Design Methods

The primary difference between the proposed design equation and
the ACI 318 approach is at the transition where the flexure-shear
strength begins to control. When calculating shear strength using
ACI 318, both V and V., are calculated over the length of the
beam with the lesser of the two controlling. Therefore, the
flexure-shear strength can control design even in portions of the
beam which have a factored applied moment less than the crack-
ing moment. The proposed design equation calculates shear
strength differently. This equation considers that flexure-shear
cracks initiate as flexural cracks. With sufficient shear, these flex-
ural cracks turn into flexure-shear cracks and ultimately produce a
flexure-shear failure (Lin and Burns 1981; ACI 318 2005). There-
fore, flexure-shear failure cannot occur where flexural cracks are
not present such as where the applied moment is less than the
cracking moment. For locations where the applied moment is less
than the cracking moment, the shear strength is controlled by web
shear. At moments greater than the cracking moment, the lower of
the flexure-shear and web-shear strength controls.

Summary and Conclusions

A shear model was used to analyze a database of 86 prestressed
specimens which were tested in shear. The combination of flex-
ural and shear stresses in the compression zone of the cracked
section were calculated and principal tension stresses were deter-
mined to evaluate the shear strength of the section. Through this
analysis, it was concluded that the shear model is applicable to
prestressed concrete sections and provides a fairly accurate
method to calculate the flexure-shear strength (V) of prestressed
concrete. Consistent results were obtained over the range of initial
axial precompression stresses available in the database.
Although the shear model is applicable to prestressed concrete,
the analysis procedure is not practical for design purposes. An
investigation was conducted to simplify the model considering
both rectangular and flanged cross sections. It was determined
that simplification could be achieved in the calculation of flexure-
shear strength by considering an average shear strength of
S5 f (0.42Nf! ) over the compression zone. This method can be
extended for flanged sections through the use of an effective shear
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resistance area (A.y). As illustrated in Fig. 8, the effective shear
area consists of the web portion of the compression zone plus an
additional effective flange width. The effective flange width
should not exceed 0.57, on either side of the web.

Analysis of the prestressed beam database indicates that the
simplified design equation provides an accurate and conservative
method for the calculation of the shear strength of prestressed
sections considering a wide range of effective prestress levels.
The design equation [Eq. (12)] is identical to that previously
proposed for nonprestressed sections (Tureyen and Frosch 2003)
indicating that unification can be provided for the calculation of
shear strength in both reinforced and prestressed members. Fur-
thermore, as illustrated by the design example, the calculation of
shear strength provides consistency with expected behavior.
Flexure-shear strength is only calculated at sections where the
factored applied moment exceeds the cracking moment. Below
the cracking moment, the section is controlled by web-shear
strength.

Desigh Recommendations

Based on these findings, the following equation can be used to
compute the flexure-shear strength for both nonprestressed and
prestressed sections

rf_! ”,_,
V=5V iAer  (Vei =042Vl Acere) (13)

Where the applied moment is greater than the cracking mo-
ment, the flexure-shear strength (V) should be computed at mul-
tiple points along the length of the beam based upon the neutral
axis depth determined from a strain-compatibility analysis. If
design simplification is desired, only the minimum shear strength
is required to be considered and can be computed based upon the
neutral axis depth at the largest applied moment. Where the ap-
plied moment is less than the cracking moment, the current ACI
318 provisions should be used to calculate the web-shear strength
(V) of the section.
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Notation

The following symbols are used in this paper:
Ay = effective shear area [in.? (mm?)];
b,, = beam width [in. (mm)];
¢ = cracked transformed section neutral axis depth

[in. (mm)J;

d = effective depth [in. (mm)];

d, = distance from extreme compression fiber to centroid
of prestressing steel [in. (mm)];

E, = modulus of elasticity of reinforcement [psi (MPa)];

E, = modulus of elasticity of steel [psi (MPa)];

fi = specified compressive strength of concrete
[psi (MPa)];

fa = stress due to unfactored dead load, at extreme fiber
of section where tensile stress is caused by externally
applied loads [psi (MPa)];

fpe = compressive stress in concrete (after allowance for
all prestress losses) at centroid of cross section
resisting externally applied loads or at junction of
web and flange when centroid lies within flange
[psi (MPa)];

Jpe = compressive stress in concrete due to effective
prestress forces only (after allowance for all prestress
losses) at extreme fiber of section where tensile
stress is caused by externally applied loads
[psi (MPa)];

I = moment of inertia of section about centroidal axis
[in* (mm*)J;
M. = moment causing flexural cracking at section due to
externally applied loads [in.-l_b (N mm)]
1y 6\F 1+ oo F 1Y OSNF L+ frem 1)
M = maximum factored moment at section due to
externally applied loads [in.-Ib (N mm)];
V. = nominal shear strength provided by concrete
[Ib (N)];
V, = shear force at section due to unfactored dead load
[Ib (N)];
V; = factored shear force at section due to externally
applied loads occurring simultaneously with M,

[1b (N)];

V, = nominal shear strength [Ib (N)];

V, = vertical component of effective prestress force at
section [Ib (N)];

V, = nominal shear strength provided by shear
reinforcement [1b (N)]; and

y, = distance from centroidal axis of gross section,
neglecting reinforcement, to tension face [in. (mm)].
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