Onsite systems are “out of sight, out of mind” for most homeowners. Those who do realize where their wastewater goes may have questions: “I know it’s probably time to have my system inspected; I’m not sure when the last time was.” “It’s probably time to pump my tank, but how long can I wait?”

The best way to manage your onsite system is to keep all of your records in one place – a diagram showing the outline of your system, your record of inspections and dates of pumping, any work or repair you have had done on the system. If you don’t already have a file on your system, you should. We have a really good place for you to start: The Septic System Owner’s Guide from the University of Minnesota Extension Service. This file folder-sized booklet has pockets for keeping important papers, a space for the layout of your system, blanks for information on the installation and upkeep, as well as an Owner’s Guide with important information on the care and feeding of your onsite system. These booklets are available through The Farm Building Plan Service for $6.00. Please call Carol Sikler at 765/494-1174 or email carols@purdue.edu to order your copy. We will be happy to ship it with an invoice.

VIDEO FROM U OF MINN TELECONFERENCE AVAILABLE

The Onsite Wastewater Disposal Project has acquired a copy of the videotape from the October, 1999 satellite teleconference. Please call Carol Sikler (765/494-1174) or email carols@purdue.edu to add your name to the list to borrow it (2 week limit, please).

Feedback: Got an idea for the On-site newsletter? Send your ideas to carols@purdue.edu!
Indiana—Great for corn; not so great for on-site

In the early 1980s Purdue ran the RWASTE program on all of the soils profiles found in Indiana. According to the site selection criteria in the ISDH rule at the time, 80% of the land area in Indiana was unsuitable for conventional septic systems.

While the criteria for septics in use by ISDH is somewhat more forgiving than the one used by the Natural Resource Conservation Service (NRCS), the following table certainly points out some of the problems that can be expected. It was computed by Bill Hosteter, NRCS, using the Indiana NRCS Soils database and uses the following criteria that rates soils that are considered severe for treating residential wastewater.

<table>
<thead>
<tr>
<th>Property</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding</td>
<td>Frequent occasions</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td><40 inches</td>
</tr>
<tr>
<td>Depth to cemented pan or layer</td>
<td><40 in</td>
</tr>
<tr>
<td>Ponding</td>
<td>yes</td>
</tr>
<tr>
<td>Depth to high water table</td>
<td><4 ft</td>
</tr>
<tr>
<td>Low permeability (24-60” depth)</td>
<td><0.6 in/hr</td>
</tr>
<tr>
<td>High permeability (24-60” depth)</td>
<td>>6.0 in/hr</td>
</tr>
<tr>
<td>Slope</td>
<td>>15%</td>
</tr>
<tr>
<td>Large stones depth 73”</td>
<td>>50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>County name</th>
<th>% of Co with severe soil limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware Co</td>
<td>100.00%</td>
</tr>
<tr>
<td>Tipton County</td>
<td>100.00%</td>
</tr>
<tr>
<td>Wells County</td>
<td>100.00%</td>
</tr>
<tr>
<td>Brown County</td>
<td>99.80%</td>
</tr>
<tr>
<td>Bartholomew County (portions)</td>
<td>99.80%</td>
</tr>
<tr>
<td>Scott County</td>
<td>99.80%</td>
</tr>
<tr>
<td>Adams County</td>
<td>99.70%</td>
</tr>
<tr>
<td>Starke County</td>
<td>99.70%</td>
</tr>
<tr>
<td>Grant County</td>
<td>99.60%</td>
</tr>
<tr>
<td>Switzerland County</td>
<td>99.10%</td>
</tr>
<tr>
<td>Blackford Co</td>
<td>99.00%</td>
</tr>
<tr>
<td>Madison County</td>
<td>99.00%</td>
</tr>
<tr>
<td>Owen County</td>
<td>98.90%</td>
</tr>
<tr>
<td>Dearborn County</td>
<td>98.60%</td>
</tr>
<tr>
<td>Ohio County</td>
<td>98.60%</td>
</tr>
<tr>
<td>Decatur County</td>
<td>98.40%</td>
</tr>
<tr>
<td>Pulaski County</td>
<td>98.30%</td>
</tr>
<tr>
<td>Huntington County</td>
<td>98.20%</td>
</tr>
<tr>
<td>Perry County</td>
<td>98.10%</td>
</tr>
<tr>
<td>Franklin County</td>
<td>97.70%</td>
</tr>
<tr>
<td>Newton County</td>
<td>97.70%</td>
</tr>
<tr>
<td>Jasper County</td>
<td>97.40%</td>
</tr>
<tr>
<td>Allen County</td>
<td>97.20%</td>
</tr>
<tr>
<td>Hancock County</td>
<td>97.10%</td>
</tr>
<tr>
<td>Marion County</td>
<td>97.10%</td>
</tr>
<tr>
<td>Randolph County</td>
<td>97.00%</td>
</tr>
<tr>
<td>Warrick County</td>
<td>96.90%</td>
</tr>
<tr>
<td>Boone County</td>
<td>96.60%</td>
</tr>
<tr>
<td>Clinton County</td>
<td>96.50%</td>
</tr>
<tr>
<td>Lake County</td>
<td>96.40%</td>
</tr>
<tr>
<td>Shelby County</td>
<td>96.40%</td>
</tr>
<tr>
<td>Hendricks County</td>
<td>96.10%</td>
</tr>
<tr>
<td>Jay County</td>
<td>96.00%</td>
</tr>
<tr>
<td>DeKalb County</td>
<td>95.90%</td>
</tr>
<tr>
<td>DuBois County</td>
<td>95.90%</td>
</tr>
<tr>
<td>Jackson County</td>
<td>95.60%</td>
</tr>
<tr>
<td>Daviess County</td>
<td>95.10%</td>
</tr>
<tr>
<td>Part of Jennings County</td>
<td>95.00%</td>
</tr>
<tr>
<td>Ripley County</td>
<td>95.00%</td>
</tr>
<tr>
<td>Howard County</td>
<td>94.80%</td>
</tr>
<tr>
<td>Warren County</td>
<td>94.80%</td>
</tr>
<tr>
<td>Henry County</td>
<td>94.60%</td>
</tr>
<tr>
<td>Jennings County</td>
<td>94.40%</td>
</tr>
<tr>
<td>Johnson County</td>
<td>94.30%</td>
</tr>
<tr>
<td>Vigo County</td>
<td>94.30%</td>
</tr>
<tr>
<td>Bartholomew County Area</td>
<td>94.10%</td>
</tr>
<tr>
<td>Wabash County</td>
<td>94.10%</td>
</tr>
<tr>
<td>Vanderburgh County</td>
<td>93.60%</td>
</tr>
<tr>
<td>Greene County</td>
<td>93.50%</td>
</tr>
<tr>
<td>Hamilton County</td>
<td>93.00%</td>
</tr>
<tr>
<td>Miami County</td>
<td>92.90%</td>
</tr>
<tr>
<td>Clay County</td>
<td>92.80%</td>
</tr>
<tr>
<td>Crawford County</td>
<td>92.80%</td>
</tr>
<tr>
<td>Sullivan County</td>
<td>92.20%</td>
</tr>
<tr>
<td>Jefferson County</td>
<td>91.90%</td>
</tr>
<tr>
<td>Rush County</td>
<td>91.70%</td>
</tr>
<tr>
<td>Pike County</td>
<td>91.60%</td>
</tr>
<tr>
<td>Spencer County</td>
<td>90.90%</td>
</tr>
<tr>
<td>White County</td>
<td>90.50%</td>
</tr>
<tr>
<td>Martin County</td>
<td>89.40%</td>
</tr>
<tr>
<td>Morgan County</td>
<td>89.30%</td>
</tr>
<tr>
<td>Putnam County+A39</td>
<td>89.20%</td>
</tr>
<tr>
<td>Tippecanoe County</td>
<td>89.20%</td>
</tr>
<tr>
<td>Whitley County</td>
<td>88.70%</td>
</tr>
<tr>
<td>Elkhart County</td>
<td>87.60%</td>
</tr>
<tr>
<td>Vermillion County</td>
<td>87.10%</td>
</tr>
<tr>
<td>Noble County</td>
<td>87.00%</td>
</tr>
<tr>
<td>Wayne County</td>
<td>86.80%</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>85.20%</td>
</tr>
<tr>
<td>Parke County</td>
<td>84.20%</td>
</tr>
<tr>
<td>Gibson County</td>
<td>83.70%</td>
</tr>
<tr>
<td>Steuben County</td>
<td>83.70%</td>
</tr>
<tr>
<td>Porter County</td>
<td>83.30%</td>
</tr>
<tr>
<td>Fulton County</td>
<td>82.70%</td>
</tr>
<tr>
<td>Carroll County</td>
<td>82.60%</td>
</tr>
<tr>
<td>Hendricks County</td>
<td>96.10%</td>
</tr>
<tr>
<td>Jay County</td>
<td>96.00%</td>
</tr>
<tr>
<td>DeKalb County</td>
<td>95.90%</td>
</tr>
<tr>
<td>DuBois County</td>
<td>95.90%</td>
</tr>
<tr>
<td>Jackson County</td>
<td>95.60%</td>
</tr>
<tr>
<td>Daviess County</td>
<td>95.10%</td>
</tr>
<tr>
<td>Part of Jennings County</td>
<td>95.00%</td>
</tr>
<tr>
<td>Ripley County</td>
<td>95.00%</td>
</tr>
<tr>
<td>Howard County</td>
<td>94.80%</td>
</tr>
<tr>
<td>Warren County</td>
<td>94.80%</td>
</tr>
<tr>
<td>Henry County</td>
<td>94.60%</td>
</tr>
<tr>
<td>Jennings County</td>
<td>94.40%</td>
</tr>
<tr>
<td>Johnson County</td>
<td>94.30%</td>
</tr>
<tr>
<td>Vigo County</td>
<td>94.30%</td>
</tr>
<tr>
<td>Bartholomew County Area</td>
<td>94.10%</td>
</tr>
<tr>
<td>Wabash County</td>
<td>94.10%</td>
</tr>
<tr>
<td>Vanderburgh County</td>
<td>93.60%</td>
</tr>
<tr>
<td>Greene County</td>
<td>93.50%</td>
</tr>
<tr>
<td>Hamilton County</td>
<td>93.00%</td>
</tr>
<tr>
<td>Miami County</td>
<td>92.90%</td>
</tr>
<tr>
<td>Clay County</td>
<td>92.80%</td>
</tr>
<tr>
<td>Crawford County</td>
<td>92.80%</td>
</tr>
<tr>
<td>Sullivan County</td>
<td>92.20%</td>
</tr>
<tr>
<td>Jefferson County</td>
<td>91.90%</td>
</tr>
<tr>
<td>Rush County</td>
<td>91.70%</td>
</tr>
<tr>
<td>Pike County</td>
<td>91.60%</td>
</tr>
<tr>
<td>Spencer County</td>
<td>90.90%</td>
</tr>
<tr>
<td>White County</td>
<td>90.50%</td>
</tr>
<tr>
<td>Martin County</td>
<td>89.40%</td>
</tr>
<tr>
<td>Morgan County</td>
<td>89.30%</td>
</tr>
<tr>
<td>Putnam County+A39</td>
<td>89.20%</td>
</tr>
<tr>
<td>Tippecanoe County</td>
<td>89.20%</td>
</tr>
<tr>
<td>Whitley County</td>
<td>88.70%</td>
</tr>
<tr>
<td>Elkhart County</td>
<td>87.60%</td>
</tr>
<tr>
<td>Vermillion County</td>
<td>87.10%</td>
</tr>
<tr>
<td>Noble County</td>
<td>87.00%</td>
</tr>
<tr>
<td>Wayne County</td>
<td>86.80%</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>85.20%</td>
</tr>
<tr>
<td>Parke County</td>
<td>84.20%</td>
</tr>
<tr>
<td>Gibson County</td>
<td>83.70%</td>
</tr>
<tr>
<td>Steuben County</td>
<td>83.70%</td>
</tr>
<tr>
<td>Porter County</td>
<td>83.30%</td>
</tr>
<tr>
<td>Fulton County</td>
<td>82.70%</td>
</tr>
<tr>
<td>Carroll County</td>
<td>82.60%</td>
</tr>
</tbody>
</table>
Fountain County 82.30%
Kosciusko County 81.60%
Clark County 81.10%
Floyd County 81.10%
Cass County 81.00%
Lawrence County 76.30%
LaPorte County 73.60%
Monroe County 72.50%
Orange County 70.80%
Posey County 70.60%
LaGrange County 70.10%
Washington County 69.40%
Marshall County 69.10%
Harrison County 66.60%
Knox County 62.10%
Fayette County 61.20%
Union County 61.20%
St. Joseph County 60.00%

Indiana NRCS soils database, Bill Hosteter

Septic System Care and Maintenance

Your onsite treatment system represents a significant investment that you should protect. “An ounce of prevention is worth a pound of cure” was never truer than it is with onsite system care. With proper operation and regular maintenance, your system will function better and last longer. Committing a little attention to the care of your system is the best way to avoid the nightmare of a failing system. Read and follow the Dos and Don’ts below for trouble-free operation.

Do
- Conserve water to reduce the amount of wastewater that must be treated and disposed and to avoid overloading the system.
- Repair any leaking faucets and toilets.
- Only discharge biodegradable wastes into system.
- Divert downspouts and other surface water away from your drainfield. Excessive water keeps the soil in the drainfield from properly treating the wastewater.
- Keep your septic tank cover accessible for tank inspections and pumping. Install childproof risers and covers if necessary.
- Have your septic tank pumped regularly and inspected annually for leaks and cracks.
- Call a professional when you have problems or if there are any signs of system failure.
- Keep a detailed record of repairs, pumpings, inspections, permits issued and other maintenance activities.
- Compost your garbage or put in trash.
- Learn the location of your septic tank and drainfield. Keep a sketch handy with your maintenance records for service visits.

Don’t
- Go down into a septic tank. Toxic gases are produced by the natural treatment processes in septic tanks and can kill in minutes. Extreme care should be taken when inspecting a septic tank, even when just looking in.
- Use a garbage grinder
- Flush sanitary napkins, tampons, disposable diapers, condoms and other non-biodegradable products into your system
- Dump solvents, oils, paints, thinners, disinfectants, pesticides, or poisons down the drain which can disrupt the treatment process and contaminate the groundwater.
- Use septic tank additives. These products usually do not help and some may even be harmful to your system.
- Use your toilet as a trash can or poison your septic system and the groundwater by pouring harmful chemicals and cleansers down the drain. In-tank disinfectant tablets can also be harmful to your system. Harsh chemicals can kill the beneficial bacteria that treat your wastewater.
- Dig in your drainfield or build anything over it and don’t cover the drainfield with a hard surface such as concrete or asphalt.
- Plant anything over drainfield except grass. The grass will not only prevent erosion, but will help remove excess water. Roots from nearby trees and shrubs may clog and damage the drain lines.
- Allow anyone to drive or park over your drainfield or compact the soil in any way.
- Make or allow repairs to your septic system without obtaining the required health department permit. Use professional septic contractors when needed.

This practical list of Dos and Don’ts for onsite systems comes from articles by The Delaware Onsite Wastewater Recycling Association, Inc. (DOWRA) and Pipeline (National Small Flows Clearinghouse) with a few editorial additions for good measure.
TERMINOLOGY FOR ONSITE SYSTEMS

effluent: the liquid that is released to or from a septic tank or aerobic unit; raw effluent is that which has not been treated in any way; treated effluent is that which has gone through a septic tank, aerobic unit, or absorption area.

enzymes: in sewage treatment, a substance produced by living cells that is marketed as an additive for septic tanks to speed decomposition of solids; enzyme addition is usually not necessary in a septic tank due to the large number of microorganisms present in human waste that are able to decompose the solids in the tank.

evaporation-transpiration systems (ET): movement of effluent upward through the soil and overlying vegetation and into the atmosphere, rather than downward movement into the soil; usually used when more traditional sewage treatment systems are not suitable; very specific design criteria must be met for system to be approved.

failed system: a sewage treatment system that no longer effectively treats household waste; generally has a visible surface discharge, or may be indicated by plumbing system back ups.

flow restrictor: see conservation device.

fluorescent dye test: see dye test.

french drain: see curtain drain.

geotextile: permeable material used to cover aggregate in trenches to prevent soil from mixing with the aggregate following backfilling operations but allowing air and moisture to move through the soil and aggregate; aggregate may also be covered with untreated building paper or clean hay.

gravelless absorption system: see absorption chamber.

gray water: effluent from household sinks, shower/bathtub, clothes washer, water treatment units, etc., that does not contain toilet waste.

grit: see inert solids.

groundwater: subsurface water that originates as rain or snow melt; groundwater seeps through the soil profile until reaching a depth where all soil/rock pores are filled; the top of this saturated zone is called the water table.

holding tank: a watertight tank, similar to a septic tank, that collects waste and holds it until it can be pumped and transported to a sewage treatment system; used on small lots with no suitable absorption area or in a location too isolated for a community system; use is frequently restricted by health department regulations.

household hazardous waste: any of a number of products found in the kitchen, bathroom, garage, or garden shed that by their chemical nature can poison, corrode, explode, or burst into flame when handled improperly.

hydraulic load: the amount of effluent applied to the absorption area; can be decreased by using water conservation devices, hydraulic overloading occurs when the absorption area receives more effluent than it can effectively treat.

impermeable: see permeable.

inert solids: the solid portion of household waste that cannot be decomposed by microorganisms. Synonym: grit.

infiltration galleys: see absorption chamber.
infiltration rate: the amount of time necessary for effluent to flow from the absorption area into the soil; varies with soil type and other environmental factors, and is usually expressed in gallons/day/square foot (gpd/sq.ft.)
inlet pipe: the pipe conveying wastewater into a vessel (septic tank, distribution box, etc.)
inspection port: an access hole in the septic tank to allow inspection of the tank or its contents; tank should always be pumped through central access manhole. Synonym: manhole, access port, clean-out
leach field: see absorption area
leaching chamber: see absorption chamber
leaching pit: see seepage pit
leaching pit: see seepage pit
limiting layer: impermeable soil, bedrock, or other physical impediment that limits the downward movement of effluent from the absorption area

CONSULTANTS’ CORNER/ONSITE RESOURCES

Wastewater Options for Small Communities
There is a wealth of training materials for small communities who are interested in improving their water and wastewater services, and for those who work with small communities available at the National Environmental Training Center for Small Communities (NETCSC), sponsored by the US EPA. While the training material is not free, it is reasonably priced given the quality of material provided. This Center is not the same as the National Small Flows Clearinghouse, but is related and located at the same place.

Wastewater Options For Small Communities
"Assessing Wastewater Options For Small Communities" curriculum helps local officials evaluate their community's current and future wastewater treatment needs and implement appropriate solutions. Topics include: introduction to wastewater, facility development, viability and assessment of a treatment system, regulatory requirements, selecting and working with consulting engineers, selecting wastewater technologies, project financing, and project commitment. The appendices for this training course contain overhead masters, system assessment instruments, information on wastewater technologies, plus additional resources. The training package has a Trainer's Manual, a Participant Guide, and a Microsoft PowerPoint® presentation. The Trainer's Manual and the Participant Guide are 426 pages in length. The presentation has 102 slides and is available in electronic form on a 3 1/2" floppy diskette in both PC and Mac formats.

This training presentation is the electronic version of the transparency masters used in training deliveries to summarize important points and issues of assessing wastewater options. You can access the presentation two different ways: download as a Microsoft PowerPoint® 4.0 presentation or view and print as individual slides.

Complete Package TRTPCD06...$79
Trainers Manual TRTGCD33...$45
Participants Guide TRPMCD34...$46
Powerpoint Disk TRSWCD35...$10

Onsite Wastewater System Operation and Maintenance
The Onsite Wastewater System Operation and Maintenance package contains a trainer's manual, a trainer's resource pack, and an operator's manual. Target audience is operators and maintainers of onsite wastewater treatment systems. The trainer's manual provides information about program design and offers three program delivery options. The operator's manual provides technical information needed by trainers and operators. Topics covered include onsite systems, operator responsibilities and duties, principles of onsite systems, system components, operation and maintenance, and mathematics. The trainer's resource pack contains 139 transparency masters and nearly 400 color slides.

Complete Package TRTPCD09...$273
Operator's Guide TRPMCD11...$36
Operator and Trainer's Guides TRTGCD10...$43
Trainer's Resource Pack TRRPCD12...$241
For more information about the National Environmental Training Center for Small Communities (NETC) and any of the services mentioned, call or write:

P.O. Box 6064
West Virginia University
Morgantown, WV 26506-6064
(304) 293-491 or (800) 624-8301
Fax: (304) 293-3161

Designed to help consulting engineers evaluate appropriate environmental technologies and management systems for small communities, this package provides an overview of the political, economic, and environmental challenges facing small communities. Topics covered include starting out right, working with small communities, community needs assessment and technology, financing, and alternative technologies. The package includes an instructor's manual and participant's materials. Trainer materials include lesson plans, learning outcomes, time estimates, icebreakers, case studies, games, transparency masters, and other activities. Participant's materials include information resources helpful to engineers who plan to set up practice in small communities.

Web Resources for Water Professionals

<table>
<thead>
<tr>
<th>Water Resources for Water Professionals</th>
<th>Web Resources for Water Professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water/Wastewater Links Page</td>
<td>Water/Wastewater Links Page</td>
</tr>
<tr>
<td>http://www.w-ww.com</td>
<td>http://www.w-ww.com</td>
</tr>
<tr>
<td>Water/Wastewater Books</td>
<td>Water/Wastewater Books</td>
</tr>
<tr>
<td>Catalog of Water and Wastewater Books</td>
<td>Catalog of Water and Wastewater Books</td>
</tr>
<tr>
<td>Water Environment Federation (WEF)</td>
<td>Water Environment Federation (WEF)</td>
</tr>
<tr>
<td>Non-Point Education for Municipal Officials (NEMO)</td>
<td>Non-Point Education for Municipal Officials (NEMO)</td>
</tr>
<tr>
<td>Sacramento Regional County Sanitation District</td>
<td>Sacramento Regional County Sanitation District</td>
</tr>
<tr>
<td>Water Quality Database Browser</td>
<td>Water Quality Database Browser</td>
</tr>
<tr>
<td>http://www.edwardsaquifer.net/glossary.html</td>
<td>http://www.edwardsaquifer.net/glossary.html</td>
</tr>
<tr>
<td>Water/Wastewater Links Page</td>
<td>Water/Wastewater Links Page</td>
</tr>
<tr>
<td>Water Environment Federation (WEF)</td>
<td>Water Environment Federation (WEF)</td>
</tr>
<tr>
<td>A Virtual Library of Environmental Resources</td>
<td>A Virtual Library of Environmental Resources</td>
</tr>
<tr>
<td>Water Quality Database Browser</td>
<td>Water Quality Database Browser</td>
</tr>
<tr>
<td>http://www.edwardsaquifer.net/glossary.html</td>
<td>http://www.edwardsaquifer.net/glossary.html</td>
</tr>
</tbody>
</table>

Would you like to receive the Small Flows Clearinghouse newsletter? The form follows on the next page.
Please add me to the Small Flows mailing list

Name___
Affiliation___
Street Address__
City, State, Zip___
Phone, Fax__

<table>
<thead>
<tr>
<th>Organization/Affiliation</th>
<th>Your Interest/Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>___Federal agency</td>
<td>___Design</td>
</tr>
<tr>
<td>___State agency</td>
<td>___Operation and maintenance</td>
</tr>
<tr>
<td>___Local government</td>
<td>___Finance</td>
</tr>
<tr>
<td>___Educational institution</td>
<td>___Planning/management</td>
</tr>
<tr>
<td>___National/regional organization</td>
<td>___Enforcement/compliance</td>
</tr>
<tr>
<td>___State organization</td>
<td>___Regulations</td>
</tr>
<tr>
<td>___International agency/contact</td>
<td>___Wastewater</td>
</tr>
<tr>
<td>___Consultant/engineer</td>
<td>___Non-point sources</td>
</tr>
<tr>
<td>___Contractor/developer</td>
<td>___Research</td>
</tr>
<tr>
<td>___Operator</td>
<td>___Training</td>
</tr>
<tr>
<td>___Manufacturer</td>
<td>___Outreach</td>
</tr>
<tr>
<td>___Press/media</td>
<td>Other (please specify)___________</td>
</tr>
<tr>
<td>___Legal professional</td>
<td></td>
</tr>
<tr>
<td>___Private citizen</td>
<td></td>
</tr>
<tr>
<td>Other (please specify)_____________________</td>
<td></td>
</tr>
</tbody>
</table>