The effects of interstate speed limits on driving speeds: Some new evidence

by
Fred Mannering
Professor of Civil Engineering
Purdue University
West Lafayette, IN 47907
flm@purdue.edu

Abstract

Since the repeal of the 55 mph national maximum speed limit on US interstate highways, speed limits have been raised across the country to as high as 75 mph and more. While many studies have addressed the effects of increased speeds on accident frequency and severity, the factors that determine drivers' choice of speed in the presence of speed limits are still not well understood. This paper provides additional insight into drivers' choice of speed by using a survey of Indiana drivers. The survey is timely since Indiana recently raised speed limits on rural interstates to 70 mph . With urban and suburban areas included, interstate speed limits in the state are now $55 \mathrm{mph}, 65 \mathrm{mph}$ and 70 mph . Using seemingly unrelated regression estimation, models of normal interstate driving speeds with low-traffic conditions are estimated for $55 \mathrm{mph}, 65 \mathrm{mph}$ and 70 mph speed limits. The results show a wide range of factors (gender, age, income, number of children, age driver is first licensed, assessment of pavement quality, and assessment of vehicle manufacturers) influence individuals' normal interstate driving speed and that the effect of these factors changes as the posted speed limit changes.

Introduction

Since the passage of the Emergency Highway Energy Conservation Act in 1974, which mandated the 55 mph national maximum speed limit on interstate highways in the US, the controversy relating to the effects that speed limits have on observed driving speeds and highway safety has been ongoing. This controversy has been fueled by various research findings and subsequent legislation, such as the National Highway System Designation Act of 1995 that gave states complete freedom to set interstate speed limits. As a result of such legislation, many states have raised rural interstate speed limits from 55 mph to $65 \mathrm{mph}, 70 \mathrm{mph}$, or more.

Although the numbers noticeably vary, almost all research efforts have concluded that the lower 55 mph speed limits have saved lives relative to the return to higher speed limits $(1,2)$. Some of the most recent work by Kockelman and Bottom (3) concluded that a speed limit increase from 55 to 65 mph resulted (on average) in roughly a 3% increase in the accident rate and a 24% increase in the probability of a fatality once an accident occurred. The Kockelman/Bottom study also estimated that speed limit increases from 65
to 75 mph resulted in a lower (relative to the 55 to 65 mph increase) 0.64% increase in the accident rate and in a lower 12% increase in the probability of fatal injury once an accident occurred. The authors speculated that the lower increases from 65 to 75 mph speed limits may have been the result of drivers' heightened awareness of risk at higher speeds or that roads assigned the higher 75 mph in their study's sample may have been inherently safer.

However, not all studies are in agreement that the effect of higher speed limits has caused a decline in safety. One study contended that the legislation-enabled increase from 55 mph to 65 mph actually saved lives due to shifts in law enforcement resources, the ability of higher-speed-limit interstates to attract riskier drivers away from inherently more dangerous non-interstate highways, and possible reductions in speed variances (4). With out doubt, there remains considerable uncertainty relating to the true safety impacts of changing speed limits (5). The cause of much of this uncertainty relates to the difficulty in empirically controlling the confounding effects of time-varying changes in factors such as highway enforcement, vehicle miles traveled, vehicle occupancy, seat belt usage, alcohol use and driving, vehicle fleet mix (proportions of passenger cars, minivans, pickup trucks, and sport utility vehicles), vehicle safety features (increasing adoption of air bags, antilock brakes, other active safety systems), speed limits on other road classes and in other states, driver expectations, and driver adjustment and adaptation to risk.

The intent of the current study is not to focus on the accident-generating outcomes of increased speed limits, but instead to try to provide insight into the factors that determine drivers' usual speed selection when faced with specific speed limits under low trafficvolume conditions (free-flow conditions as defined by the Transportation Research Board (6)). To be sure, previous studies have looked at factors that affect usual driving speeds (7). However, this paper differs from previous work in that it considers normally selected driving speeds under a range of speed limits that concurrently exist on interstate highways in the study area. By considering such a range of speed limits on drivers' normally selected speed, it is hoped that some additional insight can be provided with regard to the trade-offs drivers make with regard to speed, safety and the adherence to speed-limit laws.

Effect of Speed Limits on Drivers' Choice of Speed

To understand the effects that speed limits have on drivers' speed choice, some of the principles developed in previous literature relating to risk selection are used (8, 9, 10). In so doing, drivers are assumed to maximize their utility from driving by trading off driving speed and safety. Figure 1 shows how speed limits can affect the tradeoff between drivers' choice of driving speed and safety. For illustrative purposes, consider safety as the probability of avoiding an accident. Following Winston, Maheshri and Mannering (10) in Figure 1, the marginal rate of transformation between safety S and driving speed s is shown by the slope of line $S s$ (linearity is assumed for simplicity). Given this marginal rate of transformation between safety and speed, and the absence of a speed limit, the driver maximizes utility at equilibrium A (reflecting the tangency of an indifference curve U_{0}), with S^{*} and s^{*} chosen as the optimal levels of safety and driving speed. In the presence of a speed limit below A that is strictly followed, the trade-off between accident likelihood and speed will move to B. However, since B is below drivers' optimal speed selection, drivers will tend toward their optimal speed/safety equilibrium (point A). They trade off the additional utility of driving faster against the risk of detection by law

Speed

Figure 1. The effect of Speed Limits on Driving Speed.

Table 1. Survey Questions

1. Indiana recently raised the speed limit on some of its interstate highways from 65 mph to 70 mph . Do you think this is: \square too fast $\quad \square$ about right $\quad \square$ still too slow
2. On an interstate with a 55 mph speed limit and little traffic, about how fast do you normally drive? \qquad mph
3. On an interstate with a 65 mph speed limit and little traffic, about how fast do you normally drive? \qquad mph
4. On an interstate with a 70 mph speed limit and little traffic, about how fast do you normally drive? \qquad mph
5. How would you rate the quality of pavements on Indiana interstates?
\square poor \quad fair \quad good \quad very good \quad don't know
6. Compared to adjacent states (Ohio, Illinois, Michigan and Kentucky), how would you rate the quality of pavements on Indiana interstates?
\square worse than adjacent states $\quad \square$ about the same $\quad \square$ better than adjacent states $\quad \square$ don't know
7. Which one of these luxury car brands do you believe has the most prestige? (select one)
\square Acura \square Audi \square BMW \square Cadillac \square Infiniti \square Jaguar \square Lexus \square Lincoln \square Mercedes
Benz
8. Which one of these of these vehicle brands do you believe provides the best value for the money? (select one) \square Chevrolet \square Dodge \square Ford \square Honda \square Hyundai \square Kia \square Mazda \square Nissan \square Toyota
9. Are you? \square female \square male
10. Are you? \square married \square single \square separated \square divorced \square other
11. What is your age?
12. What is your highest completed level of education?
\square some high school $\quad \square$ technical college degree
\square post graduate degree
\square high school diploma
\square college degree
13. What is the approximate annual household income of the household you consider home?

\square no income	$\square \$ 10,000-\$ 19,999$	$\square \$ 30,000-\$ 39,999$	$\square \$ 50,000-\$ 74,999$	\square Over $\$ 100,000$
\square under $\$ 10,000$	$\square \$ 20,000-\$ 29,999$	$\square \$ 40,000-\$ 49,999$	$\square \$ 75,000-\$ 100,000$	

14. Including yourself, how many people live in the household you consider home?
15. How many children, in the household you consider home, are under age 6?
16. How many children, in the household you consider home, are aged 6 to 16 ?
17. How many people living, in the household you consider home, work outside the home?
18. How many licensed and operable motor vehicles does your "home" household have?
19. How many years have you had a driver's license?
\qquad
\qquad
\qquad
\qquad
\qquad
20. How many years have you had a driver's license?

Summary statistics for the sample are presented in Table 2. This table shows that the reported average normal driving speed was nearly 66 mph on interstates posted with 55 mph speed limits, about 74 mph on interstates posted at 65 mph and almost 78 mph on interstates that are posted at 70 mph . Kockelman and Bottom (3) found, with observed speed data from Austin, Texas, that a 5 mph increase in the speed limit was associated with a 3.2 mph increase in average speeds. In the current sample, the observed 3.83 mph increase in normal speeds between 65 mph and 70 mph posted interstates is close to this.

The data indicate that the amount driven above the speed limit declines with higher speed limits (presumably as the speed limit approaches point A in Figure 1). In terms of the standard deviations of normal driving speeds, the greatest reported variance is at the 55 mph speed limit (6.24 mph), and the variances at 65 mph and 70 mph speed limits are roughly the same (5.03 mph and 5.24 mph , respectively). Although the variance differences among the three speed limits are small, which is consistent with the findings of Kockelman and Bottom (3), there is a higher variance with the 55 mph speed limit. While the sample is small and traffic-related effects are not accounted for (recall that only lowvolume conditions are considered), in this sample it appears that a 55 mph speed limit may be too slow to achieve minimum speed variance.

Table 2 shows that the values of other variables in the sample, particularly those relating to socioeconomic variables, reflect those of the Purdue University community with an average age of only $25,25 \%$ being married, 18% having children under 6 years of age, and so on.

Methodology

As indicated in Tables 1 and 2, the survey contains three questions relating to normal driving speed under various speed limits; 1) normal driving speed on an interstate with a 70 mph speed limit and little traffic, 2) normal driving speed on an interstate with a 65 mph speed limit and little traffic, and 3) normal driving speed on an interstate with a 55 mph speed limit and little traffic. To develop a statistical model for each of these three questions, the use of ordinary least squares regressions is an obvious choice. Under standard linear regression assumptions, that includes the assumption that the model has all of the information relating to the regression equation and variables, estimated regression coefficients for the three equations are unbiased and efficient (11). However, if some information is not taken into account, the properties relating to the unbiasedness and efficiency of estimated coefficients cannot be determined. A classic example of potentially missing information is the knowledge that the disturbance term in one regression equation is correlated with the disturbance term in another. This will be the case for the three equations relating to normal driving speed at different speed limits since the unobserved factors that determine driving speed for each speed limit will likely be highly correlated.

Mannering
Table 2. Sample statistics (standard deviation in parentheses when appropriate)

Variable	Values
Percent believing Indiana's recently raised the speed limits from 65 mph to 70 mph is: too fast/about right/still too slow	2/72/26
Average normal driving speed on an interstate with a 55 mph speed limit and little traffic	65.92 (6.24)
Average normal driving speed on an interstate with a 65 mph speed limit and little traffic	74.05 (5.03)
Average normal driving speed on an interstate with a 70 mph speed limit and little traffic	77.88 (5.24)
Percent rating the quality of pavements on Indiana interstates as: poor/fair/good/very good/don't know	11/30/44/9/6
Percent rating the quality of pavements on Indiana interstates as: worse than adjacent states/about the same/better than adjacent states/don't know	12/45/16/27
Percent believing the following luxury car brands provide the most prestige: Acura/ Audi/BMW/Cadillac/Infiniti/Jaguar/Lexus/Lincoln/Mercedes Benz	1/6/23/4/2/19/10/2/33
Percent believing the following vehicle brands provide the best value for the money: Chevrolet/Dodge/Ford/Honda/Hyundai/Kia/Mazda/Nissan/Toyota	8/2/11/37/6/2/2/7/25
Percent: female/male	26/74
Percent: married/single/separated/divorced/other	25/71/0/0/4
Average age	25.00 (6.46)
Percent with highest completed level of education: some high school/ high school diploma/technical college degree/college degree /post graduate degree	1/48/4/29/18
Percent with annual household income as: no income/ under $\$ 10,000 / \$ 10,000-\$ 19,999 / \$ 20,000-\$ 29,999 / \$ 30,000-\$ 39,999 / \$ 40,000-$ \$49,999/\$50,000-\$74,999/\$75,000-\$100,000/Over \$100,000	4/1/16/8/6/5/17/16/27
Average number of people living in household	3.52 (1.52)
Average number of children in household that are under age 6	0.18 (0.50)
Average number of children in household that are aged 6 to 16	0.26 (0.60)
Average number of people in household that work outside the home	1.91 (1.17)
Average number of licensed motor vehicles in household	2.82 (1.41)
Average number of years licensed	7.04 (6.11)

Table 3. Statistics for variables found to be significant in model estimation.

Variable	Mean	Standard deviation	Minimum/Maximum
Dependent variables			
Miles per hour normally driven above a 55 mph speed limit	10.96	6.21	-5/35
Miles per hour normally driven above a 65 mph speed limit	9.06	5.10	-5/25
Miles per hour normally driven above a 70 mph speed limit	7.88	5.35	-10/20
Driver/household attributes			
Male indicator (1 if driver is male, 0 otherwise)	0.742	0.439	0/1
Driver age (years)	25.21	6.58	17/51
High income indicator (1 if household's total annual income is $\$ 75,000$ or greater, 0 otherwise)	0.268	0.444	$0 / 1$
Low income indicator (1 if household's total annual income is less than $\$ 30,000,0$ otherwise)	0.289	0.454	0/1
Number of children under the age of 6 years old in the household	0.196	0.522	$0 / 3$
Late license indicator (1 if driver was first licensed at age 17 or greater, 0 otherwise)	0.361	0.481	0/1
Driver opinions			
Good pavement indicator (1 if driver believes pavement quality on Indiana interstates is good or very good, 0 otherwise)	0.531	0.500	0/1
German prestige indicator (1 if driver believes if Germanbrand vehicles are the most prestigious, 0 otherwise)	0.634	0.483	0/1
Japanese prestige indicator (1 if driver believes if Japanesebrand vehicles are the most prestigious, 0 otherwise)	0.119	0.324	0/1

Table 4. Seemingly unrelated regression equation (SURE) estimation results for the number of miles per hour above the speed limit drivers report as their usual speed (t-statistics in parentheses) ${ }^{a}$.

Variable	Estimated Coefficient (55 mph speed limit)	Estimated Coefficient (65 mph speed limit)	Estimated Coefficient (70 mph speed limit)
Constant	11.11 (12.37)**	10.88 (10.27)**	10.86 (8.44)**
Driver/household attributes			
Male indicator (1 if driver is male, 0 otherwise)	-	0.470 (1.37)*	-
Driver age (years)	-	-0.088 (-2.47)**	-0.129 (-2.83)**
High income indicator (1 if household's total annual income is $\$ 75,000$ or greater, 0 otherwise)	1.958 (2.06)**	2.099 (2.71)**	1.255 (1.52)*
Low income indicator (1 if household's total annual income is less than $\$ 30,000,0$ otherwise)	-0.763 (-1.17)	${ }^{-}$	${ }^{-}$
Number of children under the age of 6 years old in the household	-1.207 (-1.54)*	-0.993 (-1.48)*	-1.359 (-1.87)**
Late license indicator (1 if driver was first licensed at age 17 or greater, 0 otherwise)	$-3.851(-4.38) * *$	$-2.148(-3.00)^{* *}$	-1.919 (-2.50)**
Driver opinions			
Good pavement indicator (1 if driver believes pavement quality on Indiana interstates is good or very good, 0 otherwise)	1.160 (1.46)*	1.067 (1.62)*	1.006 (1.43)*
German prestige indicator (1 if driver believes if Germanbrand vehicles are the most prestigious, 0 otherwise)	1.137 (1.85)**	-	0.582 (1.35)*
Japanese prestige indicator (1 if driver believes if Japanesebrand vehicles are the most prestigious, 0 otherwise)	-1.348(-1.25)	-0.814 (-1.35)*	-
R^{2}	0.226	0.200	0.170
Number of observations		195	
Equation system R^{2}		0.202	

[^0]11. Washington, S., Karlaftis, M., Mannering, F., 2003. Statistical and econometric methods for transportation data analysis. Chapman \& Hall/CRC, Boca Raton, FL.
12. Shankar, V., Mannering, F., 1998. Modeling the endogeneity of lane-mean speeds and lane-speed deviations: A structural equations approach. Transportation Research Part A 32(5), 311-322.
13. Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57, 348368.
14. Mannering, F., 1993. Male/female driver characteristics and accident risk: Some new evidence. Accident Analysis and Prevention 25(1), 77-84.
15. Mannering, F., 2006. Speed limits and safety: A statistical analysis of driver perceptions. Submitted to Transportation Research Part F.

[^0]: ${ }^{a}$ One-tailed t-test results: ** significantly different from zero at more than 95% confidence, * significantly different from zero at more than 90% confidence

