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Abstract: In determining certain infrastructure rehabilitation needs, it is sometimes important to consider user perceptions along with
physical measures of infrastructure condition. Pavement roughness is one such case. A critical determinant of public satisfaction, user
perception of pavement roughness can potentially play a critical role in the allocation of resources to competing highway resurfacing
projects. In this paper, to gain a better understanding of user perceptions of pavement roughness, users were placed in real-world driving
conditions and asked to rank the roughness of specific roadway segments. Coupled with individual-specific, pavement-specific, and
vehicle-specific data, users’ roughness rankings were modeled using a random effects ordered probit specification. The model identified
a number of key factors influencing user roughness rankings. The results indicate that, while physical roadway-roughness measurements,
such as the measured International Roughness Index, provided a strong indication of user roughness rankings �as one might expect�, other
factors such as the type of vehicle used, vehicle speed, individual’s age, individual’s gender, and interior vehicle noise levels were also
significant. This study fills an important gap in the literature by linking physical infrastructure measurements with individual perceptions
of infrastructure condition.
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Introduction

Physical measurements of infrastructure condition have long been
used as a basis for determining rehabilitation needs and resource
allocation. For highways, road roughness has traditionally played
a significant role in highway resource allocation and forecasting
highway needs. Road roughness has great appeal to state and
federal agencies because it has been traditionally correlated
to both structural deterioration and some estimated sense of
public satisfaction with roadway conditions. As a result, many
states collect detailed information on pavement condition includ-
ing measurements relating to rutting, faulting, cracking, patching,
and scaling. Among the various condition measures, the Interna-
tional Roughness Index is widely used by the Federal Highway
Administration and has gained wide acceptance as a means of
assessing changes in the condition of highways and to forecast
highway investment needs. However, the relationship between
physical measurements of pavement roughness and the public’s
actual perception of roughness has not been adequately modeled,
statistically, and thus is not well understood. Many have argued
that the public’s perceptions of roughness should play an
important role in resource allocation because of the influence
that such perceptions can have on governmental agencies and
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political entities. As a result, perhaps the role that actual physical
measurements play in resource allocation should be appropriately
modified, particularly when structural integrity and safety �for
example diminished skid resistance� are not in question.

The study of the relationship between physical roughness
measures and user perceptions of roughness began in earnest in
the late 1950s when AASHTO �1993� conducted a study, in
which 100 individuals subjectively rated segments of pavements
in three states �Illinois, Indiana, and Minnesota� on a scale from
0 to 5 �Carey and Irick 1960�. That study established the concept
of pavement serviceability with the present serviceability rating
defined as the mean individual ratings made by the members of a
panel intended to represent all highway users. This performance
measure was widely accepted in the highway engineering com-
munity and became one of the study’s most notable contributions.

To establish uniformity of the physical measurement of rough-
ness, the World Bank commissioned an experiment in Brazil
to establish a roughness measurement standard, which resulted
in the development of the International Roughness Index �IRI�
�Sayers et al. 1986�. The IRI is used to define a characteristic of
the longitudinal profile of a traveled wheel track and constitutes a
standardized roughness measurement. It is based on a filtered
ratio �referred to as the average rectified slope� of a standard
vehicle’s accumulated suspension motion �m� divided by the
distance traveled by the vehicle during the measurement �km�.
Thus, commonly recommended measurement units are m/km.
The IRI has been shown to correlate well with vertical passenger
acceleration �a measure of ride quality� and tire load �a measure
of controllability and safety�. The IRI is now considered the
international standard for comparing roughness measurements.
However, since the 1950s, the adequacy of any physical rough-
ness measurement �the IRI now included� to act as a proxy for

user perceptions of roughness has been questioned.
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The relationship between users’ subjective ratings of rough-
ness and any physical measurement of roughness is understand-
ably complex. The early work of Carey and Irick �1960� showed
good correlation between subjective ratings and physical mea-
surements, but Janoff et al. �1985� noted that there were a number
of factors that could potentially affect this correlation, such as
vehicle characteristics, vehicle operating speed, and individual
characteristics such as gender and age. Since the mid-1980s,
several studies have explored the relationship between physical
roadway measurements and user perceptions of roughness using
slightly modified experimental procedures and/or different or
updated road-roughness measuring devices �Janoff et al. 1985;
Nair and Hudson 1986; Moore et al. 1985; Garg et al. 1988�. The
findings of these studies have varied widely in terms of the factors
found to significantly impact road-roughness perceptions. Over-
all, our survey of the extant literature indicates that the link
between physical measurements of roadway roughness and user
perceptions is in need of further study—particularly in light of
comparatively recent developments in the statistical modeling of
ordered discrete data, such as those typically gathered during
roadway-roughness perception surveys.

Data

The data used in this study originated from three sources:
�1� a mailed survey; �2� an in-vehicle user survey; and �3� the
Washington State Department of Transportation’s pavement
management system. The mail survey was sent to over 2,500
registered vehicle owners in the Seattle, Washington metropolitan
area. The purpose of the preliminary mail survey was to gather
general public opinions about roadway roughness along with
relevant sociodemographic information, as well as create a pool
of potential participants for an in-vehicle study �see Shafizadeh
et al. �2002��.

For the in-vehicle study, selected participants were told that
they would be driving over predetermined highway test segments
on a 40-km circular loop of Seattle-area freeways. As they drove
over the test segments, they were asked: “How would you rank
the roughness of the road on a scale from 1 to 5—with one being
the smoothest �or the best� and five being the roughest �or the
worst�?” Participants were not provided additional instructions.
They were informed that during the driving experiment they
would be notified when each segment started and ended and could
provide their response at any point along the segment. To control
for factors likely to influence user perceptions, the type of vehicle
being used �minivan, pickup, etc.� and starting locations within
the 37-segment test route were randomized. In addition, on each
of the 37 segments, data were gathered on in-vehicle-cabin noise
�dB�, vehicle speed �km/h�, weather conditions �clear, overcast,
raining�, and pavement conditions �wet or dry� as each participant
traversed the segment �see Shafizadeh et al. �2002�; Shafizadeh
and Mannering �2003��.

Finally, the Washington State pavement management system
provided physical data on each segment and was instrumental in
the segment selection process by providing information about
terrain, shoulder widths, number of lanes, and lane width, all of
which were required to be homogeneous within each segment as
part of the roadway segment selection criteria. Also, data relating
to pavement defects were available from this source, including
the IRI measurement, age of the roadway surface, information on
patching, and the pavement structural condition �PSC�. This last

term is calculated separately for flexible and rigid pavements
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based on the amount and severity of various distresses and its
values range from 100 �excellent pavement condition� to zero
�completely deteriorated pavement�.

In total, 31 participants evaluated each of the 37 highway
segments for a total of 1,147 roughness assessment observations.
For each of these observations, there were associated quantitative
sociodemographic data for the individual from the preliminary
mailed survey, physical segment-specific data from the pavement
management system, and in-vehicle survey data from the driving
experiment. The sample statistics are summarized in Table 1.

Past research suggests that a number of factors will play a role
in participants’ perception of roughness. As mentioned above,
one critical factor that we attempt to control for in this study is
the type of vehicle. With the diversity of vehicles �with sizable
market shares� currently populating the U.S. vehicle fleet, we
gave consideration to four vehicle types as indicated in Table 1:
midsized sedan, sport-utility vehicle, pickup truck, and minivan.
To get some initial idea of the potential relationship between
vehicle type and road roughness, we graphed the relationship
between the IRI and percent of observations by perceived rough-
ness ranking for each vehicle type �see Figs. 1–4�. These figures
show some very general trends with regard to vehicle type. For
example, at high IRI values, above about 2.00 m/km, Fig. 2
shows that participants in sport-utility vehicles tended to have
lower percentage of observations ranked as 5 �rough� relative to
those respondents in other vehicle types. Also, Fig. 4 suggests
that respondents using minivans had a higher percentage of
observations with Roughness Rankings 1 and 2 �smooth�, relative
to respondents using midsized sedans and pickups, in the mid-IRI
range of about 1.18 to 1.89 m/km. These figures suggest
some interesting suspension or possibly perception/expectation
differences that may vary by vehicle type. However, statistically
defensible statements in this regard cannot be made until a full

Table 1. General Summary Statistics of Respondents, Segments,
and Vehicles

Variables Values

Individual-specific variables

Percent of male/female respondents 64.5/35.5

Average household size �standard deviation� 2.7 �2.11�

Average household annual income category
�U.S. dollars�

55,000–64,999

Average respondent age category �years� 41–45

Pavement-specific variables

Average test segment IRI measurement �m/km�
�standard deviation�

1.94 �0.89�

Average roadway segment surface age �years�
�standard deviation�

17.43 �13.48�

Pavement structural condition �PSC� index of
roadway �standard deviation�

90.78 �9.64�

Percent of segments by surface type: rigid/
flexible

35.1/64.9

Percent of segments with/without patch work 18.9/81.1

Percent of segments with/without visible wear 32.4/67.6

Percent of segments with/without joints or
abutments

37.8/62.2

Vehicle-specific variables

Percent of test vehicles by type
�sedan/sport-utility/pickup/minivan�

29.7/24.3/18.9/10.8
multivariate analysis is undertaken.
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Methodology

We seek to model users’ ratings of roadway roughness on a scale
from 1 to 5—with 1 being the smoothest and 5 being the rough-
est. These roughness data are discrete and ordered �3 is worse
than 2, 2 is worse than 1, and so on�. Because the data are

Fig. 1. IRI measurements versus driver roughnes

Fig. 2. IRI measurements versus driver roughne
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ordered, conventional discrete outcome models such as standard
multinomial logit and probit models may not be appropriate and
can result in the loss of estimation efficiency �see Washington
et al. �2003� for a complete discussion of this point�. Ordered
probability models have been developed to study such data. These
models are derived by defining an unobserved variable z, which is

ngs for drivers using midsized sedan test vehicle

kings for drivers using sport-utility test vehicle
s ranki
ss ran
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Fig. 3. IRI measurements versus driver roughness rankings for drivers using pickup test vehicle
Fig. 4. IRI measurements versus driver roughness rankings for drivers using minivan test vehicle
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used as a basis for modeling the ordinal ranking of data. This
unobserved variable is specified as a linear function

zn = �Xn + �n �1�

where X�vector of variables determining discrete ordering for
observation n; ��vector of estimable coefficients; and
��random disturbance. Using this equation, the observed ordinal
data yn are defined as

yn =�
1 if zn � �0

2 if �0 � zn � �1

3 if �1 � zn � �2

4 if �2 � zn � �3

5 if zn � �3

� �2�

where ��estimable parameters �referred to as thresholds� that
define yn. The �’s are parameters that are estimated jointly with
the model coefficients �. The estimation problem then becomes
one of determining the probability of the five specific ordered
responses for each observation n, which is done by making an
assumption on the distribution of �n in Eq. �1�. If �n is assumed to
be normally distributed across observations an ordered probit
model results, and if �n is assumed to be logistically distributed
an ordered logit model results. Note that without loss of general-
ity �0 can be set equal to zero, thus requiring estimation of three
thresholds �1, �2, and �3.

A complication can arise with the maximum likelihood
procedures of a standard ordered probability model, because, in
this case, each of the 31 participants generated 37 observations
�i.e., one observation for each of the 37 roadway segments� of
perceived level of roughness. As a result, the 37 responses given
by each participant will likely share unobserved effects. If these
shared unobserved effects are not considered, and the model
is estimated as though the 37 observations from each survey
participant came from 37 independent participants, the standard
errors of the model’s coefficients may be underestimated,
resulting in inflated t statistics, potentially misleading levels of
significance, as well as potential biases in coefficient estimates
�Washington et al. 2003; Choocharukul et al. 2004�.

This complication can be addressed with a standard random
effects model, which allows for an individual-specific error term
�in addition to an overall error term� to account for random error
within each individual. By rewriting Eq. �1�, we can express the
traditional error term as being comprised of two components: the
traditional disturbance term unique to each observation, �ic, and
an individual-specific random effect disturbance term �i �assumed
to be normally distributed with mean 0 and variance �2�

zic = �Xic + �ic + �i �3�

where the subscript i�individual participants �i=1,…,31�;
subscript c�roadway segments �c=1,…,37�; and all other terms
are as previously defined. A Hausman specification test for
correlation between the errors and the regressors can be used to
check if the random effects model is appropriate �Hausman 1978�.
The Hausman test statistic � estimated as part of the random
effects model determines the significance of the random effects
formulation relative to the standard ordered logit model. See
Greene �2003� or Washington et al. �2003� for additional details
on ordered probability models or random effects models.

In terms of interpreting the effect of individual estimated
coefficients in ordered probability models, a positive value
of a coefficient implies that an increase in the variable will

unambiguously increase the probability of the highest-ordered
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discrete category being selected �y=5� and unambiguously
decrease the probability of the lowest-ordered discrete category
being selected �y=1�. The estimated coefficients, however, do not
provide a clear indication of how changes in specific explanatory
variables affect the probabilities of intermediate ordered catego-
ries �y=2, 3, or 4�. Instead, marginal effects can be computed for
each category to assess each variable’s impact on the probability
for each category threshold. For indicator variables, the effects
are computed as the difference in the estimated probabilities with
the indicator variable changing from zero to one, while all other
variables are equal to their means. For continuous variables, the

Table 2. Random Effects Ordered Probit Model of User-Perceived
Roughness Rankingsa

Independent variable
Estimated
coefficient t statistic

Constant −8.257 −4.27

Individual-specific variables

Gender indicator �1 if
participant was female, 0 if
male�

−0.791 −4.68

Older age indicator �1 if
participant was over age 55, 0
otherwise�

−0.985 −5.07

Pavement-specific variables

IRI measurement �m/km� of
roadway segment

0.949 5.51

Age of roadway segment
surface �years�

0.033 3.59

Patch indicator �1 if the
segment appeared to have
patch work, 0 otherwise�

0.801 3.39

Pavement structural condition
�PSC� index of roadway

−0.033 −3.35

Vehicle-specific variables

Noise �dB� inside test vehicle
during evaluation

0.161 6.31

Noise increase indicator �1 if
the noise inside test vehicle
during evaluation increases by
3 dB or more between two
adjacent test segments, 0
otherwise�

1.048 2.22

Sport-utility vehicle indicator
�1 if sport utility, 0 otherwise�

−1.387 −6.35

Minivan vehicle indicator �1
if minivan, 0 otherwise�

−0.827 −3.35

Speed �km/h� of test vehicle
during evaluation

−0.0215 −2.76

Model parameters

Threshold parameter �1 2.939 18.65

Threshold parameter �2 5.502 30.08

Threshold parameter �3 7.861 28.16

Random effect �Hausman test�
parameter �

0.897 6.01

Number of observations 1,147

Initial log-likelihood −1,675.57

Log-likelihood at convergence −1,223.69
aDependent variable responses are integers between 1 �very smooth�
and 5 �very rough�.
effects are computed from the partial derivatives
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ability
�P�y = 1�
�X

= − 	�− �X���

�P�y = 2�
�X

= �	��0 − �X� − 	��1 − �X����

�P�y = 3�
�X

= �	��1 − �X� − 	��2 − �X����

�P�y = 4�
�X

= �	��2 − �X� − 	��3 − �X����

�P�y = 5�
�X

= − 	��3 − �X��� �4�

where P�y= j��probability of response category j ,	�·��standard
normal density; and all other terms are as previously defined.

The marginal effects for each response category can be
interpreted as the change in the outcome probability of each
threshold category P�y= j�, given a unit change in a continuous
variable x. In the context of user perceptions of roadway rough-
ness, a large marginal effect �in absolute value terms� indicates
that the coefficient has a relatively large effect on the users’
roughness rankings, while a relatively small marginal effect indi-
cates a relatively minimal effect on users’ roughness rankings. A
positive marginal effect for a specific roughness ranking indicates
an increase in probability for that ranking, while a negative value
would correspond to a decrease in probability for that ranking.

Estimation Results

Estimation results from the random effects ordered probit model
are presented in Table 2, and the corresponding marginal effects
are shown in Table 3. The model provides information on how
pavement, vehicle, and user characteristics are associated with
perceived roughness rankings. The sign of each coefficient

Table 3. Computed Marginal Effects of Random Effects Ordered Probit

Variable y

Gender indicator �1 if participant was female, 0 if male�a 0.

Older age indicator �1 if participant was over age 55,
0 otherwise�a

0.

IRI measurement �m/km� of roadway segment −0

Age of roadway segment surface �years� −0

Patch indicator �1 if the segment appeared to have patch
work, 0 otherwise�a

−0

Pavement structural condition �PSC� 0.

Noise �dB� inside test vehicle during evaluation −0

Noise increase indicator �1 if the noise inside test vehicle
during evaluation increased by 3 dB or more between two
adjacent test segments, 0 otherwise�a

−0

Sport-utility test vehicle indicator �1 if sport utility was test
vehicle type, 0 otherwise�a

0.

Minivan test vehicle indicator �1 if minivan was test vehicle
type, 0 otherwise�a

0.

Speed �km/h� of test vehicle during evaluation 0
aMarginal effects for indicator variables represent the change in the prob
estimate indicates the impact of the variable on the roughness
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ranking—with positive coefficients indicating that the pavement
is more likely to be rated very rough and negative coefficients
indicating that the pavement is more likely to be rated very
smooth. The significance of the random effects parameter �, with
a t statistic of 6.21, indicates that a random effects element of the
model is warranted.

Individual sociodemographic characteristics were found to
influence perceptions of road roughness with women and older
individuals �age 55 or over� found to be more likely to rank
segments as smooth �Roughness Categories 1 and 2� and less
likely to rank segments in Roughness Categories 3, 4, and 5, as
indicated by the signs of the marginal effects shown in Table 3.

As expected, roadway characteristics were also highly signifi-
cant. Roughness, measured through the IRI, was the third most
statistically significant factor, with a high IRI measurement
�indicating a more deteriorated pavement� making it less likely
that the segment would be rated smooth �Roughness Categories 1
and 2� and more likely that the segment would be rated in
Roughness Categories 3, 4, and 5. The increasing age of the
roadway surface and the presence of patches also decreased the
probability that the pavement would be considered smooth
�Roughness Categories 1 and 2�. Also, the better the pavement
structural condition, the more likely the roadway is to be
classified as smooth �Roughness Categories 1 and 2�.

Increases in interior noise levels and increases in the noise
level between adjacent roadway segments made it less likely
that the segment was rated smooth �Roughness Categories 1 and
2� and more likely that the segment was rated in Roughness
Categories 3, 4, and 5. The interior noise level captures the
absolute effect of noise while the increase in noise level �a vari-
able indicating a 3 dB increase or more� from the preceding
highway section captures the important relative effect of abruptly
changing noise conditions.

Turning to vehicle-type variables, driving a sport-utility
vehicle or a minivan resulted in pavements being perceived
as smoother with higher probabilities of choosing Roughness
Categories 1 and 2. In fact, Table 3 indicates that, when control-
ling for other factors influencing roughness ratings, an individual

l

Marginal effects

y=2 y=3 y=4 y=5

0.0994 −0.0669 −0.0598 −0.0178

0.1190 −0.0916 −0.0693 −0.0200

−0.0019 0.0011 0.0012 0.0004

−0.0043 0.0026 0.0026 0.0008

−0.1035 0.0462 0.0704 0.0232

0.0043 −0.0026 −0.0026 −0.0008

−0.0209 0.0126 0.0128 0.0039

−0.1326 0.0386 0.0993 0.0358

0.1629 −0.1270 −0.0968 −0.0283

0.0995 −0.0791 −0.0571 −0.0163

0.0028 −0.0017 −0.0017 −0.0005

following a change in the variable from 0 to 1.
Mode

=1

0451

0620

.0008

.0017

.0363

0017

.0085

.0410

0892

0530

.0011
driving a sport-utility vehicle had their probability of rating the
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pavement as smooth �Roughness Category 1� increase by
0.0892 and their probability of selecting the next best smooth-
ness category, Category 2, increase by 0.1629. Sport-utility
vehicle drivers are also less likely to choose the middle category
�Roughness Category 3 has a probability decrease by 0.127�,
and less likely to choose the “rough” Categories 4 and 5 with
selection probabilities decreasing by 0.0968 and 0.0283, respect-
ively. A similar trend, albeit with lower absolute values, is
observed for the minivan marginal effects. Interestingly, midsized
sedans and pickup trucks were statistically indistinguishable from
each other in terms of their impact on roughness rankings. In
general, the statistical findings are in agreement with the simple
graphical comparisons made earlier with regard to Figs. 1–4.

Finally, estimation results indicated that increasing speed made
it more likely that the roadway segment was rated smooth,
with slight increase in the probabilities of selecting Roughness
Categories 1 and 2 and slight increases in the probabilities
of Roughness Categories 3, 4, and 5. This finding may reflect
the physical reactions of vehicle suspension systems at speed
and/or may be influenced by individuals’ expectations of
vehicle/pavement feedback as speed increases.

Based on the modeling results presented above, some inter-
esting comparisons with previous studies can be drawn. For
example, as with our study, Nair and Hudson �1986� and others
dating as far back to the original 1950s road tests �AASHTO
1993� found that roughness, however measured, was among the
most statistically significant factors associated with roughness
rankings. Other factors that were found to be significant and in
general agreement with Nair and Hudson �1986� included vehicle
type and the presence of maintenance work �e.g., patch work�. It
is also noteworthy that pavement type was not statistically
significant—a finding that conflicts with Nair and Hudson �1986�.
It is suspected that other variables in our model, such as the IRI or
noise levels, are capturing the differences in pavement types.

Conclusions and Directions for Future Work

This study identifies some key factors associated with users’
perceptions of road roughness. The factors associated with an
increased probability of a roadway segment being ranked as
rougher include higher values of the International Roughness
Index, older pavement surface, higher in-vehicle noise, and
increases in vehicle noise between successive roadway segments.
Variables associated with an increased probability of a roadway
segment being ranked smoother include whether the study
participant was a female, whether the study participant was over
55 years old, better values of the pavement structural condition
measure, the use of a sport-utility vehicle, the use of a minivan,
and higher vehicle speeds.

The findings of this study are certainly suggestive and have
fundamental implications for resource allocation to infrastructure
maintenance, particularly when the structural integrity and/or
functionality �in terms of highway safety, such as the loss of
braking� are not in question. Public concerns, however, persist
relating to subjective matters, such as roadway roughness. While
subjective public assessments of infrastructure condition can
sometimes be a critical element affecting resource allocation,
it is important to recognize that our understanding of these
assessments is still developing. This paper provides some initial
evidence that suggests a complex interaction of variables
influences public perceptions of highway roughness. A better

understanding of such relationships could be the beginning of a
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more cost-effective allocation of limited infrastructure-
rehabilitation resources by maximizing the increase in public
satisfaction with infrastructure projects.

With regard to the specific problem of improving our under-
standing of the factors that affect user perceptions of highway
roughness, there are at least two recommendations for future
work. First, the range of the IRI values should be expanded
from what was available in our study. Our IRI range was limited
because of the need to restrict our study to Seattle-area freeways,
which allowed reasonable time commitments for local-user
participants. Second, our data are limited to a single, discrete
response about a continuous test segment. Because test segments
were not completely homogeneous, users had to exercise their
best judgment when evaluating test segments. In an ideal testing
scenario, it would be better if each test segment were completely
homogeneous, but this goal was unrealistic in many instances.

Notation

The following symbols are used in this paper:
P�·� � probability;

X � vector of variables determining discrete ordering of
data;

x � individual variable determining discrete ordering of
data;

y � ordinal discrete data;
z � unobserved variable defined for modeling ordered data;

� � vector of estimable coefficients for ordered data
modeling;

� � random disturbance term;
� � threshold parameter;
� � random effects parameter;

	�·�� standard normal density; and
� � individual-specific random disturbance term.

Subscripts

c � roadway segment;
i � individual participant;
j � response category; and
n � observation.
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