
 

Random Parameter Models 
 

• Previous modeling approaches treat parameters as constant across 

observations (effect of any individual explanatory variable is the 

same for each observation). 

 

• But unobserved factors may suggest that the estimated parameters 

may vary from one observation to the next. 

 

• Random parameters models account for the influences of this 

unobserved heterogeneity. 



 

Random Parameters Multinomial Logit Model 
(Mixed Logit Model) 

 
• Consider a function determining discrete outcome probabilities as 

shown in Chapter 13, 

 

  Tin = βi Xin + εin  .     (16.1) 
 

Where: 

βi is a vector of estimable parameters for discrete outcome i,  

Xin is a vector of the observable characteristics (covariates) that 

determine discrete outcomes for observation n, and 

εin is a disturbance term.  



 

As before, if the disturbances are extreme value Type I the standard 

multinomial logit results, 
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Where: Pn(i) is the probability of observation n having discrete outcome 

i (i ∈ I with I denoting all possible outcomes for observation n).   



 

Now define a mixed model (a model with a mixing distribution) whose 

outcome probabilities are defined as ( )m
nP i with 
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Where: f (β|φ) is the density function of β with φ referring to a vector of 

parameters of that density function (mean and variance), and all other 

terms are as previously defined.   



 

Substituting Equation 16.2 into Equation 16.3 gives the mixed logit 

model, 

 

    ( ) [ ]
[ ]

( )i inm
n

i InI

EXP
P i f d

EXP
= |∫ ∑X

β X
β φ β

β X    (16.4) 

 

• Mixed logit probabilities are the weighted average of the standard 

multinomial logit probabilities Pn(i) with the weights determined 

by the density function f (β|φ).   

 

• In the simplified case where f (β|φ) = 1, the model reduces to the 

standard multinomial logit.  



 

 

• In the mixed logit, β can account for observation-specific 

variations of the effect of X on outcome probabilities, with the 

density function f (β|φ) used to determine β.   

 

• Mixed logit models do not suffer from the independence of 

irrelevant alternatives problem because the ratio of any two 

outcome probabilities is no longer independent of any other 

outcomes’ probabilities. 



 

• Estimation of the mixed logit model is undertaken using simulation 

approaches due to the difficulty in computing the probabilities.   

 

• The mixed logit probabilities ( )m
nP i  are approximated by drawing 

values of β from f (β|φ) given values of φ and using these drawn 

values to estimate the simple logit probability: 

Pn(i) = EXP[βiXin]/ΣiEXP[βiXin].   

 

• This procedure is repeated across many samples and the computed 

logit probabilities are summed and averaged to obtain a 

“simulated” probability 

 



 

• The most popular alternative to random draws are Halton 

sequences (or Halton draws), which are based on a technique 

developed by Halton (1960) to generate a systematic non-random 

sequence of numbers.   

 

• Halton draws (samples) have been shown to be significantly more 

efficient than purely random draws, arriving at accurate probability 

approximations with far fewer draws. 

 

• 200 Halton draws is the usual standard for acceptable accuracy. 



 

Random Parameter Count Models 

 

Consider the basic Poisson model presented previously in Equation 

11.1, 
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Where: yn is non-negative integer count,  

P(yn) is the probability of observation n having yn counts per some time 

period (for example one year) and  

λn is the Poisson parameter for observation n and is equal to 

observation n's expected number of counts per year, E[yn].  



 

Recall from Chapter 11 that a Poisson regression is estimated by setting, 

 

( )n nEXPλ = βX        (16.7) 

 

where Xn is a vector of explanatory variables and β is a vector of 

estimable parameters.  Also recall that negative binomial model is 

derived by assuming, 

 

     λn = EXP(βXn + εn)     (16.8) 

 

where EXP(εn) is a Gamma-distributed error term with mean 1 and 

variance α.



 

To allow for random parameters in count-data models, estimable 

parameters are written as, 

    n n +   β = β ω       (16.9) 

where ωn is a randomly distributed term (for example a normally 

distributed).   

With this equation, the Poisson parameter becomes:  

λn|ωn = EXP(βnXn), in the Poisson model and  

λn|ωn = EXP(βnXn + εn) in the negative binomial  

with the corresponding probabilities for Poisson or negative binomial 

now P(yi|ωi).   



 

The random parameters version of the model, the log-likelihood is 

written as, 
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where g(.) is the probability density function of the ωi. 

 

• Because probability estimations are computationally cumbersome 

much like the case for the mixed logit, a simulation-based 

maximum likelihood method is again used (with Halton draws 

again being an efficient alternative to random draws).  



 

Random Parameter Duration Models 

 
 Hazard-based models are applied to study the conditional probability of a time 

duration ending at some time t, given that the duration has continued until 

time t.   

 Developing hazard-based duration models begins with the cumulative 

distribution function, 

F(t) = P(T < t) 

 Where:  
P denotes probability,  

T is a random time variable, and  

t is some specified time.   



 

 The density function corresponding to this distribution function (the first 

derivative of the cumulative distribution with respect to time) is 

f(t) = dF(t)/dt 

 and the hazard function is 

h(t) = f(t)/[1 - F(t)] 

 where: h(t) is the conditional probability that an event will occur 

between time t and t + dt, given that the event has not occurred up to 

time t.   

 h(t) gives the rate at which event durations are ending at time t, given 

that the event duration has not ended up to time t. 



 

The slope of the hazard function (the first derivative with respect to time) 

captures Duration Dependence: 
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 Fully-Parametric Models 

 With fully-parametric models, typical distributions of the hazard function 

include gamma, exponential, Weibull, log-logistic, log-normal and 

Gompertz distributions, among others.  

 The choice of a specific distribution has important implications relating 

not only to the shape the underlying hazard, but also to the efficiency and 

potential biasedness of the estimated parameters.   

 The hazard rate with covariates is 

h(t|X) = ho(t)EXP(βX) 

 



 

Exponential 

f(t) = λEXP(-λt) 

 with hazard, 

h(t) = λ 

 This distribution's hazard is constant, as illustrated by h4(t) in the previous 

figure.   

 This means that the probability of a duration ending is independent of time 

and there is no duration dependence. 



 

Weibull 

 A more generalized form of the exponential.   

 It allows for positive duration dependence (hazard is monotonic increasing 

in duration and the probability of the duration ending increases over time), 

negative duration dependence (hazard is monotonic decreasing in duration 

and the probability of the duration ending decreases over time) or no 

duration dependence (hazard is constant in duration and the probability of 

the duration ending is unchanged over time).   

 With parameters λ > 0 and P > 0, the Weibull distribution has the density 

function, 

f(t) = λP(λt)P-1EXP[-(λt)P] 



 

 with hazard 

( ) ( ) ( ) 1Ph t P tλ λ −=  

 If the Weibull parameter P is greater than one, the hazard is monotone 

increasing in duration (see h3(t) in Figure);  

 If P is less than one, it is monotone decreasing in duration (see h1(t) in 

Figure);  

 If P equals one, the hazard is constant in duration and reduces to the 

exponential distribution's hazard with h(t) = λ (see h4(t) in Figure).   

 Because the Weibull distribution is a more generalized form of the 

exponential distribution, it provides a more flexible means of capturing 

duration dependence.  However, it is still limited because it requires the 



 

hazard to be monotonic over time.  In many applications, a nonmonotonic 

hazard is theoretically justified. 

Log-logistic 

 The log-logistic distribution allows for nonmonotonic hazard functions and 

is often used as an approximation of the more computationally cumbersome 

lognormal distribution.   

 The log-logistic with parameters λ > 0 and P > 0 has the density function, 

f(t) = λP(λt)P-1[1+(λt)P]-2 

 and hazard function 
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 The log-logistic's hazard is identical to the Weibull's except for the 

denominator.   

 If P < 1, then the hazard is monotone decreasing in duration (see h1(t) in 

Figure 9-2);  

 If P = 1, then the hazard is monotone decreasing in duration from 

parameter λ; and if P > 1, then the hazard increases in duration from zero 

to an inflection point, ti = (P-1)1/P/λ, and decreases toward zero thereafter 

(see h2(t) in Figure 9-2). 



 

Duration Models with Random Parameters: 
 

• Following the same procedure used for count models, random 

parameters are introduced into duration models.   

 

• That is, instead of having the explanatory variables act as 

EXP(βXn) as shown in h(t|X) = ho(t)EXP(βX), a randomly 

distributed term (ωn) is introduced as in Equation 16.9 and 

explanatory variables now act on the hazard as EXP(βnXn), where β 

now varies across n observations.  

 
• Simulation-based maximum likelihood method is again used (with 

Halton draws again being an efficient alternative to random draws). 


