School of Civil Engineering

CE615 - Statistical and Econometric Methods II

Assignment \#4
 Three-Stage Least Squares (3SLS)

Speed data are collected data from a 6-lane freeway with 3-lanes in each direction separated by a large median (each direction is considered separately). At the point where the data were gathered, highly variable seasonal weather conditions were present. As a consequence, seasonal factors are expected to play a role. The data were collected over a period of a year, and the mean speeds, by lane, were the mean of the spot speeds gathered over one-hour periods (2,575 observations). The equation system is written as,

$$
\begin{aligned}
& s_{R}=\beta_{R} Z_{R}+\lambda_{R} s_{C}+\varepsilon_{R} \\
& s_{C}=\beta_{C} Z_{C}+\lambda_{C} s_{L}+\tau_{C} s_{R}+\varepsilon_{C} \\
& s_{L}=\beta_{L} Z_{L}+\lambda_{L} s_{C}+\varepsilon_{L}
\end{aligned}
$$

where s 's are the mean speeds (over a one-hour period in kilometers/hr) for the right-most lane (subscript R) relative to the direction of travel (the slow lane), the center lane (subscript C) and the left lane (subscript L), Z 's are vectors of exogenous variables influencing the mean speeds in the corresponding lanes, β 's are vectors of estimable parameters, λ 's and τ^{\prime} s are estimable scalars, and ε^{\prime} s are disturbance terms. Estimate this model (or some statistically defensible alternative) using 3SLS.

Then, estimate the following equation system using seemingly unrelated regression estimation SURE as in assignment \#1:

$$
\begin{aligned}
& s_{R}=\beta_{R} Z_{R}+\varepsilon_{R} \\
& s_{C}=\beta_{C} Z_{C}+\varepsilon_{C} \\
& s_{L}=\beta_{L} Z_{L}+\varepsilon_{L}
\end{aligned}
$$

In your write-up include:

1. The results of your best model specifications.
2. A discussion of the logical process that led you to the selection of your final specification (the theory behind the inclusion of your selected variables). Include t-statistics and justify the signs of your variables.
3. A brief comparison of 3SLS and SURE results.

Data in file "Table5-3(a).txt":
\(\left.$$
\begin{array}{cl}\hline \text { Variable Number } & \text { Description } \\
\hline \text { X2 } & \begin{array}{l}\text { Mean speed in the right lane in kilometers per hour (gathered over a } \\
\text { one-hour period) }\end{array}
$$

X3

Mean speed in the center lane in kilometers per hour (gathered over

a one-hour period)

Mean speed in the left lane in kilometers per hour (gathered over a

one-hour period)\end{array}\right]\)| Traffic flow in right lane (vehicles per hour) |
| :--- |
| X5 | | Traffic flow in center lane (vehicles per hour) |
| :--- |

| \|Variable | Coefficient | Standard Error \|b/St.Er. \mid P [\|Z|>z] | | | Mean of X |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | -23.45421780 | 1.8507657 | -12.673 | . 0000 | |
| X2 | 1.112370386 | .14502620E-01 | 76.701 | . 0000 | 124.93438 |
| TR20R | -. 1146796292 | . 29993767 | -. 382 | . 7022 | . 91495146 |
| WINTER | -. 5198830160 | . 18498440 | -2.810 | . 0049 | . 42679612 |
| SPRING | -. 8525645458 | . 27376237 | -3.114 | . 0018 | . $97864078 \mathrm{E}-01$ |
| AMPEAK | -. 6382665028 | . 20379124 | -3.132 | . 0017 | . 18252427 |
| TRUCKSR | . $1620186604 \mathrm{E}-01$ | . $14132440 \mathrm{E}-02$ | 11.464 | . 0000 | 77.475219 |

