
Simultaneous Equation Models (Book Chapter 5) 
 

Interrelated equations with continuous dependent variables: 
 

 Utilization of individual vehicles (measured in kilometers driven) in 

multivehicle households 

 Interrelation between travel time from home to an activity and the duration 

of the activity 

 Interrelation of average vehicle speeds by lane with the vehicle speeds in 

adjacent lanes. 

Problem: 
 

 Estimation of equation systems by the ordinary least squares (OLS) 

violates a key OLS assumption in that a correlation between regressors and 

distrubances will be present because not all independent variables are fixed 

in random samples (violation of A5). 



Overview of the simultaneous equations problem 
 

 Consider annual vehicle utilization equations (one for each vehicle) in two-

vehicle households of the following linear form: 

 

1 1 1 1 1 2 1u Z X u= + + +β α λ ε  

2 2 2 2 2 1 2u Z X u= + + +β α λ ε  

 

Where: 

u1  is the kilometers per year that vehicle 1 is driven,  

u2  is the kilometers per year that vehicle 2 is driven,  

Z1 and Z2 are vectors of vehicle attributes (for vehicles 1 and 2 respectively),  

X   is a vector of household characteristics,  

β's, α's,  are vectors of estimable parameters, λ's are estimable scalars, and ε's 

are disturbance terms.   



  

 To satisfy regression assumption A5, the value of the dependent variable 

(left-hand side variable) must not influence the value of an independent 

variable (right-hand side).   

 

 This is not the case in these equations because in the first equation the 

independent variable u2 varies as the dependent variable u1 varies, and in 

the second equation, the independent variable u1 varies as the dependent 

variable u2 varies.   

 

 Thus, u2 and u1 are said to be endogenous variables in Equations 5.1 and 

5.2 respectively. 
 



Reduced Form and the Identification Problem 
 

 Reduced form solution: solving two equations and two unknowns to arrive at 

reduced forms.  Substituting second equation into the first in the previous 

example: 

 

[ ]1 1 1 1 1 2 2 2 2 1 2 1u Z X Z X u= + + + + + +β α λ β α λ ε ε  
 

 rearranging, 

1 1 1 2 1 2 1 2 1
1 1 2

1 2 1 2 1 2 1 21 1 1 1
u Z X Z+ +
= + + +

− − − −
β α λα λ β λε ε
λ λ λ λ λ λ λ λ  

 

and similarly substituting first equation for u1 in the second equation gives, 

 



2 2 2 1 2 1 2 1 2
2 2 1

2 1 2 1 2 1 2 11 1 1 1
u Z X Z+ +
= + + +

− − − −
β α λα λ β λ ε ε
λ λ λ λ λ λ λ λ  

 

 Because the endogenous variables u1 and u2 are replaced by their exogenous 

determinants, the equations cand be estimated using ordinary least squares 

(OLS) as, 

 

1 1 1 1 1 2 1u a Z b X c Z= + + +ξ  , and 

2 2 2 2 2 1 2u a Z b X c Z= + + +ξ , 

where, 

 

1 1 1 2 1 2 1 2 1
1 1 1 1

1 2 1 2 1 2 1 2

; ; ;
1 1 1 1

a   b   c   + +
= = = =

− − − −
β α λα λ β λ ε εξ
λ λ λ λ λ λ λ λ  



2 2 2 1 2 1 2 1 2
2 2 2 1

2 1 2 1 2 1 2 1

; ; ;
1 1 1 1

a   b   c   + +
= = = =

− − − −
β α λ α λ β λ ε εξ
λ λ λ λ λ λ λ λ . 

 

 OLS estimation of these reduced form models (Equations 5.6 and 5.7) is called 

indirect least squares (ILS). 

 



 Problem: While estimated reduced form models are readily used for 

forecasting purposes, if inferences are to be drawn from the model system, the 

underlying parameters need to be determined.   

 

 Unfortunately, uncovering the underlying parameters, (the β's, α's, and λ's) in 

reduced form models is problematic because either too little or too much 

information is often available.   

 

 For example, note that above equations provide two possible solutions for β1, 

 

 

( ) ( )2 2 1
1 1 1 2 1

2

c 1
a 1   and  

λ λ
β λλ β

λ
−

= − = . 

 



The Identification Problem 

 

 In some instances, it may be impossible to determine the underlying 

parameters.  In these cases, the modeling system is said to be unidentified. 

 In cases where exactly one equation solves the underlying parameters, the 

model system is said to be exactly identified.   

 When more than one equation solves the underlying parameters (as shown in 

Equation 5.10), the model system is said to be over identified. 

 



Order Condition  

 Determines an equation to be identified if the number of all variables 

excluded from an equation in an equation system is greater than or equal to 

the number of endogenous variables in the equation system minus one.   

 For example, in the first equation in the original equation system above, the 

number of elements in the vector Z2, which is an exogenous vector excluded 

from the equation, must be greater than or equal to one because there are two 

endogenous variables in the equation system (u1 and u2). 

 

 
Simultaneous Equation Estimation 

 

 Two modeling alternatives:  

 single-equations estimation methods and  

 systems estimation methods.   



 The distinction between the two is that systems methods consider all of the 

parameter restrictions (caused by over identification) in the entire equation 

system and account for possible contemporaneous (cross-equation) 

correlation of disturbance terms.   

 Because system estimation approaches are able to utilize more information 

(parameter restrictions and contemporaneous correlation),  

 they produce variance-covariance matrices that are at worst equal to, and in 

most cases smaller than those produced by single-equation methods 

(resulting in lower standard errors and higher t-statistics for estimated 

model parameters). 

 



Single equation methods 

1) Indirect least squares (ILS) 

 Applies ordinary least squares to the reduced form models. 

 Consistent but not unbiased 

 

2) Instrumental variables (IV) 

 Uses an instrument (a variable that is highly correlated with the 

endogenous variable it replaces, but is not correlated to the disturbance 

term) to estimate individual equations 

 Consistent but not unbiased. 

 



3) Two-stage least squares (2SLS) 

 Approach finds the best instrument for endogenous variables.   

 Stage 1 regresses each endogenous variable on all exogenous 
variables.   
 Stage 2 uses regression-estimated values from stage 1 as instruments, 
and estimates equations with ordinary least squares. 

 
 Consistent but not unbiased.  Generally better small sample properties than 

ILS or IV.  



4) Limited Information Maximum Likelihood (LIML)  

 Uses maximum likelihood to estimate reduced form models.  Can 

incorporate parameter restrictions in over identified equations.  

 Consistent but not unbiased.  Has same asymptotic variance-covariance 

matrix as 2SLS. 

System equation methods 

1) Three Stage Least Squares (3SLS) 

 Stage 1 gets 2SLS estimates of the model system.   

 Stage 2 uses the 2SLS estimates to compute residuals to determine cross-
equation correlations.   

 Stage 3 uses generalized least squares (GLS) to estimate model 
parameters.  

 Consistent and more efficient than single-equation estimation methods. 



2) Full Information Maximum Likelihood (FIML) 

 Similar to LIML but accounts for contemporaneous correlation of 
disturbances in the likelihood function.  

 Consistent and more efficient than single-equation estimation methods.  
Has same asymptotic variance-covariance matrix as 3SLS. 

 
 

A note on generalized least squares estimation 
 Ordinary least squares (OLS) assumptions are that disturbance terms have 

equal variances and are not correlated.  Generalized least squares (GLS) is used 

to relax these OLS assumptions.  Under OLS assumptions, in matrix notation,  

( ) 2T = IΕ εε σ  



where: 

E(.)  denotes expected value,  

ε   is an n × 1 column vector of equation disturbance terms (where n is 
the total number of observations in the data),  

Tε   is the 1 × n transpose of ε,  

σ 2  is the disturbance term variance, and  

I    is the n × n identity matrix, 
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For disturbance-term correlation, ( ) 2T =Ε εε σ Ω , where 
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Recall that in ordinary least squares, parameters are estimated from, 

( ) 1T Tˆ X X X Y
−

=β , 

where: 

β̂ is an p × 1 column vector (where p is the number of parameters),  

X is an n × p matrix of data,  

TX  is the transpose of X, and  

Y is an n × 1 column vector.   

 Using Ω, Equation 5A.5 is rewritten as, 

( ) 11 1T Tˆ X X X Y
−− −=β Ω Ω . 

 The most difficult aspect of GLS estimation is obtaining an estimate of the Ω 

matrix.  In 3SLS, it is estimated using the initial 2SLS parameter estimates.



3SLS application (Manering 1983) 

1 1 1 1 1 2 1u Z X u= + + +β α λ ε  

2 2 2 2 2 1 2u Z X u= + + +β α λ ε  

 

Data: 

• Two Vehicle Households September to November 1979 

• A total of 272 households 

• Monthly usage in miles 



 

Variable Parameter Estimate t-statistic 

Constant 1205.14 10.28 

Scrappage probability 
(= $250/vehicle value) 

-1150.63 -5.82 

Cost per mile divided by 
income (fuel price in 
cents/mpg/income) 

-102.23 -2.21 

Age of principal driver 
indicator (1 if principal 
driver age is less than 
50, 0 otherwise) 

123.51 1.62 



 

Female indicator  
(1 if principal drive is 
female, 0 otherwise) 

-130.93 -1.87 

Urban indicator (1 if 
household resides in an 
urabn area, 0 otherwise) 

-154.44 -2.89 

Use of other vehicle -0.172 -1.18 

 

R2 = 0.2395 and 0.2611 

Percent change resulting from doubling of fuel prices: 

• -12.9% ignoring substutution effects. 

• -11.3% accounting for within-household substution 


