
Chapter 16 - Random Parameter Models 
 

 

Traditional models 
 

• Treat parameters as constant across observations 
 

• Problem: 
 Consider the price of fuel effect on miles driven 
 Will effect be the same across all observations? 
 Or, will high-income households be less sensitive 
to fuel prices? 

 
 



Unobserved Heterogeneity 
 

• Factors other than income may affect individuals’ 
sensitivity to gas prices, for example 

• Unobserved factors may result in parameters that vary 
across observations. 

 
Solution: Random Parameter models 
 

• Allows parameter values to vary across the population 
according to some pre-specified distribution 

• If a parameter is found to vary significantly across 
observations, it implies that each observation has its own 
parameter 

• This makes model estimation much more complex 



Random Parameters Multinomial Logit 
Model (Mixed Logit Model) 

 
• As shown in Chapter 13, the assumption that the 

disturbances are extreme value Type I distributed gives the 
standard multinomial logit form as, 
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Where: 
 

Pn(i) = probability of observation n having discrete outcome i 
(i ∈ I with I denoting all possible outcomes for observation 
n).  



• Now define a mixed model (a model with a mixing 
distribution) whose outcome probabilities are defined as 

( )m
nP i with 
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Where:  
 

f (β|φ) = density function of β with φ referring to a vector of 
parameters of that density function (mean and variance), and 
all other terms are as previously defined.   
 



Substituting this equation into the standard logit equation 
gives the mixed logit model, 
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• Here the mixed logit probabilities ( )m

nP i  are the weighted 

average of the standard multinomial logit probabilities 

Pn(i) with the weights determined by the density function 

f (β|φ).   

• Note that in the simplified case where f (β|φ) = 1, the 

model reduces to the standard multinomial logit.  



• With the mixed logit, β can now account for 

observation-specific variations of the effect of X on 

outcome probabilities, with the density function f (β|φ) 

used to determine β.   

• Mixed logit probabilities are thus a weighted average for 

different values of β across observations where some 

elements of the parameter vector β are fixed parameters 

and some are random.  

• Any form of the density function f (β|φ) in model 

estimation (such as a normal distribution) can be used. 



• Mixed logit models do not suffer from the independence 

of irrelevant alternatives problem because the ratio of any 

two outcome probabilities is no longer independent of 

any other outcomes’ probabilities 



Random Parameter Model Estimation 

For the mixed logit, the log-likelihood is: 
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Where: 

• N is the total number of observations,  

• I is the total number of outcomes,  

• δin is defined as being equal to 1 if the observed discrete 

outcome for observation n is i and zero otherwise. 



• The mixed logit probabilities ( )m
nP i  are approximated by 

drawing values of β from f (β|φ) given values of φ and 

using these drawn values to estimate the simple logit 

probability Pn(i) = EXP[βiXin]/ΣiEXP[βiXin] 

• This procedure is repeated across many samples and the 

computed logit probabilities are summed and averaged to 

obtain the simulated probability ( )m
nP̂ i  to compute the 

likelihood function. 



• How best to draw values of β from f (β|φ) so that 

accurate approximations of the probabilities are obtained 

with as few draws as possible? 

• Random draws? 

• Use Halton sequences (or Halton draws), which are 

based on a technique developed by Halton (1960) to 

generate a systematic non-random sequence of numbers. 

• Halton draws(samples) are significantly more efficient 

than purely random draws, arriving at accurate 

probability approximations with far fewer draws 



Random Parameter Count Models  

From Chapter 11: 

Poisson: 
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With: 
 

( )n nEXPλ = βX
     (16.7) 



 

Negative Binomial has: 
 

             λn = EXP(βXn + εn) 
 

Where: 
 

• EXP(εn) is a Gamma-distributed error term with mean 1 
and variance α. 

 

To introduce random parameters: 

            n n +   β = β ω
 

 

Where: 



• ωn is a randomly distributed term (for example a 

normally distributed term with mean zero and variance 

σ2).   

• With this equation, the Poisson parameter becomes 

λn|ωn = EXP(βnXn) in the Poisson model 

• And λn|ωn = EXP(βnXn + εn) in the negative binomial 

• With the corresponding probabilities for Poisson or 

negative binomial now P(yi|ωi).  With this random 

parameters 



• With this random parameters version of the model, the 
log-likelihood is written as, 
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• Where g(.) is the probability density function of the ωi. 

• Simulation-based maximum likelihood method is again 

used (with Halton draws again being an efficient 

alternative to random draws). 



Random Parameter Duration Models  

• Instead of having the explanatory variables act as 

EXP(βXn) as in 

 

          h(t|X) = ho(t)EXP(βX) 

 

• A randomly distributed term (ωn) is introduced and 

explanatory variables now act on the hazard as 

EXP(βnXn), where β now varies across n observations. 



• As with the two random parameter models presented 

previously, a simulation-based maximum likelihood 

method is again used (with Halton draws again being an 

efficient alternative to random draws). 

 


