Rating Compiler Optimizations
for Automatic Performance Tuning -

Zhelong Pan
Purdue University, School of ECE
West Lafayette, IN, 47907

zpan@ypurdue.edu

ABSTRACT

To achieve maximum performance gains through compiler
optimization, most automatic performance tuning systems
use a feed-back directed approach to rate the code versions
generated under different optimization options and to search
for the best one. They all face the problem that code ver-
sions are only comparable if they run under the same ez-
ecution contert. This paper proposes three accurate, fast
and flexible rating approaches that address this problem.
The three methods identify comparable execution contexts,
model relationships between contexts, or force re-execution
of the code under the same context, respectively. We apply
these methods in an automatic offline tuning scenario. Our
performance tuning system improves the program perfor-
mance of a selection of SPEC CPU 2000 benchmarks by up
to 178% (26% on average). Our techniques reduce program
tuning time by up to 96% (80% on average), compared to the
state-of-the-art tuning scenario that compares optimization
techniques using whole-program execution.

1. INTRODUCTION

Compiler optimizations offer potentially large performance
gains of high-performance computer (HPC) applications.
In many programs, however, this potential remains under-
exploited. One of the chief reasons is the large number of
optimization options available in today’s HPC compilers.
Compilers are generally unable to find the best combination
of techniques and apply them to all benefiting code sections
— in fact, potential performance degradation from apply-
ing the “highest” optimization level is not uncommon. For
users, it is extremely tedious and time-consuming to explore
the large search space of optimizations by hand.

Several recent projects have begun to develop methods for
analyzing the search space by experimentally comparing the
execution times of code optimized under different options.
The projects all face the following issue: the execution times
of two invocations of a code section are only comparable if
the contexts of the invocation (all program variables and en-
vironment parameters that influence execution time) are the
same. In this paper, we present three methods for rating,

*This material is based upon work supported in part by
the National Science Foundation under Grant No. 9703180,
9975275, 9986020, and 9974976.

0-7695-2153-3/0420.00 (c)2004 IEEE

Rudolf Eigenmann
Purdue University, School of ECE
West Lafayette, IN, 47907

eigenman@purdue.edu

that is evaluating the speed of, the code version generated
under a set of compiler optimization options. The ratings of
the optimized versions are compared fairly to decide which
version has the best performance. We also present automat-
able compiler techniques for choosing and applying the most
appropriate of the three techniques to a given program. We
have applied the techniques to four SPEC CPU 2000 bench-
marks, which we have tuned using our PEAK tuning engine
on both a SPARC II and a Pentium IV platform. The re-
sults show up to 178% performance improvements (26% on
average). Also, compared to a state-of-the-art tuning sce-
nario that compares optimization techniques using whole-
program execution, our techniques lead to a reduction in
program tuning time of up to 96% (80% on average).

The key ideas of our optimization rating methods are as fol-
lows. Re-execution-based rating (RBR) directly re-executes
a code section under the same context for fair comparison.
Contezt-based rating (CBR) identifies and compares invoca-
tions of a code section that use the same context, in the
course of the program run. Model-based rating (MBR) for-
mulates the relationship between different contexts, which it
factors into the comparison. These methods facilitate pro-
gram tuning scenarios that use direct timing comparison
of optimization variants, either in an offline tuning man-
ner (applications are tuned while not running in production
mode — which we used in our experiments) or in an online,
dynamically adaptive scenario, in which the applications are
tuned while in actual use. Because of their use of actual
execution timings, such tuning scenarios are also referred to
as empirical optimization.

Empirical optimization contrasts with model-based opti-
mization, which attempts to find the best techniques by
modeling the resulting performance at compile time. In [17]
the authors have shown that, for a limited set of programs
and optimization techniques, the model-based approach can
yield comparable performance to empirical optimization.
While the advantage is obvious — no tuning process is nec-
essary — the approach is limited by the extreme difficulty of
accurately modeling architecture and execution parameters
as well as the interaction between optimization techniques.
Consistent with this view, our research has shown [11] that
the performance variation of compiler optimizations can be
significant and unpredictable.

Pursuing the empirical approach, several related projects
use a feedback-directed tuning process. Meta Optimiza-
tion [12] uses machine-learning techniques to adjust the com-
piler heuristics automatically. ATLAS [16] generates numer-
ous variants of matrix multiplication and tries to find the
best one on a particular machine. Similarly, Iterative Com-
pilation [8] searches through the transformation space to
find the best block sizes and unrolling factors. Cooper [3]
uses a biased random search to discover the best order of
optimizations. Granston and Holler [6] developed heuris-
tics to deterministically select PA-RISC compiler options,
based on information from the user, the compiler and the
profiler. Chow and Wu [2] applied fractional factorial design
to optimize the selection of compiler switches. In previous
work [11], we proposed an iterative algorithm to find the
best optimization combination for each individual applica-
tion. The Optimization-Space Exploration (OSE) compiler
[13] defines sets of optimization configurations and an explo-
ration space to find the best optimization configuration ac-
cording to compile-time performance estimation. Dynamic
Feedback [4] produces several versions under different syn-
chronization optimization policies, periodically measures the
overhead of each version at run time in its sampling phase,
and uses, in its production phase, the one with the least
overhead.

Accuracy, speed, and flexibility are important properties of
optimization rating methods. If the rating is inaccurate, the
tuning system will yield limited performance or even degra-
dation. If the rating method is too slow, the tuning process
may take unacceptably long to converge (days or even weeks,
given realistic search spaces for optimization techniques and
parameters). If the method is not flexible enough it may ap-
ply to a limited set of applications, optimization techniques,
compilers, or architectures, only. Many of the proposed sys-
tems either are slow due to executing the whole program to
rate one version [3, 11, 12], apply to special functions only [8,
16], or use special hardware and compilers [13]. In [13],
the rating is estimated from profile information, which is
transformed along with the compiler optimizations. So, the
estimation is not as accurate as, although faster than, the
empirical approach.

This paper proposes general-purpose optimization rating ap-
proaches. These methods can be applied to general, regular
and irregular code sections. They can use any back-end
compiler without modifying it. They do not require any
special hardware environments. They can also be used for
both off-line tuning and online, adaptive tuning.

The remainder of this paper is organized as follows. Sec-
tion 2 presents three rating methods — CBR, MBR and RBR
— along with the program analysis. Section 3 presents the use
of these methods during program tuning. Section 4 intro-
duces our automatic performance tuning system — PEAK.
Section 5 shows the applicability and measures the quality
of the three methods on SPEC benchmarks, together with
the performance improvement by PEAK.

2. RATING METHODS AND PROGRAM
ANALYSIS

This section presents three new methods for rating compiler
optimizations. It also discusses the compiler analysis tech-

niques for applying the methods to a given program. For
clarity, the first subsection gives an overview of the tuning
environment, in which our experiments employ the rating
methods. Section 4 will provide details.

2.1 Tuning Environment

We will make use of the new rating methods in an offline
performance tuning scenario, as follows. The application to
be tuned is partitioned by a static compiler into a number of
code sections, called tuning sections (TS). Initially, each TS
is optimized statically, as in a conventional compiler. Tun-
ing steps can take place before or between production runs
of the code. The tuning system runs the application one or
several times, while dynamically swapping in and out new
code versions, each of which is generated under a set of com-
piler optimization options during tuning, for the T'S’s. The
proposed methods generate the ratings, which represent the
speed, of the code versions based on execution times. After
comparing the ratings of the versions of the same tuning
section, the winning version is inserted into the improved
application code. As described in the introduction, the key
issue in rating these versions is to achieve fair comparisons;
that is, the versions must be executed and timed under com-
parable contexts. Our rating methods achieve this goal by ei-
ther identifying TS invocations' that use the same contexts
(CBR), finding mathematical relationships between contexts
(MBR), or forcing re-execution of a T'S under the same con-
text (RBR).

2.2 Context Based Rating (CBR)

Context-based rating identifies the invocations of the T'S un-
der the same context in the course of the program execution.
The compiler considers the set of context variables, which are
the program variables that influence the execution time of
the TS. For example, the variables that determine the condi-
tions of control regions, such as if or loop constructs. (These
variables can be function parameters, global variables, or
static variables.) Thus, the context variables determine the
TS’s work load. We define the context of one TS invocation
as the set of values of all context variables. Therefore, each
context represents one unique work load.

CBR rates one optimized version under one context by using
the average execution time of several invocations of the T'S.
The best versions for different contexts may be different, in
which case CBR reports the context-specific winners. The
experiments described in Section 5 make use of only the best
version with the most important context for a TS, whereas
an adaptive tuning scenario would make use of all versions.

For CBR to be accurate, a TS needs to be invoked a signifi-
cant number of times with the same context (typically 10s of
times) in the course of a program execution. The number of
contexts plays an important role in CBR. When it is large,
we can only make use of a small percentage of T'S invoca-
tions in one run of the application to rate the code version
under a certain context. To keep the number of contexts
reasonable, CBR is applied only to T'S’s whose context vari-
ables only consist of scalars. Furthermore, if the number of
contexts of a TS is large, the MBR method (described next)

!One invocation is one execution of the tuning section,
which may or may not be a subroutine.

is preferred. We gather the number of contexts by a profile
run in the offline tuning scenario.

//ContextSet: the set of context variables.
VariableSet ContextSet;

//Return value: applicability of CBR on TS
Boolean GetContextSet(TuningSection TS)
{

ContextSet = {};

Set the state of each statement as "undone";

For each control statement s in TS {

For each variable v used in s {
if (GetStmtContextSet(v, s) =
return false;

= false)

}
¥
Remove the constant variables from ContextSet;

}

Boolean GetStmtContextSet(Variable v, Statement s)
{
StatementSet SSet = Find_UD_Chain(v, s);
Set s as "done";
For each statement m in SSet {
if (m is the entry statement) {
//v is in Input(TS).
if(v is scalar) {
put v into ContextSet;
}
else
return false;
}
if(m is "done") {//avoid loop.
continue;
}
For each variable r used in m {
if(GetStmtContextSet(r, m) == false)
return false;
}
¥
return true;

}

Figure 1: Context variable analysis

Figure 1 shows the compiler analysis to determine the ap-
plicability of CBR and to find the context variable set. The
algorithm traverses each control statement and recursively
finds the input variables that may influence the values used
in control statements. All these variables are considered as
context variables. If there exist one or more non-scalar con-
text variables, CBR is not applied. Three types of variables
are regarded as scalars: (1) plain scalars; (2) array references
with constant subscripts; (3) memory references by pointers
that are not changed within the tuning section. We found
that simple points-to analysis is sufficient for that purpose.

We eliminate unnecessary context variables, if they are run-
time constants; that is, values that are the same for all in-
vocations of the T'S. (Run-time constants are widely used|7,
9, 10] in compiler optimizations.)

2.3 Model Based Rating (MBR)

Model-based rating formulates mathematical relationships
between different contexts of a T'S and adjusts the measured
execution time accordingly. In this way, contexts that are
incompatible under CBR, become comparable.

The execution time of a tuning section consists of the exe-
cution time spent in all of its basic blocks:

TTS = Z(Tb k Cb) (1)

Trs is the execution time in one invocation of the whole
tuning section; T} is the execution time in one execution of
the basic block b; and C} is the number of entries of the
basic block b in the TS invocation.

Furthermore, if the numbers of entries of two basic blocks,
Ch1 and Cha, are linearly dependent on each other in ev-
ery TS invocation through the whole run of the program,
(that is, Ch1 = a % Cp2 + 3, where o and 3 are constants),
our compiler merges the items corresponding to these basic
blocks into one component. Hence, MBR, uses the following
execution time estimation model.

Trs = Z(Tz * Ci) (2)

Trs consists of several components, each of which has a
component count C; and a component time T;. We assume
that there is always a constant component T),, with C,, = 1
for all TS invocations.

Our compiler uses compile-time analysis to get the expres-
sion determining the number of entries to the basic block b,
Ch, if the code structure is regular, such as the loop body of
a perfectly nested loop. Otherwise, it instruments the rele-
vant blocks with counters. (These counters do not add con-
trol dependences or data dependences to the original codes
and thus have little influence on compiler optimizations and
the rating accuracy.) After a profile run, our compiler finds
the relationships among C}’s, thus to merge them into com-
ponents. Next, the unnecessary instrumentation code for
the merged blocks is removed. The remaining instrumen-
tation will supply the component counts C;’s to the rating
process during performance tuning.

During tuning, the run-time system collects the timings of
a number of invocations of the code version until the rating
error is small, which we will discuss in Section 3. The perfor-
mance rating system gathers the T'S-invocation-time vector,
Y, and the component-count matrix, C, in which Y (j) is the
Trs in the j'th invocation and C(¢,) is the ¢’th component
count C} in the j’th invocation. Solving the following linear
regression will yield the component time T;’s.

Y=TxC (3)

Here, T = (T1,T%,...,T») represents the component-time
vector of one particular version. The version with smaller
T;’s performs better. Hence, MBR may compare different
versions based on their T" vectors. There are two ways of
rating based on the T vector under MBR. (a) Directly, use
T; of the dominant component, if this component consumes
a significant portion, e.g. 90%, of the execution time. (b)

Use the execution time estimation Tiqg.

Ta/ug = Z(Tz * Cavgi) (4)

Clavgi is the average count of component ¢ during one whole
run of the program. These data are obtained from the profile
run.

Figure 2 (a) shows an example code with two components.
The first component is the loop body with a variable num-
ber, N, of entries during one invocation of the tuning section.
The second component is the tail code with one entry per
invocation. Figure 2 (b) shows the Y and C gathered by the
performance rating system during tuning. Each column of
Y and C corresponds to the data in one invocation of the
tuning section. Linear regression generates the component-
time vector T', shown in Figure 2 (c). The first component
dominates, so, this version has a rating of 77 = 110.05.

DOI=1,N
...loop body...
ENDDO
...tail code...

(a) A tuning section with two components

Y = [11015 5508 6626 6044 8793 |

C— 100 50 60 55 80
- 1 11 1 1

(b) TS-invocation-time vector Y and component-
count matrix C collected during tuning

T =1[110.05 3.75 |

(c) Component-time vector T" by linear regression

Figure 2: A simple example of MBR

If there are many components in the estimation model, a
large number of invocations of this T'S need to be measured
in order to perform an accurate linear regression. MBR
would lead to a long tuning time in this case and so is not
applied. A number of simplifications increase the efficiency
of MBR. (1) If the two branches in a conditional statement
have the same work load, the components representing the
branches are merged. (2) If the work load in conditional
statements is small, they are treated as normal statements.
For example, the if-statement with a simple increment state-
ment is not treated as a basic block, but as an increment
statement. (3) Components that exhibit constant behavior,
are put into the constant component. MBR is not as accu-
rate as CBR due to these simplifications and the side effect
of the inserted counters. However, in our experiments, this
inaccuracy was negligible.

2.4 Re-execution Based Rating (RBR)

Re-execution-based rating forces a roll-back and re-
execution of a T'S under the same context. It is applicable
to most T'S’s; however, it also generally has the largest over-
head. We first present a basic re-execution method, followed

by a method that reduces inaccuracies caused by cache ef-
fects.

24.1 Basic RBR Method

Figure 3 shows the basic idea. In each invocation of the TS,
the input data to the TS is saved, then Version 1 is timed,
the input is restored, and Version 2 is executed. The input
set Input(TS) can be obtained through liveness analysis.
Input(TS) is equal to LiveIn(bl), the live-in set of the first
block in T'S. Eligible TS’s must not call library functions
with side effects, such as malloc, free, rand, and I/O oper-
ations. (TS may be partitioned to exclude these functions.)
Since the input to the two versions is the same, the second
execution has the same workload as the first one.

Step 1. Save the Input(TS)

Step 2. Time Version 1 (the current best version)
Step 3. Restore the Input(TS)

Step 4. Time Version 2 (the experimental version)
Step 5. Return the two execution times

Figure 3: Basic re-execution-based rating method

(RBR)

RBR directly generates a relative performance improvement
based on the execution times of the two versions, which are
executed during one TS invocation. Suppose that the exe-
cution time of Version 1 is Ty1, and that the execution time
of Version 2 is Ty2. Then, the performance improvement of
Version 2 relative to Version 1 is Ry/v1-

R'UQ/’UI = Tvl/Tv2 (5)

If Ry2/01 is larger than 1, Version 2 performs better than
Version 1. Otherwise, Version 2 performs worse. For mul-
tiple versions, we compare their performance improvements
relative to the same base version. For example, if Ry,z/,1 is
less than R,3/,1, Version 3 performs better than Version 2.
In our tuning system, we use the average of R, /.’s across a
number of TS invocations as the rating of Version vz relative
to the base version vb.

2.4.2 Improved RBR Method

Even under the same input, two executions of the same ver-
sion within one TS invocation may result in different execu-
tion times. The first execution may precondition the cache,
affecting the second one. To address this problem, the im-
proved RBR method

1. inserts a precondition version before Version 1 to bring
the data into the cache, and

2. swaps Version 1 and Version 2 at each invocation, so
that their order does not bias the result.

In addition, the improved RBR method saves and restores
only part of the input set, the Modified_Input(TS).

Modi fied_Input(T'S) = Input(T'S) N Def(T'S) (6)
Def(TS) is the def set of the T'S.

Figure 4 shows the improved RBR. This method incurs three
overheads: (1) save and restore of the Modi fied_Input(TS);

RBR(TuningSection TS) :
1. Swap Version 1 and Version 2
. Save the Modified_Input(TS)
. Run the precondition version
. Restore the Modi fied_Input(T'S)
Time Version 1
. Restore the Mod:i fied_Input(TS)
Time Version 2
. Return the two execution times

0 T U A W

Figure 4:
method

Improved re-execution-based rating

(2) execution of the precondition code; and (3) execution of
the second code version.

Compile time analysis may not be able to determine the
exact Modified_Input(TS) set. Before irregular array and
pointer write references to variables in this set, inspector
code that records the addresses and values of the write ref-
erences is inserted into the precondition version.

The overhead of the save, restore and precondition code can
be reduced through a number of compiler optimizations. For
example, the save and restore overhead can be reduced by
accurately analyzing the Modi fied_Input(TS) set. This can
be achieved using symbolic range analysis [1] for regular data
accesses. Other optimizations include the combination of a
number of experimental runs into a batch, and the elimina-
tion of instructions from the precondition code that do not
affect the cache.

3. DISCUSSION AND APPLICATION TO
AUTOMATIC PERFORMANCE TUN-
ING

We have presented three approaches for rating, that is eval-
uating the speed of code versions under different optimiza-
tions: RBR, CBR and MBR. Re-execution-based rating
(RBR) can be applied to almost all tuning sections; however,
the overhead is the highest among the three. Context-based
rating (CBR) has the least overhead but is not applicable
to irregular codes or codes with many contexts. Model-
based rating (MBR) is applicable to irregular codes, but
may reduce the rating accuracy. Generally, the applicabil-
ity of these three rating approaches increases in the order of
CBR, MBR and RBR; so does the overhead.

At compile time, the program is divided into TS’s to be
tuned individually. Next, the necessary program analysis
and insertion of instrumentation code is performed: (1)
Code is inserted for saving and restoring the modified input
set, and the precondition code for RBR; (2) context vari-
ables are determined, if CBR is applicable; (3) counters and
the corresponding performance model are inserted in TS’s,
if MBR is applicable; (4) instrumentation is added to mea-
sure the TS’s execution time and trigger the performance
rating; (5) the main program is instrumented to activate
the performance tuning.

For each optimized version of TS, the tuning system gen-
erates the rating, FVAL, and the rating variance, VAR,

across a number of TS invocations, which is called a window.
The tuning system compares FEVAL’s of different versions to
know which version is the best one. We use different meth-
ods to compute EVAL and VAR under CBR, MBR, and
RBR. (1) CBR: Suppose that T'(i,x) is the execution time
of the i’th invocation with context . EVAL and VAR of
context x are the mean and the variance of T'(¢,), i = 1...w,
where w is the window size. (2) MBR: After the linear re-
gression, Tg.g or the T; of the dominant component ¢ is the
EVAL of the corresponding version. VAR is computed as
the ratio of the sum of squares of the residual errors of the
regression to the total sum of squares of the TS execution
times. (3) RBR: Suppose that R,/ (%) is the relative per-
formance improvement of the experimental version vl over
the base version vb at the ¢’th invocation. Under RBR,
EVAL and VAR are the mean and the variance of Ry1/.4(%),
i =1..w.

The tuning engine also identifies and eliminates measure-
ment outliers, which are far away from the average. Such
data may result from system perturbations, such as inter-
rupts. Also, as VAR decreases with increasing size of the
window, the system continually executes and rates the ver-
sion until VAR falls below a threshold. In this way, consis-
tent ratings are produced.

For off-line tuning, our compiler chooses the appropriate rat-
ing method by doing a profile run using the tuning input.
For example, we need to know the number of contexts for
CBR and the most important component or the Cgygi’s for
MBR. Then, our compiler chooses the applicable rating ap-
proach with the least overhead estimated from the profile.

Our compiler picks the initial rating approach for each tun-
ing section in the order of CBR, MBR, and RBR, if they are
applicable. At tuning time, the system gathers the execu-
tion time of the experimental versions and relevant param-
eters to rate the code version. If the system cannot achieve
enough accuracy, i.e. get a small VAR, within some num-
ber of invocations, it switches to the next applicable rating
method.

4. EXPERIMENTAL SETUP
4.1 Program Partitioning into Tuning Sec-
tions

In this paper, we choose as TS’s the most time-consuming
functions and loops, according to the program execution
profiles in the SPEC benchmarks. We call the generated
code for a TS under one set of optimization options one
Version.

For compilation, each TS is extracted into a subroutine so
that it can be compiled and optimized separately. We use
the Gnu compiler collection (GCC) and initially compile all
programs with the “-O3” optimization option.

4.2 Overview of the PEAK Tuning System

The PEAK tuning system uses an offfine tuning scenario.
Tuning happens at runtime but not during production runs.
The result of the tuning process is a new, improved code ver-
sion, which is absent of any instrumentation code, and thus
overheads, that are incurred during tuning. PEAK builds

on the ADAPT infrastructure [14], which was designed to
perform online, adaptive optimizations. The comparison of
online and offline tuning is beyond the scope of this paper.
Briefly, a main advantage of offline tuning is the elimination
of tuning system overheads during production runs. On the
other hand, online, adaptive tuning is a necessity for contin-
uously running applications and for applications whose TS’s
exhibit very different behavior in different invocations.

Profile Input » |Ts Rating
TS Selectior TS Selector List épproia:cht
Configuration onsultan
[©)
Instrumentec e PEAK Annotated TS Lis|
Back .
cgﬁpﬁﬂfr 8 'nsmfrme:"at'o Search Metho
s PiAg . 00 Configuration
earch Engine ®

Generate ne\
versions
v
Compute
the rating$

Performanct
Tuning Driver

Training Input

Figure 5: Overview of the PEAK tuning system

Figure 5 gives an overview of PEAK. PEAK performs the
following steps. (1) The TS Selector chooses the tuning sec-
tions, as described in Section 4.1. (2) The Rating Approach
Consultant annotates each T'S with applicable rating meth-
ods. (3) The PEAK Instrumentation Tool extracts each T'S
into a separate file, which will be compiled in step 5 under
different optimization options. It inserts the instrumenta-
tion code, as described in Section 3. (4) The instrumented
code is compiled and linked with the PEAK Search Engine
to form the Performance Tuning Driver. (5) The Perfor-
mance Tuning Driver iteratively finds the best version for
each TS. It tunes the TS by generating new optimized ver-
sions, comparing their ratings, and finally picking the best
among these versions for the resulting code. An important
issue in PEAK is the method for traversing the search space
of optimization options. We use the [terative Elimination
algorithm, developed in previous research [11].

PEAK uses a number of distinguishing features of the under-
lying ADAPT infrastructure. Details are described in [14,
15].

e Optimized versions are compiled dynamically and in-
serted into the code using dynamic linking options.

e Figure 6 shows the underlying mechanism. Both a
“best” and an “experimental” code version for each
TS are kept and dynamically swapped in and out. The
Remote Optimizer can be any compiler, which may run
on the local or a remote processor.

No Yes

Local
Optimizer

Best Known
Version

Experimenta
Version

Remote
Optimizer

an monitor and swap versions

Figure 6: Underlying tuning mechanism of
PEAK/ADAPT

5. RESULTS
5.1 Consistency of Rating Methods

An important question is the consistency of measurements
achieved by the rating methods; that is, the reliability that
a decision on an improved optimization version is correct.
We tested the consistency of the three rating methods by
measuring the mean and standard deviation of the ratings
under different window sizes. A window is the number of in-
vocations over which the measured T'S’s are averaged before
making a decision.

Table 1 shows the most important T'S for each benchmark
and consistency metrics. The upper half shows the integer
benchmarks; the lower half shows the floating point bench-
marks. The integer codes exhibit a large number of condi-
tional statements, leading to highly irregular behavior. Be-
cause of this, our algorithm applies the re-execution-based
methods (RBR) to all these codes. The floating point bench-
marks are more regular. The context-based rating (CBR)
and the model-based rating (MBR) methods are applicable
to these benchmarks.

To obtain a measure of rating consistency, our experimen-
tal system uniformly sampled the ratings throughout the
execution, with the training data set as the input. In this
way, it gathered a vector of ratings, [Vi, Va,..., V4], where
Vi is the EVAL computed at sampling time ¢, as described
in Section 3. (Each rating V; is based on timing measure-
ment of w invocations of the TS.) For this measurement, we
use only one experimental version, which is compiled under
“-03”. So, we assume that the ideal rating is the average
of Vi, V, for CBR and MBR. The ideal rating for RBR is
1, since the experimental version is the same as the base
version.

V=> (Vi)/n (7
We compute the rating error, X;, at sampling time i.

X, = {Vz‘/V—l for CBR and MBR

Vi—1 for RBR (8)

Table 1 shows the statistic characteristics of the rating er-
rors, the Mean, u, and the Standard Deviation, o, which are

Table 1: Consistency of rating approaches for selected tuning sections.
The columns from left to right show the benchmark name, the tuning section name, the applicable rating approaches, the
number of invocations of the tuning section during one run of the benchmark, and the rating consistency under different
window sizes. The numbers for the consistency columns are multiplied by 100 for readability. (For CBR, multiple rows are

used for each tuning section, if there are multiple contexts.)

Benchmark | Tuning Rating #invo- Rating Consistency: Mean (Standard Devtation) * 100
Name Section Approach | cations w=10 w=20 w=40 w=80 w=160
BZIP2 fullGtU RBR 24.2M 0.95(2.6) 0.5(1.9) 0.27(1.3) 0.09(1.0) 0.07(0.7)
CRAFTY Attacked RBR 12.3M -0.91(2.3) -0.43(1.7) -0.25(1.5) -0.33(1.2) -0.16(0.8)
GZIP longest_match RBR 82.6M -1.0(2.7) -0.14(1.2) -0.08(1.1) -0.1(0.9) -0.05(0.7)
MCF primal_bea_mpp RBR 105K -0.23(0.92) | -0.18(0.71) | -0.16(0.48) | -0.09(0.36) | -0.11(0.31)
TWOLF new_dbox_a RBR 3.19M -0.56(1.9) -0.45(1.3) -0.36(1.0) | -0.23(0.58) | -0.13(0.37)
VORTEX ChkGetChunk RBR 80.4M -0.12(3.0) 0.26(1.6) 0.18(1.2) | -0.16(0.97) | -0.11(0.76)
APPLU blts CBR 250 0(0.71) 0(0.65) 0(0.57) 0(0.49) 0(0.18)
APSI radb4(Context 1) CBR 1.37M 0(2.2) 0(2.6) 0(3.0) 0(2.7) 0(1.4)
radb4(Context 2) CBR 0(0.7) 0(0.7) 0(0.7) 0(0.7) 0(0.5)
radb4(Context 3) CBR 0(0.5) 0(0.4) 0(0.3) 0(0.3) 0(0.2)
ART match RBR 250 -0.06(0.28) | -0.07(0.17) | -0.08(0.11) | -0.1(0.07) | -0.09(0.04)
MGRID resid MBR 2410 0(1.0) 0(0.82) 0(0.76) 0(0.63) 0(0.48)
EQUAKE smvp CBR 2709 0(2.7) 0(2.5) 0(2.4) 0(2.1) 0(1.6)
MESA sample_ld_linear RBR 193M -0.05(1.3) 0.07(1.0) 0.03(0.78) | 0.07(0.57) | 0.02(0.36)
SWIM calc3 CBR 198 0(0.33) 0(0.29) 0(0.19) 0(0.06) 0(0.01)
WUPWISE zgemm (Context 1) CBR 22.5M 0(1.3) 0(1.1) 0(1.1) 0(0.94) 0(0.86)
zgemm (Context 2) CBR 0(1.5) 0(1.6) 0(1.6) 0(1.7) 0(1.5)

the measure of rating consistency.
> (X)/n 9)
V(X —)2/ (n— 1)

High rating consistency requires the Mean, u, be close to
zero and a small Standard Deviation, o.

//[/ =

g =

(10)

The last column in Table 1 shows the Mean and the Stan-
dard Deviation under different window sizes. Generally,
both metrics decrease with increasing window size. RBR
achieves a very small mean (< 0.002) and a small standard
deviation (< 0.016) with a reasonable window size for all
cases. EQUAKE has a relatively high variation, which we
attribute to its irregular memory access behavior, resulting
from sparse matrix operations. We conclude that our rating
methods are consistent. Small tuning sections exhibit more
measurement variation but also tend to have higher num-
bers of invocations. In these cases, consistency is achieved
through larger window sizes.

The fourth column in Table 1 shows the number of invoca-
tions of the tuning section under the training data set. For
some benchmarks, the number of invocations exceeds one
million, while for others it is only several hundred. In all
benchmarks, the system may rate multiple versions during
one run of the application. The total number of invoca-
tions needed in one tuning is roughly window size * number
of versions. Some benchmarks fit in one run, others fit in
multiple runs. So, PEAK can reduce the tuning time by a
significant amount, which we will show in the next section.

5.2 Performance Results

To measure the performance improvement obtained by the
tuning process, we explore all n = 38 optimization options
implied by “-O3” of the GCC 3.3 version [5]. An exhaustive

search for the best combination has a complexity of O(2"),
which is unacceptably time-consuming. Hence, we use the
Iterative Elimination algorithm [11], which reduces the com-
plexity to O(nz), It starts with O3 and iteratively removes
the optimizations with the largest negative effects. Alter-
native pruning algorithms [2, 13] could also be plugged into
our system.

We perform the experiments on both a SPARC II and a
Pentium IV machine, with two floating point (SWIM and
MGRID) and two integer (ART and EQUAKE) SPEC CPU
2000 benchmarks.

Figure 7 (a) and (b) show the performance improvement
over the version compiled under “O3” on two machines, re-
spectively, using the full (i.e., ref) data set. Like in profile-
based optimization, for reporting fair results of an offline
tuning system, a program input must be used that is dif-
ferent from the production run’s input. We use the SPEC
benchmarks’ train and ref data sets for that purpose. The
performance of the tuned application is measured using the
ref data set whereas we use the train data set during the
tuning process. For each entry, the left bar uses the train
data set, which is the appropriate data set to use during the
tuning process. The right bar is for comparison and shows
the performance that would be achieved if one used the same
(ref) data set for tuning and production runs.

The graphs show the performance that would be achieved
using all applicable rating methods. IF CBR is applicable,
then MBR is also applicable; if MBR is applicable, RBR
is also applicable. The PEAK compiler chooses MBR, for
MGRID, CBR for SWIM, CBR for EQUAKE, and RBR for
ART.

(a) Performance improvement of the tuned version oveddfalt

optimization combination on a SPARC lachine

ng

° O Train @ Ref

o

g 10

c

[]

<

&8

5

g 61

[

>

e

o 4

E

8

c 21

[

€

2 09

53 (O (O]

a rxoxoOd rxxo O X X o 14
o > > I

e L8290z LoadzI BB g =x=

2 SIS o ST s I o T Ll T

T 2228z EEEfg LLg¥e Esg

g 22225 233 23 $3s:¢

E E E £ n 0 on 2 o of o

o0 0 9 g

1.2
O Train @ Ref
o 14 _
£
> 0.8
c
S
2 06
el
N
= 0.4
£
S 0.27]
0- ol ol O ol |
o (O] rexo®a x O 4
%m%>1 %%%gf nmom= I m=>I
0 = 3 ;| © 2 ¢ DT I N §| = 3 gl
I o e
222z EEEEE £L8£8:¢ GBS
oD DD
EEEER 733035 223233
Q009 g
(c) The normalized tuning time over the WHL approach

on a SPARC Il machin

g2 178, 172
~ N 76 172
<3 O Train @ Ref 166 ' f
IS ~LOA]
£ 16 T H
[
o
[
o
= 12 L]
c
[
5
3 8 i H
<3
E
8 4
c
©
3
% 0 AL
o @ (O o xxoed x O 4
o %m%>1 %%%>i‘l mom=>I m =T
E 0|§|ml<'; 023 o|§|m|<|§| ch<|;|
g I (T e
T 22ET® EfgEfeg Lgeig 55

gggER 53563 33333

o0 0% g

(b) Performance improvement of the tuned version ovedefault
optimization combination onPentiun IV machine

1.6
w1.4, O Train @ Ref M
E12
(=2}
c 1
c
20.8 —
3
N 0.6 1 —
3
£04 |l = _—
(=]
Z 0.2 | I] I-L ’-I
oMLMal kLR all g
x (O] reo o x O 4
EEEST 5597 5G>T >z
OIEIII<|;| O|§|0:|<|§ OIEID:I<):';| n:|<|§|
222 EggEfe Leefe 58
SEc5s EEESE ¥¥¥c%
EEPEED 35803 232353
O 00 9%g

(d) The normalized tuning time over the WHL approach
on a Pentium IV machin

Figure 7: Performance improvement by PEAK and normalized tuning time.
All performance measurements are taken using the ref data sets. Left bars show tuning using the train data sets; right bars
show tuning using the ref data sets. (The significant performance improvement of ART in (b) is rescaled to fit in.)

For comparison, two simplistic rating methods are also
shown, WHL and AVG. WHL averages the TS’s execution
times over the entire applications. It represents the best that
can be achieved by static tuning. (In some cases, other rat-
ing methods may achieve slightly better performance than
WHL. The reason is that they identify the measurement out-
liers to increase the rating accuracy.) The chief disadvantage
of WHL is extremely long tuning times, because every trial
needs a full application run. AVG simply takes the timing
average of a number of invocations, regardless of the TS’s
context. It can be viewed as a naive attempt to avoid WHL’s
disadvantage. It is worth noting that AVG does not gener-
ally produce consistent ratings as the other approaches do,
because it ignores the context of each invocation.

Figure 7 (a) and (b) show that all applicable approaches
achieve similar performance improvement, which is close
to the one from WHL. AVG achieves lower improvement
than other approaches, and may even cause degradation.
In SWIM and EQUAKE, there is only one context and,

hence, AVG and MBR are equivalent to CBR. AVG improve
MGRID on Pentium IV, because it has a periodic execution
time pattern. In ART on Pentium IV, AVG is able to pick
out the optimization that significantly hurts performance.

Comparing the left bar with the right bar, we find that,
except for MGRID and ART on SPARC II, tuning with a
training data set comes close to the performance achievable
with the production data set.

Figure 7 (c) and (d) show to what value the tuning time is
reduced, compared to the state-of-the-art approach of using
full application, that is, using the WHL method. In most
cases, tuning time is reduced by more than a factor of ten.
The figures also show that using the wrong rating approach
may increase tuning time. MGRID_CBR has too many con-
texts, so it is worse than MGRID_MBR. SWIM_RBR on
Pentium IV is significantly worse than SWIM_CBR. The
tuning time based on the ref data set improves more than
the one using the train data set. This is because there are

more invocations of each tuning section. So, on average,
each run of the program rates more code versions.

Using the rating methods suggested by PEAK, the tun-
ing system achieves up to 178% performance improvements
(26% on average). Also, compared to the WHL approach
that rates optimization techniques using whole-program ex-
ecution, our techniques lead to a reduction in program tun-
ing time of up to 96% (80% on average).

There are many optimizations with potential harmful ef-
fects. Due to the interaction between the compiler opti-
mizations, it is very difficult to analyze the reasons for per-
formance degradation, [11] analyzes several interesting opti-
mizations, for example, global common subexpression elim-
ination and if conversion. Of particular interest, here, we
discuss ART. The significant performance improvement of
ART on the Pentium IV machine comes from turning off
“Strict Aliasing”. With strict aliasing, the live ranges of
the variables become longer, leading to high register pres-
sure and spilling. This spill code generates substantial mem-
ory accesses during the execution, which in term causes the
performance degradation. However, the SPARC II machine
has more general purpose registers than the Pentium IV ma-
chine, so, the SPARC II machine can tolerate higher register
pressure. Strict aliasing improves the performance of ART
on SPARC II.

6. CONCLUSIONS AND FUTURE WORK
We have proposed three methods, context-based (CBR),
model-based (MBR), and re-execution-based (RBR) rating,
for identifying and comparing the execution time of code
sections that execute under comparable execution contexts.
Such rating methods are an important part of any offline
or online/adaptive performance tuning system. RBR is a
generally applicable approach that forces the re-execution
of a code section under the same context; however, it has
the biggest overhead. CBR minimizes the overhead by pick-
ing invocations that have the same context. Its applicability
is limited. MBR finds mathematical relationships between
contexts. It is applicable to irregular codes but may re-
duce accuracy. We presented related compile-time program
analysis methods and an algorithm to select the most ap-
propriate rating method.

We have demonstrated that these approaches generate con-
sistent ratings. Applied in the PEAK performance tuning
system, we have shown that they facilitate both improved
performance and significantly reduced tuning times.

In an ongoing project, we are developing the compiler frame-
work for PEAK; to fully automate performance tuning. We
will also take the memory access behavior into consideration
to improve rating accuracy.

While we have demonstrated an offline tuning process in
this paper, the presented rating methods are also applicable
to an online, adaptive optimization scenario. In a related
project we are pursuing this goal, thus facilitating dynamic
tuning of applications that are very long running, or that
exhibit different behavior across their execution time.

7. REFERENCES
[1] William Blume and Rudolf Eigenmann. Symbolic
range propagation. In the 9th International Parallel
Processing Symposium, pages 357-363, 1995.

[2] Kingsum Chow and Youfeng Wu. Feedback-directed
selection and characterization of compiler
optimizations. In Second Workshop on Feedback
Directed Optimizations, Israel, November 1999.

[3] Keith D. Cooper, Devika Subramanian, and Linda
Torczon. Adaptive optimizing compilers for the 21st
century. The Journal of Supercomputing, 23(1):7-22,
2002.

[4] Pedro C. Diniz and Martin C. Rinard. Dynamic
feedback: An effective technique for adaptive
computing. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 71-84,
1997.

[5] Free Software Foundation,
http://gce.gnu.org/onlinedocs/gee-3.3.3/gec/. GCC
online documentation, 2003.

[6] Elana D. Granston and Anne Holler. Automatic
recommendation of compiler options. In 4th Workshop

on Feedback-Directed and Dynamic Optimization
(FDDO-4). December 2001.

[7] Brian Grant, Matthai Philipose, Markus Mock, Craig
Chambers, and Susan J. Eggers. An evaluation of
staged run-time optimizations in dyc. In Proceedings
of the ACM SIGPLAN 1999 conference on
Programming language design and implementation,
pages 293-304. ACM Press, 1999.

[8] Toru Kisuki, Peter M. W. Knijnenburg, Michael F. P.
O’Boyle, Francois Bodin, and Harry A. G. Wijshoff. A
feasibility study in iterative compilation. In ISHPC,
pages 121-132, 1999.

[9] Peter Lee and Mark Leone. Optimizing ML with
run-time code generation. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 137-148, 1996.

[10] Markus Mock, Craig Chambers, and Susan J. Eggers.
Calpa: a tool for automating selective dynamic
compilation. In International Symposium on
Microarchitecture, pages 291-302, 2000.

[11] Zhelong Pan and Rudolf Eigenmann. Compiler
optimization orchestration for peak performance.
Technical Report TR-ECE-04-01, School of Electrical
and Computer Engineering, Purdue University, 2004.

[12] Mark Stephenson, Saman Amarasinghe, Martin
Martin, and Una-May O’Reilly. Meta optimization:
improving compiler heuristics with machine learning.
In Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation,
pages 77-90. ACM Press, 2003.

[13] Spyridon Triantafyllis, Manish Vachharajani, Neil
Vachharajani, and David I. August. Compiler
optimization-space exploration. In Proceedings of the
international symposium on Code generation and
optimization, pages 204-215, 2003.

[14]

[16]

[17]

Michael Voss and Rudolf Eigenmann. ADAPT:
Automated de-coupled adaptive program
transformation. In International Conference on
Parallel Processing, pages 163—170, 2000.

Michael J. Voss and Rudolf Eigemann. High-level
adaptive program optimization with ADAPT. ACM
SIGPLAN Notices, 36(7):93-102, 2001.

R. Clint Whaley and Jack J. Dongarra. Automatically
tuned linear algebra software. Technical Report
UT-CS-97-366, 1997.

Kamen Yotov, Xiaoming Li, Gang Ren, Michael
Cibulskis, Gerald DeJong, Maria Garzaran, David
Padua, Keshav Pingali, Paul Stodghill, and Peng Wu.
A comparison of empirical and model-driven
optimization. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and
implementation, pages 63-76. ACM Press, 2003.

