
Zina Ben Miled received the B.S degree in Electrical Engineering from Oregon State University in 1988, the

M.S. and Ph.D. degree from Purdue University in 1990 and 1997, respectively. She is currently a visiting assistant

professor in the Electrical Engineering Department of the Purdue School of Engineering at Indianapolis. She is

a member of the Institute of Electrical and Electronics Engineers (IEEE). Her research interests include parallel

processing and computer architecture.

Jose A.B. Fortes received the B.S. degree in Electrical Engineering (Licenciatura em Engenharia Electrotec-

nica) from the Universidade de Angola in 1978, the M.S. degree in Electrical Engineering from the Colorado State

University, Fort Collins in 1981 and the Ph.D. degree in Electrical Engineering from the University of Southern

California, Los Angeles in 1984. In 1984, he joined the faculty of the School of Electrical Engineering at Purdue

University, West Lafayette, Indiana, where he currently is a Professor. From July 1989 through July 1990 he served

at the National Science Foundation as director of the Microelectronics Systems Architecture program. From June

1993 till January 1994 he was a Visiting Professor at the Computer Architecture Department of the Universitat

Politecnica de Catalunya in Barcelona, Spain. His research interests are in the areas of parallel processing, computer

architecture, network computing and fault-tolerant computing. He has authored or coauthored over 90 technical

papers. His research has been funded by the O�ce of Naval Research, AT&T Foundation, IBM, General Electric

and the National Science Foundation.

Fortes is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) professional society. He

was a Distinguished Visitor of the IEEE Computer Society from 1991 till 1995. Fortes is/was on the Editorial Boards

of the Cluster Computing: The Journal of Networks, Software Tools and Applications, the IEEE Transactions on

Parallel and Distributed Systems, the International Journal on Parallel Programming, the Cluster Computing: The

Journal of Networks, Software Tools and Applications, the Journal of VLSI Signal Processing and the Journal of

Parallel and Distributed Computing.

Rudolf Eigenmann received his Ph.D. in Electrical Engineering / Computer Science 1988 from ETH Zurich,

Switzerland. From 1988-1995 he was a member of the research sta� at the Center for Supercomputing Research and

Development (CSRD), University of Illinois at Urbana-Champaign. In 1995 he joined the faculty at the School of

Electrical and Computer Engineering at Purdue University. He has worked in the areas of compilers, languages and

tools for parallel machines; in performance evaluation; and in the design of high performance computer architectures.

He is a member of the editorial board of the International Journal of Parallel Programming and IEEE Computational

Science and Engineering. He also currently serves as the chairman of the High-Performance Group of the Standard

Performance Evaluation Corporation (SPEC).

18

[10] J.B. Andrews and C.D. Polychronopoulos, An analytical approach to performance/cost modeling of parallel
computers. Par. and Dist. Computing, 12, 1991, 343{356.

[11] S.Q. Moore and L.M. Ni, The e�ects of Network Contention on Processor Allocation Strategies. IPPS, 1996,
268-273.

[12] T.H. Dunigan, Early Experiences and Performance of the Intel Paragon. Oak Ridge National Laboratory, Tech.
Rep. TM-12194, 1994.

[13] D. Basak and D.K. Panda, Designing Large Hierarchical Multiprocessor Systems under Processor, Interconnec-
tion, and Packaging Constraints. ICPP, I, 1994, 63{66

[14] J.J. Dongarra and T.H. Dunigan Message-Passing Performance of Various Computers. Oak Ridge National
Laboratory, Tech. Rep. TM-13006, 1996.

[15] T. von Eicken, D.E. Culler et. al., Active Messages: a Mechanism for Integrated Communication and Compu-
tation. ISCA, 1992.

[16] C. Dubnicki, L. Iftode et. al., Software Support for Virtual Memory-Mapped Communication. IPPS, 1996,
372{381.

[17] Intel Supercomputer Systems Division. Paragon System Overview. Intel Corp., Santa Clara, CA, 1994.

[18] Cray Research. Cray T3D System Architecture Overview. Cray Research Inc., Tech. Rep. HR-04033, 1993.

[19] C.B. Stunkel, D.G. Shea et. al., The SP2 High-Performance Switch. IBM Systems Journal, 34(2), 1995, 185{203.

[20] K.P. Belkhale and P. Banerjee, A Scheduling Algorithm for Parallelizable Dependent Tasks. IPPS, 1991.

[21] Z. Ben-Miled, J.A.B. Fortes, R. Eigenmann and V. Taylor, E�cient Implementation of Unicast Based Broadcast,
Gather and Scatter in a Two-Level Heterogeneous Architecture. Hawaii Int. Conf. on System Sciences, 1998,
216{225.

[22] R.J.O. Figueiredo, J.A.B. Fortes, Z. Ben Miled, V. Taylor and R. Eigenmann, Impact of Computing-in-Memory

on the Performance of Processor-and-Memory Hierarchies, Tech. Rep. TR-ECE-98-1, Purdue Univ., 1998.

17

(this machine organization is indicated by \L" in Table 3). These two benchmarks have a low CCratio. Furthermore,

the two benchmarks that can bene�t from an HPAM machine with a high ratio of processor speed between levels are

C�t2 and Hairshed. These two benchmarks have a high CCratio. In general, the performance of a given benchmark

when executed on a multilevel heterogeneous machine is determined by its parallelism and communication behavior.

Because the �xed budget comparison had to be strictly observed and network cost was assumed to track processor

cost, slow networks were used with slow processors and fast networks were used with fast processors. Using fast

networks in the entire HPAM machine will add to the advantages of HPAM machines over one-level homogeneous

machines under the �xed budget criterion. The CCratio can be improved by (1) using fast networks throughout the

entire HPAM machine (2) providing hardware and software support for fast collective communication across levels

and within levels [21] (3) using computing in memory for the second or third level of an HPAM machine [22].

Finally, as shown by the last two columns of Table 3, in 50% and 80% of the cases for the selected benchmarks,

hybrid con�gurations of the two-level and three-level machines were used, respectively. This indicates that hardware

and software support for recon�guration is needed in HPAM. Furthermore, this support becomes more critical as the

number of levels increases.

References

[1] Z. Ben-Miled, J.A.B. Fortes, R. Eigenmann and V. Taylor, A Simulation-based Cost-e�ciency Study of Hier-
archical Heterogeneous Machines for Compiler and Hand Parallelized Applications, 9th Int. Conf. on Par. and

Dist. Computing and Systems, 1997, 168-175.

[2] Z. Ben-Miled, A Hierarchical Heterogeneous Solution to High Performance Cost-E�cient Computing. Ph.D.

Thesis, School of ECE, Purdue University, June 1997.

[3] Z. Ben-Miled and J.A.B. Fortes, A heterogeneous hierarchical solution to cost-e�cient high performance com-
puting. Par. and Dist. Processing Symp., 1996, 138{145.

[4] Z. Ben-Miled, R. Eigenmann, J.A.B. Fortes and V. Taylor, Hierarchical processors-and-memory architecture for
high performance computing. Frontiers of Massively Parallel Computation Symp., 1996, 138{145.

[5] P. Dinda, T. Gross et. al., The CMU Task Parallel Program Suite, Tech. Rep. CMU-CS-94-131, Carnegie Mellon
Univ., 1994.

[6] W. Blume, R. Doallo et. al., Parallel programming with Polaris. IEEE Computer, 1996, 78{82.

[7] Z. Ben-Miled, J.A.B. Fortes, R. Eigenmann and V. Taylor, Towards the design of a heterogeneous hierarchical
machine: A simulation approach. 30th Simulation Symp., 1997, 126{136.

[8] J.L. Hennessy and D.A. Patterson, Computer Architecture A Quantitative Approach, (San Francisco, Morgan
Kaufmann, 1990).

[9] M.L. Barton and G.R. Whiters, Computing performance as a function of the speed, quantity, and cost of the
processors. Supercomputing, 1989, 759{764.

16

5 Conclusion

In this simulation-based study each HPAM machine was compared to the optimal one-level homogeneous machine.

This optimal machine varies in size and processor speed for a given budget across the benchmarks studied. The

results of this study are summarized in Table 3.

CCratio when # Processors = HPAM Recon�guration
Benchmark # DoPs 2 128 Performance two-level three-level

C�t2 2 225.19 196.57 O L H H yes yes
H�t2 2 24.97 1.53 O O O L yes yes
Cstereo 3 54.78 1.76 L L L L no yes
Hstereo 3 11.24 0.47 O O O O no yes
Cairshed 5 0.87 0.41 O L L L no no
Hairshed 2 5343.65 96.70 O L H H yes yes

Table 3: Summary of experimental results. The number of distint DoPs for each benchmark are listed in the
second column. The third and the fourth columns show the CCratio for a homogeneous machine with 2 and 128
processors, respectively. The performance column summarizes the result of the percent gain of HPAM with respect
to the optimal homogeneous machine. In this column, the four entries correspond low-, medium-, high- and very
high-range budgets (neq). These entries can take on one of the following values : O, H, L. The symbol O indicates
that a one-level homogeneous machine is the machine of choice for the given combination of benchmark and range
of budget. The symbol H indicates that a two-level or a three-level heterogeneous machine is the machine of choice.
Furthermore, the ratio of processor speed between levels should be high (i.e. � 8). Similarly, the symbol L indicates
that a two-level or a three-level heterogeneous machine is the machine of choice. However, the ratio of processor
speed between levels should be low (i.e. � 4). The last two columns indicate whether recon�guration was used or
not for the given benchmark and machine con�guration.

Table 3 indicates that for low budgets, the machine of choice is a homogeneous multiprocessor machine. For

medium to high range budgets, four benchmarks have higher performance when executed on a multilevel heteroge-

neous machine than would have been possible with the optimal homogeneous machine. These benchmarks are C�t2,

Cstereo, Cairshed and Hairshed. For these benchmarks, although a strict �xed budget test was used, percent gains

of 10% to 30% with respect to the optimal one-level homogeneous machine can be achieved using a multilevel HPAM

machine for mid-range to very high-range budgets. The remaining two benchmarks (i.e. H�t2 and Hstereo) are best

executed on a homogeneous machine for the range of budgets tested.

The communication behavior of a benchmark is as important as its parallelism behavior in determining the

performance of the benchmark when mapped onto a heterogeneous machine. As shown in Table 3, H�t2 and Hstereo

are best executed on a homogeneous machine for all ranges of budgets tested. Although these two benchmarks

have several degrees of parallelism, they also have a low CCratio that decreases rapidly as the number of processors

increases. The CCratio can also dictate the HPAM organization of choice. In Table 3, the organization of choice for

Cstereo and Cairshed is a multilevel heterogeneous machine in which the ratio of processor speed between levels is low

15

250 300 350 400
0
5

10

15

20

25

30

35

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

b = 2

4080 4100 4120 4140 4160 4180 4200 4220 4240
0

10

20

30

40

50

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

b = 3

Figure 15: PG of C�t2 on H = fL1;16; L1;1+g when
b = 2 and b = 3.

250 260 270 280 290 300 310 320
−85
−80

−75

−70

−65

−60

−55

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

b = 2

4090 4100 4110 4120 4130 4140 4150 4160
−95

−90

−85

−80

−75

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

b = 3

Figure 16: PG of H�t2 on H = fL1;16; L1;1+g when
b = 2 and b = 3.

level homogeneous machine. The result of Figure 13 show, against our expectation, that Hairshed can bene�t from

a two-level heterogeneous machine.

The di�erence between the processor speed in the �rst and second levels was also varied. The result of this

experiment indicated that the larger the di�erence the higher is the percent gain. For example, H = [L8;1; L1;1+] has

higher percent gain thanH = [L8;1; L2;1+] which in turn has higher percent gain thanH = [L8;1; L4;1+]. Additionally,

for the range of values of neq tested, it was experimentally found that two-level machine organizations with small

number of processors in the �rst level have higher percent gain than those with a larger number of processors in the

�rst level.

Hairshed was also mapped onto three-level machines (Figure 14) with one processor in the �rst-level and varying

number of processors in the second and third level. For this case, a hybrid con�guration approach that alternates

between the one-level and the two-level con�guration of a given machine was used. Figure 14 shows that positive

percent gain for the three-level HPAM machines are obtained for values of neq beyond 300.

4.4 The E�ects of Varying the Cost Model

In this study, the cost of a processor with speed � was assumed to grow in proportion to �b, where b = 2. In order

to test the sensitivity of the experimental results obtained with respect to b, the value of b was varied. Increasing

b results in a shift to the right for all the plots and an increase in the di�erence between the speedup achieved by

the optimal homogeneous machines and the heterogeneous machines. This increase translates into an upward shift

if the percent gain is positive and a downward shift if the percent gain is negative. Figures 15 and 16 illustrate this

behavior for C�t2 and H�t2, respectively. In [9], a similar behavior was observed when homogeneous multiprocessor

machines using varying processor speed were compared.

14

0 50 100 150 200 250 300
−80

−60

−40

−20

0

20

40

60

80

100

120

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 4

S1 = 8

S1 = 16

Figure 11: Percent gain of Cairshed on H =
[LS1;1; L1;1+].

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30

40

50

60

70

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

n1 = 1

n1 = 2

n1 = 4

Figure 12: Percent gain of Cairshed on H =
[L2;n1; L1;1+].

4.3 Airshed Simulation

Figure 11 shows the percent gain when Cairshed is mapped onto two-level machines. This �gure indicates that

substantial gain can be achieved with an adequate task distribution regardless of speed. However, this increase in

gain cannot be sustained as the size of the machine increases. When the number of processors increases in the �rst

level of the two-level machine (Figure 12), the high percent gain can be sustained for a wider range of machine sizes.

However, increasing the number of processors in the �rst level is also associated with a drop in performance. With

support for fast reductions in the second level, and the use of one or two fast processors in the �rst level, it may be

possible to achieve high percent gain and be able to sustain it for a wide range of machine sizes.

0 100 200 300 400 500 600 700 800
−100

−80

−60

−40

−20

0

20

40

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 4

S1 = 8 S1 = 16

Figure 13: Percent gain of Hairshed on H =
[LS1;1; L1;1+].

0 100 200 300 400 500 600 700
−80

−60

−40

−20

0

20

40

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

: n2 = 2
: n2 = 4
: n2 = 8

Figure 14: Percent gain of Hairshed on H = [L8;1;
L2;n2; L1;1+].

Hairshed was mapped onto a two-level machine using a hybrid con�guration approach (i.e., the con�guration

alternates between the native and the one-level con�gurations of the two-level machine). Figure 13 shows the

percent gain obtained for Hairshed when the processor speed in the �rst level varies. For any given �rst level

processor speed, the percent gain starts below \zero" and increases toward values above \zero" as neq increases.

Unlike the two-level heterogeneous machine organizations, the homogeneous machine H = [L1;1; L1;1+] does not

address the e�ect of Amdahl's law. Thus, as shown in Figure 13, this machine has zero percent gain over the one-

13

4.2 Multibaseline Stereo

Cstereo was mapped onto a two-level machine (Figure 9) by assigning the sequential tasks to the �rst level and the

remaining tasks to the second level. Figure 9 shows that the machine organization H = [L1;1; L1;1+] achieves a peak

percent gain of 60% which drops below zero as neq increases. This indicates that Cstereo can bene�t from a task

distribution that assigns the sequential portion of the application to one processor and distribute the parallel portion

among the remaining processors, regardless of whether the machine is homogeneous or heterogeneous.

0 50 100 150 200 250 300 350 400
−100

−80

−60

−40

−20

0

20

40

60

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 8

S1 = 4

S1 = 16

Figure 9: Percent gain of Cstereo on H = [LS1;1; L1;1+].

0 50 100 150 200 250 300 350
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 4

S1 = 8

S1 = 16

Figure 10: Percent gain of Hstereo on H =
[LS1;1; L1;1+].

Mapping Cstereo onto a two-level machine with more than one processor in the �rst level consisted of manually

distributing the sequential portion of the code across the processors in the �rst level (automatic distribution of this

task may not be possible with current parallelizing compiler technology). The results of this mapping showed that

ratio of processor speed in the �rst and the second level should be less than or equal to four (Figure 9) and that

Cstereo is best executed on a two-level machine with one processor in the �rst level.

Cstereo was also mapped onto three-level machines with di�erent organizations. The mapping was such that the

second and third levels of the machine were recon�gured into a single level. The result of this mapping indicated

that the percent gain of Cstereo decreases as the number of processors in the second level increases. Thus, Cstereo

is best executed on a three-level machine with small number of processors in the second level.

Using a mapping similar to the one used for Cstereo, Hstereo was mapped onto two-level and three-level machines.

Figure 10 shows the percent gain achieved for Hstereo when the processor speed in the �rst level varies. This �gure

indicates that for heterogeneous two-level machines, the percent gain decreases as the processor speed in the �rst

level increases. Additionally, the percent gain for Hstereo is lower than that of Cstereo since Hstereo has lower

CCratio than Cstereo. Furthermore, unlike Cstereo, Hstereo has negative percent gain when only task distribution

is used (as opposed to both heterogeneity and task distribution). The percent gain of Hstereo when executed on a

three-level machine is negative.

12

machine (percent gain � 10%), the machine of choice is a one-level homogeneous multiprocessor machine. As the

budget increases, the two-level and three-level machines out-perform the one-level machine. For the range of processor

speed tested, the gain reaches 20% and increases as the processor speed in the �rst level increases. Thus, for mid-

range to high-end budgets, C�t2 is best executed on a two-level or three-level machine with a very fast processor in

the �rst level and slow processors in the remaining levels. Although it was expected that C�t2 will only map well

onto a two-level machine, Figure 6 shows that it is possible for the three-level machine to achieve a percent gain

greater than zero if a hybrid con�guration is used.

Previous studies ([20] and references there in) have shown that an increase in performance can result from assigning

the appropriate number (determined by the characteristics of the task) of identical processors to each task in the

application. The mapping of C�t2 on H = [L1;1; L1;1+] shows that, by itself, assigning the appropriate number

of processors to each task might not be su�cient to obtain an increase in performance. In addition to adequate

processor-task assignment, the heterogeneous features of HPAM are needed to achieve a gain in performance with

respect to a one-level machine.

Several mappings of H�t2 on a two-level machine were attempted. One of these attempts consisted of mapping the

transpose operations in H�t2 to the �rst level and usually fastest level of a two-level machine. This mapping resulted

in a lower performance than actually mapping H�t2 using the one-level con�guration of the two-level machine. When

H�t2 is executed on a two-level machine the percent gain is negative (Figure 7). The loss in performance is small

when the di�erence in speed between the two levels is also small. As this di�erence increases, the gap between the

speedup of the optimal one-level and the two-level machine increases. This is also indicated by Figure 8 which shows

the percent gain for the machines H = [L16;1; L4;1+] and H = [L16;1; L8;1+]. Moreover, for a given processor speed,

the gap between the speedup of the two machines reduces as neq increases.

Increasing the speed of the processors in the second level with respect to the �rst processor leads to an improvement

in the performance of the two-level machine with respect to the one-level machine. This mainly occurs when the

processor speed in the second level is as close as possible to the processor speed of the �rst level. This indicates that

better performance for the two-level machine is achieved when it has a con�guration that is closest to the one-level

machine. Furthermore, as indicated by the trend of the curves in Figure 8, given a very high budgets (neq > 4500)

and using two high speed processors in the �rst and second level (e.g. 64 and 32, respectively). The two-level HPAM

machine can outperform the optimal homogeneous machine.

Mapping H�t2 onto a three-level machine also resulted in a negative percent gain. The negative performance

gain for H�t2 on a two-level and three-level machines is due, among other factors, to the low CCratio of H�t2.

11

0 50 100 150 200 250 300 350 400
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 4

S1 = 8 S1 = 16

Figure 7: Percent gain of H�t2 on H = [LS1;1; L1;1+].

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−90

−80

−70

−60

−50

−40

−30

−20

−10

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S2 = 4

S2 = 8

Figure 8: Percent gain of H�t2 on H = [L16;1; LS2;1+].

applied to the data presented in this section. Additionally, a summary of of the conclusions that can be drawn based

on this latter approach are included in Table 3 of Section 5.

Except when the speed in the �rst level is one, each two-level machine reaches a peak performance above zero

in Figure 5. The percent gain at this peak increases as the processor speed in the �rst level increases with respect

to the processor speed of the second level. Additional experiments indicated that the performance degrades as the

number of processors in the �rst level increases.

For a two-level machine, the sequential portion of C�t2 can be mapped to the �rst level while the parallel portion

can be mapped to the second level. Although this mapping resulted in a percent gain larger than zero, additional

gain was obtained by using a hybrid con�guration. This hybrid con�guration consists of alternating between the

native con�guration of the machine and a one-level con�guration as needed. For example, the mapping of C�t2 on

fL16;1; L1;1+g alternates between the native con�guration fL16;1; L1;1+g and the con�guration fL1;neq(L16;1)+1+g.

Figure 6 shows the percent gain obtained by executing C�t2 on a three-level machine when the processor speed

in the second level is two. The behavior of C�t2 on a three-level machine is similar to its behavior on a two-level

machine. The peak performance increases as the speed of the processor in the �rst level increases. A test was also

conducted to evaluate the e�ect of varying the processor speed in the second level of the three-level machine on

the percent gain. This test revealed that as the processor speed in the second level increases, the performance of

the machine degrades. The con�guration for the three-level machine was also hybrid. However, in this case the

native con�guration was not used. Only the two-level and one-level con�gurations of the three-level HPAM machine

were used. For both the two-level and three-level machines, the peak performance will continue to increase as the

processor speed in the �rst level increases with respect to the processor speed in the remaining levels.

The above-mentioned results lead to several conclusions about the behavior of C�t2 and the adequate machine

organization for its execution. For machines with a small budget (i.e., neq � 50), given the low return of a multilevel

10

homogeneous multiprocessor machine built with processors of speed � = 2 within a �xed budget (neq = 100) has

higher speedup than the largest homogeneous multiprocessor machine built with processors of speed � = 1 and the

same budget. The function de�ned by the collection of the points indicated by \o" is denoted R(:) and is used as

a reference. Linear interpolation is used to obtain the values of R corresponding to values of neq that have not

been experimentally generated. The number and the speed of the optimal homogeneous machine (with speedup R)

vary from one benchmark to another. Furthermore, for a given benchmark, these also vary with the budget (neq)

allocated to the machine.

Let SH(x) denote the speedup obtained for machine H when neq = x. The percent gain of H with respect to the

optimal one-level homogeneous machine is de�ned as follows:

percent gainH (x) = 100
SH(x)� R(x)

R(x)
(4)

If positive, the percent gain indicates the additional speedup achieved over the optimal one-level homogeneous

machine for the same budget.

Figure 5 shows the percent gain of C�t2 on a two-level machine with one processor of varying speed in the

�rst level as indicated by the value of S1. In this �gure the \zero" line corresponds to the reference speedup (i.e.

SH (x) = R(x) in Equation 4).

The curve corresponding to S1 = 1 in Figure 5 represents the percent gain of a two-level machine, constructed with

the same type of processor in the two levels (i.e. homogeneous), with respect to the optimal one-level homogeneous

machine. The parallel benchmark used for the case S1 = 1 is the same as the one use for the cases S1 > 1, whereas

the parallel benchmark for the one-level homogeneous machine is di�erent. Thus, comparing the case when S1 = 1

to the optimal homogeneous machine allows an accurate assessment of whether the percent gain is due to code

transformations or to the heterogeneity of the processors.

As in the one-level homogeneous case (Figure 4), the solid curve in Figure 5 indicated by \o" represents the

optimal two-level heterogeneous machine for a given budget. For example, when 300 � neq � 400, the two-level

machine of choice has one processor of speed 16 in the �rst level and the maximum number of processors of speed

one allowed by the budget (i.e. neq) in the second level.

The analysis included in this section (Section 4) compares the speedup of each heterogeneous machine to that of

the optimal homogeneous machine (as represented by R). This is a strict comparison that favors the homogeneous

machine. A more realistic analysis should be based on the comparison of the performance of the optimal heterogeneous

machine (e.g. the envelope curve indicated by \o" in Figure 5) and the performance of the optimal homogeneous

machine (e.g. the envelope curve R, indicated by \o" in Figure 4). This latter analysis approach can be directly

9

0 100 200 300 400 500 600−100

−80

−60

−40

−20

0

20

40

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

S1 = 1

S1 = 2

S1 = 4

S1 = 8

S1 = 16

Figure 5: Percent gain of C�t2 on H = [LS1;1; L1;1+].

0 50 100 150 200 250 300 350 400 450
−50

−40

−30

−20

−10

0

10

20

30

40

Number of Equivalent Processors

P
er

ce
nt

 G
ai

n

 − : n2 = 8
 −− : n2 = 4
 −. : n2 = 2

S1 = 4

S1 = 8

S1 = 16

Figure 6: Percent gain of C�t2 on H = [LS1;1; L2;n2;

L1;1+].

network that is balanced with respect to processor speed allows the cumulative cost of the individual processors in

the machine to remain indicative of the overall cost of the machine. For a processor with � = 100-Mhz, L is equal

to 120ns (which does not represent an aggressive network) and for a processor with � = 1Ghz, L is equal to 12ns

(which represents a more aggressive network). For example, the reported per-hop-delay for the Paragon is 40 ns[12].

Contention: HPAM Sim allows the simulation of the target machine network with or without contention. Simula-

tion of network contention is most time consuming. For H�t2 and Hstereo, there is more than 20% di�erence between

the simulation estimated execution times obtained with and without contention. Thus, for these benchmarks the

contention mode of HPAM Sim was used. For C�t2, Cstereo, Cairshed and Hairshed, the percent di�erence between

the simulation estimated execution times using the contention mode and the non-contention mode is less than 1%.

Thus, for these benchmarks the non-contention mode was used.

4 Simulation Results and Analysis

The two versions of each of the selected CMU benchmarks were mapped onto di�erent HPAM con�gurations.

HPAM Sim was used to simulate their executions. There are two di�erent factors that can determine the assignment

of a given task to a given level: the DoP and the communication load. For the remainder of this study speedups are

computed with respect to the reference processor.

4.1 2D Fast Fourier Transform

C�t2 was executed on a one-level homogeneous multiprocessor. The speedups obtained by varying the number of

processors and processor speeds are shown in Figure 4. In this �gure, the points indicated by \o" represent the

one-level machine with optimal speedup for a given value of neq. For the C�t2 benchmark (Figure 4), the largest

8

Communication Latency: For a given machine, the communication latency (tcomm) is the sum of three major

components[11]: tsend, tnet and trecv. For a message of size S Bytes, each of these components can be expressed as

follows:
tsend = Csend + L

S

W
; tnet = L1(

S

W1
+ n); trecv = Crecv + L

S

W
: (3)

In the expression of tsend and trecv, Csend and Crecv are constants. In these same expressions, the terms that

vary with the size of the message are mainly due to any copy operation required during a send or a receive. The

ratio L=W represents the time required to process 1 Byte of data during these copy operations. In the expression of

tnet, L1 is the per-hop-delay, n denotes the number of hops (between the source and the destination of the message)

and W1 is the width of the point-to-point link between a processor and its nearest neighbor. On most commercial

multiprocessor systems, the communication delay is dominated by the software startup latency (tsend + trecv)[12].

For example, in [11], the di�erent parameters in Equation 3 corresponding to the IBM-SP1 were estimated at :

Csend = 20�s, L=W = 0:02�s=Byte, L1=W1 = 0:03�s=Byte and Crecv = 35�s. The software startup latency is

usually estimated as half the time it takes for one processor to send and receive a small message to/from a nearest

neighbor (\echo" test).

The variation in software startup latencies can be as high as an order of magnitude for systems using traditional

message passing protocols (e.g. Cray-T3D+PVM: 21�s and SP1+MPL: 270�s [14]). The focus of several studies

such as [15] and [16] is to reduce software startup latency. The common idea behind these approaches is to use the

advantages of shared memory communication paradigms in message passing. This is accomplished in [15] by using

active messages and in [16] by using virtual mapped memory communication. Both models try to maximize the

overlap between computation and communication while performing message passing in user space. In [16], it was

shown that one-way transfer times for the \echo" test that are close to the physical hardware latency can be achieved

for a message passing communication paradigm. Given the variation in software startup latencies due to di�erent

implementations and that new software and hardware techniques will continue to improve the software startup latency,

this study focuses on comparing HPAM to homogeneous machines in the ideal case where Csend = Crecv = 0. Other

studies will address the e�ect on the performance of HPAM machines due to varying startup software latencies.

For all the experiments included in this paper, we make the simplifying assumption that L1 = L and W1 = W .

This assumption was motivated by the fact that for the IBM-SP1 (described above) as well as for other machines[12],

L1=W1 � L=W . Furthermore, W is set to 8 Bytes because technology advances will allow 4 to 8 Bytes wide channels

in the near future [13].

The per-hop-delay (L) is set to 12/�. This parameter varies with the processor speed in order to re
ect the

fact that fast networks are used with fast processors and slow networks are used with slow processors. Using a

7

HPAM machine, the neq is:

neq (H = [L�1;�1 ; � � � ; L�n;�n]) =
nX

i=1

�i
b�i (1)

In [9] and [10] a value of two was used for b. However, in [9] it was indicated that b = 2 is a conservative estimate

for the cost of fast processors and that the cost function becomes exponential for high-end processors. The value

b = 2 is used throughout this study and the e�ect of varying b is discussed in Section 4.6. For a given value of b and

a machine H, neq represents the size of the one-level homogeneous machine that can be built using processors with

normalized speed one and the same budget allocated for H.

level 1 : C

level 2 : C

level 3 : C

level 2 : C’

level 1 : C’

Figure 3: Con�gurations C' = fL2;4, L1;16g and C =
fL8;1, L2;4; L1;8g of H = [L8;1; L2;4; L1;8]. The levels of
C and C' are indicated by dashed and solid lines, respec-
tively. Processors connected by arrows are emulated by
a single physical processor.

100 101 102 103 104 105
0

5

10

15

20

25

Number of Equivalent Processors (log)

S
pe

ed
up

H = L(16,+)

H = L(8,+)

H = L(4,+)

H = L(2,+)

H = L(1,+)
o Reference

Figure 4: Speedup of C�t2 on H = [L1+;1+].

3.3 Communication Model

Network Topology: In concept HPAM can have any interconnection network. However, in this study each level

of HPAM uses a mesh for intra-level interconnection network. Let processors be represented by (row; column)level

tuples such that the topmost row and the leftmost column of a given level are labeled zero. Also, let level l consist

of an rl � cl processor mesh (rl and cl are powers of two). Furthermore, let levels be numbered in increasing order

starting from the top level. A given processor (0; a)l is connected to processor (rl�1 � 1; b)l�1. The relationship

between a and b is given by:

b = ba=flc where fl = cl=cl�1; and cl � cl�1 (2)

The above inter-level network was selected because it allows upper levels to behave as an extension of adjacent

lower levels while using existing connectivity e�ciently and without the need for additional connectivity.

6

3 Simulation Environment

This section describes the simulation environment used in this study. This environment consists of three major

components: machine con�guration, cost model and communication model. These components are described in the

following subsections.

3.1 HPAM Con�gurations

The non-normalized speed of a processor is de�ned as the ratio of the number of instructions executed per cycle to the

cycle time of the processor. The normalized speed of a processor refers to the non-normalized speed of the processor

divided by the non-normalized speed of the reference processor. The notation � and � is used to distinguish between

normalized and non-normalized processor speeds, respectively.

Let L�;� represent an HPAM level that consists of � processors with speed �. The notation L�;�+ is used to

represent a family of levels with a number of processors greater than or equal to � and processor speed � (e.g. L�;2+

represents L�;2; L�;4; L�;8 ...). Similarly, L�+;� is used to denote the family of levels with � processors and processor

speed greater than or equal to �. Let H = [L�1;�1 ; L�2;�2 ; � � � ; L�n;�n] represent an n-level HPAM physical machine.

Each HPAMmachine can have several virtual HPAM con�gurations. Let C = fL
1;�1 ; L
2;�2 ; :::; L
m;�mg represent an

m-level con�guration, where m � n. The native con�guration of the above HPAM machine (H) is the con�guration

C = fL�1;�1; L�2;�2 ; :::; L�n;�ng which matches the physical con�guration. Figure 3 shows the native con�guration

(C = fL8;1; L2;4; L1;8g) as well as the con�guration C0 = fL2;4; L1;16g of the HPAM machine H = [L8;1; L2;4; L1;8].

In C0, the second level of H behaves as an extension of the third level and the �rst level emulates a level with a

larger number of slower processors (than the �rst level of C).

HPAM Sim was used in this study to simulate the execution of the selected benchmarks on several HPAM

machines. Furthermore, when needed, HPAM Sim was also used to emulate the virtual con�gurations of a physical

HPAM machine.

3.2 Cost Model

According to the model proposed in [9], the cost of a given level L�;� is estimated as a�b�, where a and b are

constants. In this study, the reference processor (L1;1) has normalized speed one and cost a. The constant b captures

the possibly nonlinear relation between processor cost and speed. The number of equivalent reference processors

(neq) is used to compare di�erent HPAM machines. A �xed value of neq corresponds to a �xed budget. The neq

of L�;� is the cost of L�;� relative to the cost of the reference processor (i.e., a�b�

a
= �b�). Similarly, for an entire

5

for stereo will not scale up well as the number of processors increases. This suggests that the machine of choice for

stereo should be a two-level organization.

As shown in Table 1, airshed has �ve distinct DoPs including a small sequential portion. However, the parallel

portions of airshed have a high communication overhead (Figure 1). These portions mainly consist of reduction

operations. Thus, in order to observe any performance gain by using more than two levels or a two-level organization

with large number of processors, the machine would need hardware or software support for fast reductions.

2.2 Hand Parallelization

Hand parallelization in this study relied on the detailed analysis included in [5]. Hand parallelization (Table 2)

exposes more parallelism with DoP = 65536 = 256 � 256 in �t2. This degree parallelism is due to two nested

loops with DoP = 256 each. There are two types of tasks with DoP = 65536: communication intensive tasks and

non-communication intensive tasks. For the hand-parallelized version of �t2, of the 99.99% execution time segment

with DoP = 65536 in Table 2, 58.33% and 41.66% correspond to the �rst and second types of tasks, respectively.

Due to the communication intensive nature of the �rst type of tasks, it might not be practical to fully exploit

parallelism up to DoP = 65536. Thus, a more realistic estimate for the DoP of these tasks is 256 which results from

parallelizing one of the two nested loops and serializing the other. Compared to the compiler-parallelized version of

this benchmark, the CCratio is lower for the hand-parallelized version (Figure 2). One would expect this benchmark

to best map onto a one-level homogeneous machine.

By using scalar-to-array promotion transformations, hand parallelization of stereo exposed more parallelism with

DoP = 61440. However, this parallelism is associated with high additional computation and control overhead. Given

the three distinct DoPs in the hand-parallelized version of stereo, this benchmark is expected to best map onto a

three-level HPAM machine. However, due to its low CCratio, a two-level HPAM machine may be more cost-e�cient.

Polaris exposed mostly parallelism due to reduction operations in airshed. In the hand-parallelized version,

parallelism across the input grid points was detected. This parallelism is hard to detect with a parallelizing compiler

because it requires extensive interprocedural analysis. As shown in Figure 2 and Table 2, airshed is mostly parallel

and has a high CCratio. This suggests that airshed is best mapped onto a homogeneous one-level organization. The

notation Hbenchmark and Cbenchmark (e.g. H�t2 and C�t2) refers to the hand-parallelized and compiler-parallelized

versions of each benchmark, respectively.

4

communication not only includes message passing operations but also any copy or setup operations that are needed

for communication only. Although this ratio is computed for processor zero only, in most of the benchmarks it is a

relatively accurate estimate of the computation and communication times distribution. This ratio depends on the

time it takes to transfer data between processor relative to the processor speed. The CCratio also depends on the

underlying communication model which is discussed in Section 3.

DoP �t2 stereo airshed
1 63.6% 16.8% 5.4%
25 22.2%
150 3.3%
256 18.0%
400 61.2%
1000 7.9%
61704 65.2%
65536 36.4%

Table 1: Parallelism distribution for the compiler-
parallelized CMU benchmarks.

DoP �t2 stereo airshed
1 0.01% 11.63% 0.14%
40 28.72%
700 99.86%
61440 88.37%
65536 99.99%

Table 2: Parallelism distribution for the hand-
parallelized CMU benchmarks.

100 101 102 103
10

−1

100

101

102

103

104

Number of Processors (log)

R
at

io
 o

f C
om

pu
ta

tio
n

to
 C

om
m

un
ic

at
io

n
(lo

g)

Cfft2

Cstereo

Cairshed

Figure 1: Ratio of the total time spent in computation to
the total time spent in communication for the compiler-
parallelized benchmarks.

100 101 102 103
10

−1

100

101

102

103

104

Number of Processors (log)

R
at

io
 o

f C
om

pu
ta

tio
n

to
 C

om
m

un
ic

at
io

n
(lo

g)

Hstereo

Hfft2

Hairshed

Figure 2: Ratio of the total time spent in computation
to the total time spent in communication for the hand-
parallelized benchmarks.

Table 1 and Figure 1 show that the CMU benchmarks have di�erent parallelism and communication distributions.

The 2D Fast Fourier Transform (�t2) benchmark has two predominant DoPs : a large sequential portion (i.e.,

DoP = 1) and the remaining portion of the application is highly parallel (i.e., DoP = 65536). Expectedly, �t2

should bene�t from a two-level organization with one fast processor in the �rst level and many processors in the

second level.

The Multibaseline Stereo (stereo) has three distinct DoPs. However, for machines with 100 to 200 processors

the di�erence between exploiting parallelism with DoP = 256 and DoP = 61704 cannot be observed. Furthermore,

Figure 1 shows that the CCratio of stereo decreases rapidly as the number of processors increases. Thus, the speedup

3

each additional level has an increasing number of slower processors. This study addresses three important questions:

(1) Given a �xed budget can an HPAM organization compete with the optimal one-level homogeneous machine for

a given benchmark? (2) What characteristics of the benchmarks dictate how well a given application maps onto an

HPAM organization? (3) How critical is it to provide hardware and software support for recon�guring a physical

HPAM machine with k of levels into a virtual machine with j < k levels (i.e., making one level behave as an extension

of its successor level)?

Section 2 of this paper describes general characteristics of the CMU benchmarks[5] used to carry this study. Due

to space limitations, only the results corresponding to three out of the �ve CMU benchmarks are included in this

paper. Additional �ndings about the selected benchmarks as well as the remaining two benchmarks from the CMU

suite can be found in [1, 2]. The simulation environment and the notation used are discussed in Section 3. The

results obtained by mapping the CMU benchmarks onto di�erent HPAM organizations are included in Section 4.

Conclusions are provided in Section 5.

2 Benchmark Characteristics

Parallelism in each benchmark is detected by two di�erent approaches: a parallelizing compiler (Polaris[6]) and

\hand" parallelization. The �rst version of these benchmarks is representative of HPAM codes that might result from

a parallelizing compilation. The benchmarks that result from the second approach allow the study of performance

of HPAM architectures when used by expert programmers.

2.1 Compiler Parallelization

Let DoP (degree of parallelism), at a given point in time in the execution of a benchmark, denote the maximum

number of assembly instructions that can be executed concurrently according to the parallelism explicilty expressed in

the parallelized benchmark. Data parallelism in each benchmark was detected using the parallelizing compiler Polaris.

A heterogeneous multiprocessor simulator, HPAM Sim[7], was then used to evaluate the percentage of time (measured

in cycles) during which a benchmark executed with each distinct DoP . Table 1 shows the DoP time percentages for

the selected CMU benchmarks (percentages under 1% are omitted). The information included in Table 1 does not

re
ect the communication behavior of the benchmarks. In order to gain insight into the communication behavior

of the benchmarks, the ratio of the total time spent in computation to the total time spent in communication was

estimated for each benchmark (Figure 1). This ratio (denoted CCratio) is obtained by tracing the communication

and computation tasks for one processor (i.e., processor zero) of a one-level organization. The total time spent in

2

On the Cost-e�ciency of Hierarchical Heterogeneous Machines for

Compiler- and Hand-Parallelized Applications*

Zina Ben Miled Jos�e A. B. Fortes Rudolf Eigenmann Valerie Taylor

Department of EE School of ECE Department of ECE

Purdue University Purdue University Northwestern University

Indianapolis, IN46202 West Lafayette, IN 47907-1285 Evanston, IL 60208-3118

Abstract

This paper presents a simulation-based analysis of the performance of compiler- and hand-

parallelized versions of the CMU benchmarks on heterogeneous machines organized as a hierarchy

of processors-and-memory (HPAM). The characteristics of these benchmarks are �rst established

and then each benchmark is mapped onto di�erent multilevel heterogeneous organizations. The

performance of these mappings is compared to that achieved by executing the benchmarks on

the optimal one-level homogeneous machine organization for a given benchmark and machine

budget. This study establishes that heterogeneous machine can have higher cost-e�ciency than

the optimal homogeneous machine. Experimental results show that the heterogeneous multilevel

machine organization can bene�t from hardware and software support for dynamically recon�g-

uring three-level and two-level machines into two-level and one-level organizations. Furthermore,

these experimental results indicate that the performance of a given application, when executed

on a multilevel heterogeneous organization, depends not only on the parallelism distribution but

also on the ratio of total communication time to total computation time.

Keywords: Heterogeneous, Cost-e�ciency, Recon�guration, Simulation, Parallel and Performance.

1 Introduction

The potential for heterogeneous architectures to provide cost-e�cient high performance computing has been shown

analytically in several previous studies ([3], [4] and references therein). This paper reports the results of a simulation-

based study of heterogeneous machines organized as a hierarchy of processors-and-memory (HPAM) [3]. An HPAM

consists of several levels of processors-and-memory (PAM) systems. Relative to the �rst (top) level of the hierarchy,

*This research was supported in part by NSF grants ASC-9612133, ASC-9612023 and CDA-9617372.

1

