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Abstract

Although compile-time optimizations generally improve
program performance, degradations caused by individual
techniques are to be expected. One promising research di-
rection to overcome this problem is the development of dy-
namic, feedback-directed optimization orchestration algo-
rithms, which automatically search for the combination of
optimization techniques that achieves the best program per-
formance. The challenge is to develop an orchestration al-
gorithm that finds, in an exponential search space, a solu-
tion that is close to the best, in acceptable time. In this
paper, we build such a fast and effective algorithm, called
Combined Elimination (CE). The key advance of CE over
existing techniques is that it takes the least tuning time (57%
of the closest alternative), while achieving the same pro-
gram performance. We conduct the experiments on both a
Pentium IV machine and a SPARC Il machine, by measuring
performance of SPEC CPU2000 benchmarks under a large
set of 38 GCC compiler options. Furthermore, through or-
chestrating a small set of optimizations causing the most
degradation, we show that the performance achieved by
CE is close to the upper bound obtained by an exhaustive
search algorithm. The gap is less than 0.2% on average.

1 Introduction and Motivation

Compiler optimizations for modern architectures have
reached a high level of sophistication. Although they yield
significant improvements in many programs, the potential
for performance degradation in certain program patterns is
known to compiler writers and many users. The state of
the art is to let the users deal with this problem through
compiler options. The presence of compiler options reflects
the inability of today’s optimizers to make optimal choices
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at compile time. The unavailability of program input data
and insufficient knowledge of the target architecture can
severely limit the accuracy of compile-time performance
models. Thus, the determination of the best combination
of compiler optimizations for a given program or program
section remains an unattainable compile-time goal. Today’s
compilers have evolved to the point where they present to
the user a large number of options. For example, GCC
compilers include 38 options, roughly grouped into three
optimization levels, O1 through O3. On the other hand,
compiler optimizations interact in unpredictable manners,
as many have observed [5, 11, 13, 15, 18]. A fast and effec-
tive orchestration algorithm to search for the best optimiza-
tion combination for a program is desired.

Several automatic performance tuning systems have
taken a dynamic, feedback-directed approach to orchestrate
compiler optimizations. In this approach, many different bi-
nary code versions generated under different experimental
optimization combinations are being evaluated. The perfor-
mance of these versions is compared using either measured
execution times or profile-based estimates. Iteratively, the
orchestration algorithms use this information to decide the
next experimental optimization combinations, until conver-
gence criteria are reached.

The new algorithms presented in this paper follow the
above model. We first develop two simple algorithms:
(a) Batch Elimination (BE) identifies the harmful optimiza-
tions and removes them in a batch. (b) Iterative Elimina-
tion (IE) successively removes harmful optimizations, mea-
sured through a series of program executions. Based on the
above two algorithms, we design our final algorithm, Com-
bined Elimination (CE). We compare our algorithms with
two algorithms proposed in the literature: (i) The “com-
piler construction-time pruning” algorithm in Optimization-
Space Exploration (OSE) [18] iteratively constructs new
optimization combinations using “unions” of the ones in the
previous iteration. (ii) Statistical Selection (SS) in [15] uses
orthogonal arrays [9] to compute the main effect of the op-
timizations based on a statistical analysis of profile infor-



mation, which in turn is used to find the best optimization
combination.

In addition to the above algorithms that we compare our
work with, several other approaches have been proposed.
Typically, they need more than hundreds of compilations
and experimental runs, when tuning a large number of opti-
mizations (38 optimizations in our experiments). The goal
of our work is to reduce this number to several tens, while
achieving comparative or even better program performance.
For the large number of benchmarks and optimizations ex-
perimented in this paper, we can only apply the algorithms
in [18] and [15], which are closest to our new algorithm,
CE, in terms of tuning time. To further verify that our CE al-
gorithm achieves program performance comparable to other
existing algorithms, we use a small set of optimizations and
show that CE closely approaches the upper bound repre-
sented by exhaustive search. The other existing algorithms
are as follows.

In [5], a fractional factorial design is developed based
on aliasing or confounding [4]; it illustrates a half-fraction
design with 2"~ ! experiments. In [7], heuristics are de-
signed to select PA-RISC compiler options based on infor-
mation from the user, the compiler, and the profiler. While
the use of a priori knowledge of the interaction between
optimization techniques may reduce the complexity of the
search for the best, it has been found by others [13] that
the number of techniques that potentially interact is still
large. ATLAS [20] starts with a parameterized, hand-coded
set of matrix multiplication variants and evaluates them on
the target machine to determine the optimum settings for
that context. Similarly, Iterative Compilation [11] searches
through the transformation space to find the best block sizes
and unrolling factors. In more recent research [10], five dif-
ferent algorithms, genetic algorithm, simulated annealing,
grid search, window search and random search are exploited
to find the best blocking and unrolling parameters. Based
on the random search in [10], some aim to find a general
compiler optimization settings using GCC [8]. Meta op-
timization [17] uses machine-learning techniques to adjust
the compiler heuristics automatically.

Different from our goal of finding the best optimiza-
tion combination is finding the best order of optimization
phases. In [6], a biased random search and genetic algo-
rithm is used to discover the best order of optimizations.
Others have added hill climbing and greedy constructive al-
gorithms [3]. Furthermore, genetic algorithm has been im-
proved to reduce search time [12].

In this paper, we make the following contributions:

e We present a new performance tuning algorithm, Com-
bined Elimination (CE), which aims at picking the best
set of compiler optimizations for a program. We show
that this algorithm takes the shortest tuning time, while
achieving comparable or better performance than other

algorithms. Using a small set of (6) important opti-
mizations, we also verify that CE closely approaches
the performance upper bound.

e We evaluate our and other algorithms on a large set
of realistic programs. We use all 23 SPEC CPU2000
benchmarks that are amenable to the GCC compiler
infrastructure (omitting 5 benchmarks, written in FO0O
and C++). By contrast, many previous papers have
used small kernel benchmarks. Among the papers that
used a large set of SPEC benchmarks are [13, 14, 18].

e Our experiments use all (38) GCC O3 options, where
the speed of the tuning algorithm becomes of decisive
importance. Except [8] and [18] that also use a large
number of optimizations, previous papers have gener-
ally evaluated a small set of optimizations.

Using the full set of GCC O3 optimizations, the aver-
age normalized tuning time, which will be defined formally
in Section 3.2, is 75.3 for our CE algorithm; 131.2 for the
OSE algorithm described in Section 2.2.5; 313.9 for the SS
algorithm described in Section 2.2.6. Hence, CE reduces
tuning time to 57% of the closest alternative. CE improves
performance by 6.01%, over O3, the highest optimization
level; OSE by 5.68%; SS by 5.46%. (Compared to unop-
timized programs, performance improvement achieved by
CE would amount to 56.4%, on average.)

The remainder of this paper is organized as follows. In
Section 2, we describe the orchestration algorithms that we
use in our comparison. In Section 3, we compare tuning
time and tuned program performance of these algorithms
under 38 optimizations. In Section 4, we compare the per-
formance of CE with the upper bound obtained using ex-
haustive search under a smaller set of optimizations.

2 Orchestration Algorithms
2.1 Problem Description

We define the goal of optimization orchestration as fol-
lows:

Given a set of compiler optimization options
{F1,Fy,...,F,}, find the combination that minimizes
the program execution time. Do this efficiently, without the
use of a priori knowledge of the optimizations and their
interactions. (Here, n is the number of optimizations.)

In this section, we give an overview of several algorithms
that pursue this goal. We first present the exhaustive search
algorithm, ES. Then, we develop two of our algorithms, BE
and IE, on which our final CE method builds, followed by
CE itself. Next, we present two existing algorithms, OSE
and SS, with which our algorithm compares. Each algo-
rithm makes a number of full program runs, using the result-
ing run times as performance feedback for deciding on the



next run. We keep the algorithms general and independent
of specific compilers and optimization techniques. The al-
gorithms tune the options available in the given compiler via
command line flags. Here, we focus on on-off options, simi-
lar to several of the papers [5, 13, 14, 15]. In Section 2.3, we
briefly discuss extensions to handle other types of options.

2.2 Orchestration Algorithms

2.2.1 Algorithm 1: Exhaustive Search (ES)

Due to the interaction of compiler optimizations, the ex-
haustive search approach, which is called the factorial de-
signin [5, 15], would try every optimization combination to
find the best. This approach provides an upper bound of an
application’s performance after optimization orchestration.
However, its complexity is O(2"), which is prohibitive if
a large number of optimizations are involved. For 38 opti-
mizations in our experiments, it would take up to 2% pro-
gram runs — a million years for a program that runs in two
minutes. We will not evaluate this algorithm under the full
set of options. However, Section 4 will use a feasible set of
(6) options to compare our algorithm with this upper bound.
Using pseudo code, ES can be described as follows.

1. Getall 2™ combinations of n options, { F, Fs, ..., F,, }.
2. Measure application execution time of the optimized
version compiled under every possible combination.

3. The best version is the one with the least execution

time.

2.2.2 Algorithm 2: Batch Elimination (BE)

The idea of Batch Elimination (BE) is to identify the opti-
mizations with negative effects and turn them off at once.
BE achieves good program performance, when the opti-
mizations do not interact with each other. It is the fastest
among the feedback-directed algorithms.

The negative effect of one optimization, F;, can be rep-
resented by its Relative Improvement Percentage (RIP),
RIP(F;), which is the relative difference of the execution
times of the two versions with and without F;, T(F; = 1)
and T(F; = 0). F; = 1 means Fj is on, 0 means off.

T(F; = 0) - T(F, = 1)

RIP(F;) = TR =)

x 100% (1)

The baseline of this approach switches on all optimizations.
T(F; = 1) is the execution time of the baseline Tz as
shown in Equation 2. The performance improvement by
switching off F; from the baseline B relative to the baseline
performance can be computed with Equation 3.

Tg=T(F,=1)=T(F =1,F=1,..,F,=1) (2

T(F;,=0)—Tp
Tg

If RIPp(F; = 0) < 0, the optimization of F; has a nega-

tive effect. The BE algorithm eliminates the optimizations

with negative RIPs in a batch to generate the final, tuned
version. This algorithm has a complexity of O(n).

RIPg(F; = 0) = x 100%  (3)

1. Compile the application under the baseline B =
{Fy =1,F, =1,...,F, = 1}. Execute the generated
code version to get the baseline execution time 7T'3.

2. For each optimization Fj, switch it off from B and
compile the application. Execute the generated version
to get T'(F; = 0), and compute the RIPg(F; = 0) ac-
cording to Equation 3.

3. Disable all optimizations with negative RIPs to gen-
erate the final, tuned version.

2.2.3 Algorithm 3: Iterative Elimination (IE)

We design Iterative Elimination (IE) to take the interaction
of optimizations into consideration. Unlike BE, which turns
off all the optimizations with negative effects at once, IE
iteratively turns off one optimization with the most negative
effect at a time.

IE starts with the baseline that switches on all the opti-
mizations. After computing the RIPs of the optimizations
according to Equation 3, IE switches off the one optimiza-
tion with the most negative effect from the baseline. This
process repeats with all remaining optimizations, until none
of them causes performance degradation. The complexity
of IE is O(n?).

1. Let B be the option combination for measur-
ing the baseline execution time, 7. Let the
set of S represent the optimization search space.
Initialize S = {F,F3,...,F,} and B =
{F=1,F=1,.,F, =1}

2. Compile and execute the application under the baseline
setting to get the baseline execution time T'5.

3. For each optimization F; € S, switch F; off from B and
compile the application, execute the generated code
version to get T'(F; = 0), and compute the RIP of F;
relative to the baseline B, RIP g(F; = 0), according
to Equation 3.

4. Find the optimization F, with the most negative RIP.
Remove F, from S, and set F, to 0 in B.

5. Repeat Steps 2, 3 and 4 until all options in S have non-
negative RIPs. B represents the final option combina-
tion.

2.2.4 Algorithm 4: Combined Elimination (CE)

CE, our final algorithm, combines the ideas of the two algo-
rithms just described. It has a similar iterative structure as



IE. However, in each iteration, CE applies the idea of BE:
after identifying the optimizations with negative effects, in
this iteration, CE tries to eliminate these optimizations one
by one in a greedy fashion.

We will see, in Section 3, that IE achieves better program
performance than BE, since it considers the interaction of
optimizations. However, when the interactions have only
small effects, BE may perform close to IE in a faster way.
CE takes the advantages of both BE and IE. When the opti-
mizations interact weakly, CE eliminates the optimizations
with negative effects in one iteration, just like BE. Other-
wise, CE eliminates them iteratively, like IE. As a result,
CE achieves both good program performance and fast tun-
ing speed. CE has the complexity of O(n?).

1. Let B be the baseline option combination. Let
the set of S represent the optimization search
space. Initialize S = {Fi,Fs,..,F,} and B =
{Fh=1F=1,.,F, =1}

2. Compile and execute the application under the baseline
setting to get the baseline execution time 75. Measure
the RIP g(F; = 0) of each optimization option F; in
S relative to the baseline B.

3. Let X = {X1, X, ..., X;} be the set of optimization
options with negative RIPs. X is sorted in an increas-
ing order, that is, the first element, X7, has the most
negative RIP. Remove X; from S and set X; to 0 in
B. (B is changed in this step.) For ¢ from 2 to [,

x Measure the RIP of X; relative to the baseline B.
x If the RIP of X; is negative, remove X; from S and
set X; to 0in B.

4. Repeat Steps 2 and 3 until all options in S have non-

negative RIPs. B represents the final solution.

2.2.,5  Algorithm 5:
ration(OSE)

Optimization Space Explo-

In [18], the following method is used to orchestrate opti-
mizations. First, a “compiler construction-time pruning”
algorithm selects a small set of optimization combinations
that perform well on a given set of code segments. Then,
these combinations are used to construct a search tree,
which is traversed to find good combinations for code seg-
ments in a target program. To fairly compare this method
with other orchestration algorithms, we slightly modify the
“compiler construction-time pruning” algorithm, which is
then referred to as the OSE algorithm. (In [18], the pruning
algorithm aims at finding a set of good optimization com-
binations; while the modified OSE algorithm in this paper
finds the best of this set. The modified algorithm is applied
to the whole application instead of code segments.)

The basic idea of the pruning algorithm is to iteratively
find better optimization combinations by merging the bene-
ficial ones. In each iteration, a new test set € is constructed

by merging the optimization combinations in the old test
set using “union” operations. Next, after evaluating the op-
timization combinations in €2, the size of €2 is reduced to m
by dropping the slowest combinations. The process repeats
until the performance increase in the € set of two consecu-
tive iterations becomes negligible. The complexity of OSE
is O(m?*n). We use the same m = 12 as in [18]. Roughly,
m can be viewed as O(n), hence, the complexity of OSE is
approximately O(n?). The specific steps are as follows:

1. Construct a set, €2, which consists of the default op-
timization combination, and n combinations, each of
which assigns a non-default value to a single opti-
mization. (In our experiments, the default optimiza-
tion combination, O3, turns on all optimizations. The
non-default value for each optimization is off.)

2. Measure the application execution time for each opti-
mization combination in 2. Keep the m fastest combi-
nations in €2, and drop the rest.

3. Construct a new 2 set, each element in which is a
union of two optimization combinations in the old {2
set. (The “union” operation takes non-default values
of the options in both combinations.)

4. Repeat Steps 2 and 3, until no new combinations can
be generated or the increase of the fastest version in 2
becomes negligible. We use the fastest version in the
final  as the final version .

2.2.6  Algorithm 6: Statistical Selection (SS)

SS was developed in [15]. It uses a statistical method to
identify the performance effect of the optimization options.
The options with positive effects are turned on, while the
ones with negative effects are turned off in the final version,
in an iterative fashion. This statistical method takes the in-
teraction of optimizations into consideration.

The statistical method is based on orthogonal arrays
(OA), which have been proposed as an efficient design of ex-
periments [4, 9]. Formally, an OA is an m X k matrix of ze-
ros and ones. Each column of the array corresponds to one
compiler option. Each row of the array corresponds to one
optimization combination. SS uses the OA with strength 2,
that is, two arbitrary columns of the OA contain the patterns
00,01,10,11 equally often. Our experiments use the OA
with 38 options and 40 rows, which is constructed based on
a Hadamard matrix taken from [16].

By a series of program runs, this SS approach identi-
fies the options that have the largest effect on code perfor-
mance. Then, it switches on/off those options with a large
positive/negative effect. After iteratively applying the above
solution to the options that have not been set, SS finds an
optimal combination of the options. SS has a complexity of
O(n?). The pseudo code is as follows.



1. Compile the application with each row from orthogo-
nal array A as the compiler optimization combination
and execute the optimized version.

2. Compute the relative effect, RE(F;), of each option
using Equations 4 and 5, where E(F}) is the main ef-
fect of F;, sis one row of A, T'(s) is the execution time
of the version under s.

(ZseA:si:I T(S) - ZseA:si:O T(S))2

E(F,) = — )
RE(F;) B 00% (5)
i) = ———— 0
Z?:l E(FJ)

3. If the relative effect of an option is larger than a thresh-
old of 10%,
* if the option has a positive improvement, I(F;) > 0,
according to Equation 6, switch the option on.
x else if it has a negative improvement, switch the op-
tion off.

EseA:siZO T(S) - ZseA:siZI T(S)
ZseA:si:() T(S)

I(F) = ©)

4. Construct a new orthogonal array A by dropping the
columns corresponding to the options selected in the
previous step.

5. Repeat all above steps until all of the options are set.

2.2.7 Summary of the Orchestration Algorithms

The goal of optimization orchestration is to find the optimal
point in a high-dimension space S = F; X Fo x...x F;,. BE
probes each dimension to find and adopt the ones that ben-
efit performance. SS works in a similar way, but via a sta-
tistical and iterative approach. OSE probes multiple direc-
tions, each of which may involve multiple dimensions, and
searches along the direction combinations that may benefit
performance. IE probes each dimension and fixes the di-
mension that achieves the most performance at a time. CE
probes each dimension and greedily fixes the dimensions
that benefit performance at each iteration.

Table 1 summarizes the complexities of all six algo-
rithms compared in this paper.

Table 1. Orchestration algorithm complexity
(n is the number of optimization options.)

ES BE IE OSE SS CE
02" | O(n) | 0?) | 0@®) | O(n?) | On?)

2.3 Non-on-off Options

We will extend our CE algorithm to handle “non-on-off”
options in the future, although our experiments have been
done with “on-off” options, for simplicity. (All the GCC
03 optimization options are of this “on-off” type.) An ex-
ample of a non-on-off option is the “-unroll” option in Forte
compilers [1], which takes an argument indicating the de-
gree of loop unrolling. The extended CE method will tune
these options by trying several values instead of just on and
off. The techniques developed in [10] will also be included
in CE to handle options with a large number of possible
values, for example, blocking factors.

3 Experimental Results
3.1 Experimental Environment

We evaluate our algorithm using the optimization op-
tions of the GCC 3.3.3 compiler on two different com-
puter architectures: Pentium IV and SPARC II. Our rea-
sons for choosing GCC is that this compiler is widely used,
has many easily accessible compiler optimizations, and is
portable across many different computer architectures.

In this section, we use all 38 optimization options im-
plied by “O3”, the highest optimization level. These op-
tions are listed in Table 2 and are described in the GCC
manual [2].

Table 2. Optimization options in GCC 3.3.3

F1 || rename-registers F5 || inline-functions

F3 || align-labels Fy || align-loops

F5 || align-jumps Fs || align-functions

F7 || strict-aliasing Fyg || reorder-functions

Fy || reorder-blocks Fio || peephole2

Fyq || caller-saves F2 || sched-spec

Fy3 || sched-interblock F14 || schedule-insns2

Fi5 || schedule-insns Fi6 || regmove

Fy7 || expensive-optimizations | Fig || delete-null-pointer-checks
Fig || gcse-sm Fo || gese-lm

Foq || gese F5s || rerun-loop-opt

F53 || rerun-cse-after-loop Fb,4 || cse-skip-blocks

Fbs || cse-follow-jumps Fj¢ || strength-reduce

F57 || optimize-sibling-calls Fsg || force-mem

Fyg || cprop-registers F3 || guess-branch-probability
F3; || delayed-branch F3o || if-conversion2

F33 || if-conversion F34 || crossjumping

F335 || loop-optimize F36 || thread-jumps

F37 || merge-constants F3s || defer-pop

We take our measurements using all SPEC CPU2000
benchmarks written in F77 and C, which are amenable to
GCC. To differentiate the effect of compiler optimizations



on integer (INT) and floating-point (FP) programs, we dis-
play the results of these two benchmark categories sepa-
rately. Our overall tuning process is similar to profile-based
optimizations. A train dataset is used to tune the program.
A different input, the SPEC ref dataset, is usually used to
measure performance. To separate the performance effects
attributed to the tuning algorithms from those caused by the
input sets, we measure program performance under both the
train and ref datasets. For our detailed comparison of the
tuning algorithms, we will start with the train set. In Sec-
tion 3.3.2, we will show that, overall, the tuned benchmark
suite achieves similar performance improvement under the
train and ref datasets.

To ensure accurate measurements and eliminate pertur-
bation by the operating system, we re-execute each code
version multiple times under a single-user environment, un-
til the three least execution times are within a range of
[—1%,1%]. In most of our experiments, each version is exe-
cuted exactly three times. Hence, the impact on tuning time
is negligible.

In our experiments, the same code version may be gener-
ated under different optimization combinations. This obser-
vation allows us to reduce tuning time. We keep a reposi-
tory of code versions generated under different optimization
combinations. The repository allows us to memorize and
reuse their performance results. Different orchestration al-
gorithms use their own repositories and get affected in sim-
ilar ways, so that our comparison remains fair.

3.2 Metrics

Two important metrics characterize the behavior of or-
chestration algorithms.

1. The program performance of the best optimized ver-
sion found by the orchestration algorithm. We define
it as the performance improvement percentage of the
best version relative to the base version under the high-
est optimization level O3.

2. The total tuning time spent in the orchestration process.
Because the execution times of different benchmarks
are not the same, we normalize the tuning time (7°7")
by the time of evaluating the base version, i.e., one
compilation time (CTpg) plus three execution times
(E'T'p) for the base version.

NTT = TT/(CTp + 3 x ETg) )

This normalized tuning time (NTT) roughly repre-
sents the number of experimented versions. (The num-
ber may be larger or smaller than the actual number of
tested optimization combinations due to three effects:
a) Some optimizations may not have any effect on the

program, allowing the version repository to reduce the
number of experiments. b) Perturbation filtering mech-
anism in Section 3.1 may increase the number of runs
of some versions. c¢) The experimental versions may
be faster or slower than the base version.)

A good optimization orchestration method is meant to
achieve both high program performance and short normal-
ized tuning time. We will show that our CE algorithm has
the shortest tuning time, while achieving comparable or bet-
ter performance than other algorithms.

3.3 Results

In this section, we compare our final optimization or-
chestration algorithm CE with the four algorithms BE, IE,
OSE and SS. Recall, that BE and IE are steps towards CE;
OSE and SS are algorithms proposed in related work. Fig-
ure 1 and Figure 2 show the results of these five orchestra-
tion algorithms on the Pentium IV machine for the SPEC
CPU2000 FP and INT benchmarks in terms of the two met-
rics. They provide evidence for our claim that CE has the
fastest tuning speed while achieving program performance
comparable to the best alternatives. We will discuss the ba-
sic BE method first, then the other four algorithms. Tuning
time will be analyzed first, then program performance.

3.3.1 Tuning Time

For the applications used in our experiments, the slowest
of the measured algorithms takes up to several days to or-
chestrate the large number of optimizations. Figure 1(a) and
Figure 1(b) show that our new algorithm, CE, is the fastest
among the four orchestration algorithms that consider inter-
actions. The absolute tuning time, for CE, is 2.19 hours, on
average, for FP benchmarks and 3.66 hours for INT bench-
marks on the 2.8 GHZ Pentium IV machine. On the 400
MHZ SPARC II machine, 9.92 hours for FP benchmarks
and 12.31 hours for INT benchmarks. we compare the al-
gorithms by normalized tuning time, shown in Figure 1(a)
and Figure 1(b).

Although BE achieves the least program performance, its
tuning speed is the fastest, which is consistent with its com-
plexity of O(n). BE can be viewed as a lower bound on the
tuning time for a feed-back directed orchestration algorithm
that does not have a priori knowledge of the optimizations.
For such an algorithm, each optimization must be tried at
least once to find its performance effect.

OSE is of higher complexity and thus slower than IE and
CE. However, SS turns out to be the slowest method, even
though its complexity is O(n?), less than OSE’s O(n?).
The reason for the long tuning time of SS is the higher num-
ber of iterations it takes to converge.
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benchmarks on the Pentium IV machine. Lower is better. CE has the shortest tuning time in all except
a few cases. In all those cases, the extended tuning time leads to significantly higher performance.
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(b) Program performance achieved by the orchestration algorithms relative to the baseline under the highest optimization level
“03” for the SPEC CPU2000 INT benchmarks on Pentium IV

Figure 2. Program performance of five optimization orchestration algorithms for SPEC CPU2000
benchmarks on Pentium IV. Higher is better. In all cases, CE performs the best or within 1% of the
best.



Among the four algorithms (excluding BE), CE has the
fastest average tuning speed. For ammp, wupwise, bzip2,
gap, gcc, perlbmk and vortex, CE is not the fastest. How-
ever, the faster algorithms achieve their speed at significant
expense of program performance.

3.3.2 Program Performance

In both Figure 2(a) and Figure 2(b), BE almost always
achieves the least program performance among the five al-
gorithms. As described in Section 2, BE ignores the inter-
action of the optimizations. Therefore, it does not achieve
good performance when the interaction has a significant
negative performance effect. In the cases of sixtrack and
parser, BE even significantly degrades the performance.

In Figure 2(a), for art, all the algorithms improve per-
formance by about 60% on Pentium. This is mainly due to
eliminating the option of “strict-aliasing”, which does alias
analysis, removes false data dependences, and increases
register pressure. This option results in lots of spill code for
art, causing substantial performance degradation. However,
on the SPARC machine, the orchestration algorithms do not
have the above behavior for art. “Strict-aliasing” does not
cause performance degradation, as the SPARC machine has
more registers than the Pentium machine. In [13], we have
analyzed reasons for negative performance effects by sev-
eral optimizations, in detail.

The average performance improvement of all other or-
chestration algorithms, which consider the interactions of
optimizations, are about twice as high as BE’s. Moreover,
Figure 2(a) shows that these four algorithms perform es-
sentially the same for the FP benchmarks. On one hand,
the regularity of FP programs contributes to this result. On
the other hand, the optimizations in GCC limit performance
tuning on FP benchmarks, because GCC options do not in-
clude advanced dependence-based transformations, such as
loop tiling. We expect that such transformations would be
amenable to our tuning method and yield tangible improve-
ment. In Figure 2(b), performance similarity still holds in
most of the INT benchmarks, with a few exceptions. For
gap, twolf and vortex, IE does not achieve as good a perfor-
mance as CE, though the performance gap is small. SS does
not produce consistent performance; for bzip2, SS does not
achieve any performance; for bzip2, gzip and vortex, SS’s
performance is significantly inferior to CE. CE and OSE al-
ways achieve good program performance improvement.

The fact that none of the algorithms constantly outper-
forms the others, reflects the exponential complexity of the
optimization orchestration problem. All five algorithms use
heuristics, which lead to sub-optimal results. Among these
algorithms, CE achieves consistent performance. Although,
for crafty, parser, twolf, and vpr, CE does not achieve the
best performance, the gap is less than 1%.

The small performance differences between the mea-
sured algorithms indicate that all methods properly deal
with the primary interactions between optimization tech-
niques. However, there are differences in the ways the al-
gorithms deal with secondary interactions. These properties
are consistent with those of a general optimization problem,
in which the main effects tend to be larger than two-factor
interactions, which in turn tend to be larger than three-factor
interactions, and so on [4].

In Figure 2, we measured program performance under
the frain dataset. It is important to evaluate how the al-
gorithm performs under different input. To this end, we
measured execution times of each benchmark using the ref
dataset as input, for both the O3 version and the optimal
version found by CE. (Still, the train dataset is the input for
the tuning process.) On average, CE improves FP bench-
marks by 11.7% (compared to 11.9% under train) relative
to O3; INT benchmarks by 3.9% (4.4% under train). This
shows that CE works well when the input is different from
the tuning input. On the other hand, we do find a few bench-
marks that do not achieve the same performance under the
ref dataset as under train. The highest differences are, for
gzip and vortex, 1.95% and 2.18%. If the training input of
the orchestration algorithm differs significantly from actual
workloads, our offline (profile-based) tuning approach may
not reach the full tuning potential. In that case, an online ap-
proach [19] could tune the program using the actual input.
This is a complementary approach that we are pursuing in
ongoing work.

3.3.3 Overall Comparison of Algorithms

CE achieves both fast tuning speed and high program per-
formance. It does so by combining the advantages of IE and
BE: Like IE, it considers the interaction of optimizations,
leading to high program performance; like BE, it keeps tun-
ing time short when the interaction does not have a signifi-
cant performance effect.

Similar observations hold on the SPARC II machine.
Limited by space, Table 3 only lists the mean performance
of each algorithm across the integer and floating point
benchmarks, respectively.

Figure 3 provides an overall comparison of the al-
gorithms. The X-axis is average program performance
achieved by the algorithm; the Y-axis is average normal-
ized tuning time. The averages are taken across all bench-
marks and machines. (The figure under each benchmark
and machine setting would be similar.) A good algorithm
achieves high program performance and short tuning time,
represented by the bottom-right corner of Figure 3. The fig-
ure shows that CE is the best algorithm. The runner-up is
IE, which we developed as a step towards CE.



Table 3. Mean performance on SPARC I
CE achieves both fast tuning speed and high
program performance on SPARC II.

Benchmark | Algorithm | improvement Normalized
over “03” Tuning Time

FP BE —4.1 % 30.8
FP IE 4.1 % 105.4
FP OSE 4.0 % 142.0
FP SS 3.7 % 384.9
FP CE 4.1 % 63.4
INT BE —0.8 % 36.2
INT IE 3.6% 98.7
INT OSE 3.4 % 130.0
INT SS 31% 317.0
INT CE 39% 88.4
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Figure 3. Overall comparison of the orches-
tration algorithms. CE achieves both fast tuning
speed and high program performance.

4 Upper Bound Analysis

We have shown that CE achieves good performance im-
provement. This section attempts to answer the question of
how much better than CE an algorithm could perform. To
this end, we look for a performance upper bound, which we
find by an exhaustive search (ES) through all optimization
combinations. As it would be impossible to do exhaustive
search with 38 optimizations, we pick a small set of six op-
timizations. This section will show that the performance
improvement by CE is close to this upper bound.

The six optimizations that have the largest performance
effects are picked to conduct upper bound analysis. (The
performance effect of an optimization is the total negative
relative performance improvement of this optimization on
all the benchmarks.) On the SPARC II and Pentium IV
machines, these six optimizations are picked separately.
They are strict-aliasing, schedule-insns2, regmove, gcse,
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rerun-loop-opt and force-mem for Pentium IV, and rename-
registers, reorder-blocks, sched-interblock, schedule-insns,
gcse and if-conversion for SPARC II.

4.1 Results

In Figure 4, ES represents the performance upper bound.
Comparing the first two columns in Figure 4(a) and Fig-
ure 4(b), we find that, under the 6 optimizations, CE per-
forms close to ES. In about half of the benchmarks, they
both find the same best version. Another important fact
shown in Figure 4(c) and Figure 4(d) is that CE is more
than 4 times as fast as ES, even for this small set of opti-
mizations. For comparison, the figures also show the tuning
speed of CE for 38 options. ES for 38 options would be
millions of years!

Figure 4 provides evidence that the heuristic-based
search algorithms can achieve performance close to the up-
per bound. This confirms our analysis in Section 3.3.2.
The heuristics find the primary and secondary performance
effects, which are the individual performance of an op-
timization and the main interaction with other optimiza-
tions, respectively. These arguments hold for the SPARC
IT machine. Table 4 shows average program performance
achieved under different machine and benchmark settings.

Table 4. Upper bound analysis under four dif-
ferent machine and benchmark settings

Machine Benchmark | RIP by ES | RIP by CE
over “03” over “03”
Pentium IV FP 10.6 % 10.4 %
Pentium IV INT 2.7 % 2.6 %
SPARC II FP 29 % 2.7 %
SPARC I INT 32 % 3.0%

Comparing CE_6 with CE_38, the performance gap for
FP benchmarks is negligible, but not for INT benchmarks.
This result is consistent with the finding in [13] that INT
programs are sensitive to a larger number of interactions
between optimization techniques than FP programs. These
results suggest that a priori knowledge of a small set of po-
tentially interacting optimizations may help tuning numer-
ical programs. Exhaustive search within this small set can
be feasible. Howeuver, this is not the case for non-numerical
applications.

In order to verify that the interaction between these six
optimizations has a significant performance effect, we apply
BE as well. The result is shown as the last column, BE_6,
in Figure 4. From this figure, the performance of BE_6 is
much worse than CE_6, for example, in ammp, apsi, six-
track, crafty, parser, and vpr.
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Figure 4. Upper bound analysis on Pentium IV. ES_6: exhaustive search with 6 optimizations; CE_6:
combined elimination with 6 optimizations; CE_38: combined elimination with 38 optimizations;
BE_6: batch elimination with 6 optimizations. CE_6 achieves nearly the same performance as ES 6,
in all cases. CE_38 performs significantly better — exhaustive search with 38 optimizations would be
infeasible. BE_6 is much worse than CE_6. CE 6 is about 4 times faster than ES 6.
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5 Conclusion

This paper has presented a new compiler optimization
orchestration algorithm, Combined Elimination (CE). CE
allows programs to be optimized automatically using full,
standard compilers, via an offline dynamic tuning process.
By detecting both the main effects and the interactions of
the involved compiler optimizations, CE is able to tune pro-
grams fast and achieves significant performance improve-
ments. It does so for both floating point and integer bench-
marks on Pentium and SPARC machines.

Compared to Optimization Space Exploration
(OSE) [18] and Statistical Selection (SS) [15], CE
takes the least tuning time while performing as well as
the other approaches. On our Pentium IV machine, CE
takes 2.96 hours on average, while OSE takes 4.51 hours
and SS takes 11.96 hours. By orchestrating a small set
of (6) optimizations, we have shown that the gap between
performance improvement by CE and the upper bound is
less than 0.2% on average. Thus, CE provides a fast and
effective automatic performance tuning method.

Some work [18] has shown that different parts of a pro-
gram have different optimal set of optimization options. In
ongoing work, we are applying our CE algorithm to perfor-
mance tuning at a finer granularity than the whole program.
We are exploring the possibility of developing algorithms
for online adaptive tuning [19] as well.
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