
Session 2532

On the Integration of Computer Architecture and Parallel

Programming Tools into Computer Curricula�

Jos�e A. B. Fortesy, Nirav H. Kapadiay, Rudolf Eigenmanny,

Renato J. Figueiredoy, Valerie Tayloryy, Alok Choudharyyy

Luis Vidalz and Jan-Jo Chenz

ySchool of ECE

Purdue University

yyDepartment of EECS

Northwestern University

zDept. of Mathematics, Statistics and Computer Science

Chicago State University

Abstract

Tools for computer architecture design and parallel programming have become essential to
practicing computer architects and software developers in industry. There is signi�cant
demand for designers who can develop, use and modify them. More importantly, design
and simulation tools capture fundamental engineering concepts that should be mastered by
computer professionals. This paper describes an approach to the integration of tools for
computer architecture simulation, performance prediction, program optimization and appli-
cation characterization into computer science and engineering curricula. The approach is
based on a unique, operational distributed infrastructure - the Purdue University Network
Computing Hubs (PUNCH). The PUNCH infrastructure lets users with di�erent computing
platforms run a broad range of tools via standard WWW browsers. PUNCH also allows uni-
versities to share course-development e�orts, tool expertise and resources while preserving
the appearance of a centralized point of access to all tools installed in PUNCH. The expected
outcomes of this project are: (1) generations of computer architecture and software design-
ers who are capable of understanding and using state-of-the-art, industrially-relevant tools
and (2) an infrastructure model for inter-university cooperation in curriculum improvement
and resource sharing that can be extended/replicated across other institutions interested in
incorporating computer design tools in their curricula.

I. Introduction

Computer-based design, simulation and evaluation tools are essential to practicing computer
engineers and scientists involved in building, programming or evaluating computer systems.
This is a consequence of the continued growth in the complexity of these systems and their
component chips, which are expected to contain up to a billion transistors by the time the

�This work was partially funded by the National Science Foundation under grant EIA-9872516, and by
an academic reinvestment grant from Purdue University.

computer engineering class of 1999 graduates. More than ever, not only do computer en-
gineers need to know novel and advanced architecture concepts, but they must also master
the tools needed to develop and validate them. To quote [6], \Simulation and tracing tools
help in the analysis, design and tuning of both hardware and software systems. Simulators
can execute code for hardware that does not yet exist, can provide access to internal state
that may be invisible on real hardware, can give deterministic execution in the face of races,
and can produce \stress test" situations that are hard to produce in real hardware. Tracing
tools can provide detailed information about the behavior of a program [...]. That, in turn,
provides feedback that is used to improve the design and implementation of everything from
compilers to applications." It is the premise of this paper that it is essential for computer
engineers of the next millennium to understand computer-based tool capabilities, their appli-
cability to design problems, the setup of simulation/evaluation experiments and fundamental
techniques for developing their own tools.

This paper describes an approach to the integration of computer architecture tools into
computer curricula that does not require new courses to achieve the stated goals. Instead it
signi�cantly enriches existing courses with content and experiments not present or possible
in existing curricula and their supporting infrastructures. It enables instructors and students
to \experience" examples and homework assignments that show how appropriate tools can
be used for design and analysis in the context of each topic. The choice, order and depth
of coverage of tools are customizable to �t the needs and preferences of each course and
instructor.

Three institutions with programs in Computer Science and/or Computer Engineering
are involved in a project recently funded by the National Science Foundation to implement
and evaluate the approach described in this paper: Chicago State University, Northwestern
University and Purdue University. The implementation is based on a distributed computing
infrastructure - the Purdue University Network Computing Hubs [12] (PUNCH). The infras-
tructure allows installed tools to be readily used without requiring time-consuming search,
installation, custom set-ups and other support activities. In addition, immediate experimen-
tation and access to documentation enable users to quickly assess the suitability of the tools
for the desired design activity.

This paper is organized as follows. Section II lists some of the tools of interest to computer
professionals and the challenges faced in their incorporation into existing curricula. Section
III discusses ongoing activities at the author's institutions that are aimed at addressing those
challenges. Section IV describes succinctly the WWW-computing infrastructure that enables
the approach being pursued by the three institutions (as well as their collaborative e�orts).
Section V presents concluding remarks.

II. Tools for computer architecture design and parallel programming

Tools for the design, evaluation and programming of high-performance processors and their
components have been and continue to be developed in many universities and industrial
laboratories. Tables 1 and 3 show a representative subset of such tools for designing
and programming uniprocessors and multiprocessors. Tools for other computer engineering
areas are equally important (e.g. performance programming, interconnection network design
and I/O modeling). Together, these tools and their underlying implementation techniques
comprise the body of knowledge that the authors are integrating into mainstream computer
education curricula.

Tool Purpose Host Arch. Input Output Related course topics

ATOMy Uniprocessor C source (analyzer) Text, Instruction set,
[26] Simulation, DEC Alpha object program- pipeline, memory

Tool Building (application) dependent hierarchy

AUGMINT x86 x86 Solaris, C with CISC instr. set,
[21] Multiprocessor NT,Linux ANL macros Text distrib. shared mem.,

Simulation cache coherence
Chameleon VLIW compiler Power, VLIW VLIW, superscalar,
[18] and PowerPC C assembly, branch prediction,

simulator text traces ILP

DLXTools: Uniprocessor MIPS,Unix, C, DLX assembly, Text Instr. set, pipeline,
SPIM, SuperDLX, Simulation, MS-Windows ASCII traces and/or mem. hierarchy, vector,
etc [10] Education GUI superscalar, ILP

HPAM Sim Heterogeneous C/Fortran with Statistics, Message-passing,
[5] Multiprocessor Solaris message-passing Text distributed memory,

Simulation calls heterogeneous computing
MINT Multiprocessor Sparc, C source (analyzer), Text, Distrib. shared mem.,
[27] Simulation MIPS MIPS object code program- coherence, consistency

(application) dependent
Netsim Network Text, Network topologies,
[11] Simulation, Unix C program- routing, protocols

Tool Building dependent
Pantheon Storage systems Unix Tcl, text I/O, storage systems,
[28] I/O simulation C++ statistics RAID
LSU Proteus Multiprocessor Sparc Solaris C w/ ANL macros, Text trace, Distrib. shared mem.,
[3] Simulation con�g. (Text/GUI) GUI coherence, networks
RSIM Multiprocessor SGI, Sparc object code Text Speculation, branch

[22] Simulation V9 Solaris, Statistics pred., consistency,
Convex dynamic sched.

Shadey Uniprocessor C source (analyzer) Text, Instruction set,
[6] Simulation, Sparc Solaris Sparc object code program- pipeline, memory

Tool Building (application) dependent hierarchy

SimICSy Uni/Multiproc. C source (analyzer) Text, Memory hierarchy, O/S,
[20] Simulation Sparc Solaris Sparc object code program- multitasking

(application) dependent
SimOS Uni/Multiproc. MIPS, Solaris Tcl script (analyzer), Text; Tcl/ Memory hierarchy, O/S,
[25] Simulation (with cross- MIPS object code Perl and/or multitasking, I/O

compilation) (application) GUI
SimpleScalar Uniprocessor x86, RS6000, Text, Instr. set, memory

[2] Simulation Sparc, Alpha, C, Fortran program- hierarchy, superscalar,
PA-RISC dependent branch pred., speculation

TangoLite Multiprocessor MIPS C/Fortran with Text Distrib. shared-memory,
[7] Simulation ANL macros mem. hier., coherence
VTune Performance x86, C/C++, GUI, CISC microarchitecture,

Analysis MS-Windows Fortran statistics superscalar, mem. hier.

WARTS: Cache/Program Sparc Solaris C w/ PARMACS Text Instr. set, mem.
QPT [16], Pro�ling and NOWs, macros (WWT), traces, hierarchy,
Dinero-III, Simulation, SMPs object code (QPT), statistics distrib. shared mem.,
Tycho, Uniprocessor/ traces (Dinero, coherence, consistency
WWT-II [19] Multiprocessor Tycho) network interfaces

Table 1: Simulation/Tracing tools (yindicates that only object code is available). Analyzer

refers to the simulator engine provided by the user in tools such as Shade; Application refers
to the actual workload to be simulated. Some tools provide intermediate textual outputs
that may be post-processed by a GUI visualization tool. All topics shown in the rightmost
column are covered in graduate courses and can bene�t from integration with one or more
tools. Typically, topics in boldface are also covered in undergraduate courses.

Some tools have been speci�cally developed for educational purposes, i.e. with the goal
of illustrating computer architecture concepts that are easily visualized through simulation.
While leveraging the availability of such tools, the curricula improvements discussed in this

A A C D H M N P P R S S S S T V W
Tool Name T U h L P I e a r S h i i S a T A

O G a X A N t n o I a m m c n u R
M M m M T s t t M d I O a g n T

I e S i h e e C S l o e S
Laboratory N l i m e u S a L

T . m o s r i
Multiprocessor Simulation

p p p p p p p p p
Uniprocessor Simulation

p p p p p p p
Cache Simulation

p p p p p p
I/O Simulation

p p
Network Simulation

p p p
Instruction Set

p p p p p p
Instruction Level Parallelism

p p p p p
Education

p p p p p p p p p p

Table 2: A possible assignment of tools to virtual laboratories

Tool Purpose Host Arch. Input Output Related course topics

CIAT [1] Application Analysis
Tool

Unix
platforms

Program and
data �les

Data �les Application, benchmark
characterization

National
Compiler In-
frastructure
[8]

A Family of
Compilers

Unix, x86
platforms

Fortran, C, C++,
Java

C, Machine
code

Compiler case studies,
internal representations

Max/P Detects maximum
degree of parallelism

Unix
platforms

Fortran ASCII
report

Parallel programming, de-
termining achievable limits

Pablo [24] Performance analy-
sis, visualization tool

Unix,
Windows/NT

Fortran, C,
SDDF �les

Interactive
display

Performance models, char-
acteristics of applications

Paradyn [17] Performance analysis
tool

Unix,
Windows/NT

Source programs,
object code

Interactive
display

Performance models, char-
acteristics of applications

Polaris [4] Parallelizing compiler Unix Fortran, C Fortran Compiler case studies,

transformations, inter-
nal representations

UrsaMinor
[23]

Performance
optimization tool

Java Source programs,
database, SDDF

Interactive,
WWW,
database

Parallel programming
methodology, relationship
of compilers and perfor-
mance analysis

Table 3: Compilers and tools in the Parallel Programming Lab. (Course topics in bold face
indicate undergraduate curriculum.)

paper have di�erent nature and goals. The objective is to introduce tools and the underlying
techniques as objects of study and use. Using an analogy, the goal is to integrate into com-
puter engineering curricula the equivalent of Matlab for digital signal processing and Mentor
Graphics for VLSI design. While these packages certainly provide means of illustrating ba-
sic concepts, they also introduce students to fundamentals and skills needed to carry out
advanced designs in the respective disciplines.

Given the desirability of exposing students to the nature, inner workings and use of the
above mentioned tools, it is important to �nd ways of e�ectively incorporating them into
existing computer engineering curricula. However, with few exceptions, many of the above
tools have strong dependencies on resources, technical environment and curriculum of the
institution where they were developed. In addition, a large number of tools are intended
for use by tool experts who have an inherent understanding of their inner workings and the
necessary skills to quickly learn how to use them. This reality presents several requirements

or obstacles to the incorporation of a tool into the curriculum:

� the existence of platform(s) to run the tool,

� the need to install software (including but not limited to the tool itself),

� tool code modi�cations required by the local computing environment (e.g. due to OS
versions and computing center policies),

� accessing, collecting and distributing the appropriate documentation and possibly
source code (for both users and \developers"),

� user interface needs for targeted educational uses and

� the need to mitigate the often \unfriendly" nature of leading-edge prototype tools.

The overhead associated with satisfying the above requirements is multiplied by the moder-
ately large number of tools needed to cover the di�erent subareas of computer architecture
and parallel programming. It requires signi�cant commitments of human and machine re-
sources and it has been a major factor in slowing down the integration of tools into the
curriculum.

The above mentioned obstacles and overheads can be addressed or minimized by using a
unique web-based software infrastructure developed at Purdue with the purpose of providing
universal access to simulation tools and necessary resources. The infrastructure - PUNCH -
provides its users with the ability to access virtual laboratories of tools (topically organized
as illustrated in tables 1, 2 and 3) where they can read educational materials (e.g. manuals,
frequently-asked-questions and articles), examine examples and run any tool. For instructors
and students, the overheads of locating, porting, learning a tool and �nding resources to run
it are minimized if not eliminated.

III. Curriculum development

Most, if not all, computer engineering curricula include several classes on computer archi-
tecture and system software. They use established textbooks, which provide a stable source
of well-organized fundamental knowledge on the subject. Table 4 shows courses currently
o�ered at the institutions participating in this e�ort. Typically, one or more courses of
a computer engineering curriculum require students to carry out a design project that in-
volves limited design and simulation of one or more parts of a simple computer (typically,
a CPU and/or cache and memory system) and evaluate it with an appropriate workload.
Undergraduate classes with relatively large enrollments often (re)use variants of a standard
project which necessarily emphasizes a particular aspect of the class material. The overhead
incurred in setting, maintaining and administering these large projects is nontrivial. It is
often the case that simpli�cations of the design and ad-hoc techniques or tools are used to
keep overheads at an acceptable level.

The project-only approach described above, while providing students with valuable in-
sights into the operation of a simple processor, exposing them to the intricacies of microar-
chitecture design and providing an understanding of the software environments, su�ers from
several disadvantages:

Course #/ Insti- Level/ #Students Elective/ Brief Description
Title tution Frequency Per O�ering/ Required of Innovation

Instructor
EE365 Purdue Junior 80 Required Integration of tools
Intro. Design of School Fall, Spring and subjects
Dig. Computers of ECE as per Table 1
EE565 Purdue Senior and 70 Elective Integration of tools
Computer School Year 1 grad for and subjects
Architecture of ECE Fall, Spring seniors as per Table 1
EE468 Purdue Senior 80 Required Integration of tools
Intro. to School and subjects
Compilers of ECE Fall as per Table 3
EE563 Purdue Senior and 15 Elective Integration of tools
Parallel School Year 1 grad and subjects
Programming of ECE Spring as per Table 3
EE573 Purdue Senior and 15 Elective Integration of tools
Compiler School Year 1 grad and subjects
Systems of ECE Fall as per Table 3
ECE C61 Northwestern Ju./Se. and 30 Required Integration of tools
Computer Dept. Year 1 grad and subjects
Architecture of ECE Fall, Winter as per Table 1
ECE C62 Northwestern Ju./Se. and 15 Required Integration of tools
Comp. Arch. Dept. Year 1 grad and subjects
(capstone) of ECE Winter as per Table 1
ECE D52 Northwestern Senior and 15 Elective Integration of tools
Advanced Dept. Year 1 grad and subjects
Comp.Arch. of ECE Spring as per Table 1
ECE D55 Northwestern Ju./Se. and 15 Elective Integration of tools
Distributed Dept. Year 1 grad and subjects
Systems of ECE Fall as per Table 1
Cptr 303 Chicago State Junior and 30 Required Integration of tools
Computer Org. Dept. Senior and subjects
and Arch. of CS Fall,Spring as per Table 1
Cptr 370 Chicago State Junior and 30 Elective Integration of tools
Special Topics Dept. Senior and subjects
in Comp. Sci. of CS Fall as per Table 1,3
Cptr 341 Chicago State Junior and 30 Elective Integration of tools
Modeling and Dept. Senior and subjects
Simulation of CS Fall,Spring as per Table 1

Table 4: Courses targeted for curriculum innovation and tool integration. Academic year
is divided into semesters at Purdue and Chicago State University, and into quarters at
Northwestern University. Testing and selection of appropriate tools for each subject are part
of the ongoing activities.

� instructors and students tend to focus on the topics needed to complete the project;
other topics tend to be covered lightly and without exposure to associated tools,

� application and benchmarks characterization are often replaced by references to col-
lected statistics of their behavior; while this is su�cient to provide justi�cation of
computer architecture concepts, it prevents student exposure to techniques and tools
for gathering such statistics as well as to questions on how to interpret them,

� students are not exposed to simulation techniques and models that can be used to
estimate the performance of a particular component of a computer without having to
design (and typically emulate) an entire processor and

� last but not least, no insights are provided into the inner workings of tools for computer
architecture and parallel programming and techniques for their validation; having ac-
cess to such tools would enable students to understand how the outputs of tools are
generated and would also provide students with some ability to modify or build tools
for other purposes.

The curriculum innovation consists of including fundamentals and experiments in tool use
and design into existing classes that cover computer architecture and parallel programming
topics. The extent and emphasis of each experiment depend on the nature and level of
the course. The goal is to expose students to tools and quantitative design and evaluation
techniques along with the study of basic and advanced concepts of computer systems. In
courses with or without a project, instructors can enrich student assignments with tool-using
design and evaluation problems of appropriate complexity. Currently, implementing such a
course is an undertaking that is very costly (in resources and time) for both instructors and
students. The approach pursued by the authors is to develop materials, procedures and
infrastructure that make it possible for instructors and students to succeed in such courses.
PUNCH, the unique web-based infrastructure developed at Purdue University and accessible
to participating institutions, provides much of the technology needed to enable the stated
approach. Tools and associated educational materials are accessible and, in the case of tools,
also executable. Instructors at di�erent institutions are able to integrate individual tools into
class assignments.

Curriculum enhancements

The computer systems courses o�ered at the participating institutions (shown in Table 4)
collectively cover the same \classical" topics at depth commensurate with the level of the
class. Therefore, the ensuing discussion is applicable to all institutions. The proposed
enhancements can be divided into two classes: tool fundamentals and tool-based experiments.
The �rst includes additional course content needed to cover technical aspects of tool and
experiment design. The second corresponds to class assignments that require the use of
tools for design and evaluation purposes.

Tool fundamentals

The correct use, design and engineering of tools subsumes the understanding of many funda-
mental concepts across several knowledge areas. These topics include probability, statistics,
systems programming, software engineering and the general area of simulation. A sample of
relevant topics in probability and statistics includes how to summarize data, data sampling,
con�dence intervals, regression models and queuing theory. Other concepts closely related
to simulation include random-number generation, experiment design and useful probability

distributions. Topics from other areas include discrete event simulation, tracing techniques,
program-driven and execution-driven simulation, instrumentation techniques, concurrency
issues (e.g. timing, coordination, synchronization), workload characterization and dynamic
compilation techniques.

The coverage of all of the above-referred concepts in full depth could require one or
more courses but another e�ective approach is possible. Many of these topics and their
prerequisite knowledge are covered in other classes in contexts that are possibly unrelated
to computer architecture and programming. For example, courses on probability theory and
programming cover some of the topics mentioned above. By revisiting and extending these
subjects in the targeted courses, students are able to link and apply previous concepts in
computer architecture and programming classes. To best serve students at di�erent levels
and with diverse technical knowledge, educational self-contained modules can be developed
to address individual topics. Thus, when covering a particular subject in the targeted courses,
it becomes possible to introduce students to a related engineering tool and the module(s)
needed to explain why and how that tool works. The written materials for each of the
modules are made accessible to instructors and students through PUNCH. They can be
incorporated into the courses at each institution in a manner that �ts their speci�c curricula
and instructor preferences.

Computer architecture curricula and tools

The content of computer architecture classes at the institutions involved in the project is
typical of similar classes at many institutions. It includes the \standard" topics of datapath
design, control design, pipelining, caches, memory organization, Input/Output and storage
systems, networking and multiprocessors. The undergraduate and graduate texts ([9] and
[10]) written by Hennessy and Patterson are currently used and typify the nature and level
of the topics covered in these courses.

Based on previous research and educational activities an initial set of tools that meet
the criteria and goals of this project has been selected. Tables 1 and 4 show how several
tools are in correspondence with the traditional topics covered in computer architecture
classes. However, part of the ongoing work is to evaluate and select the best available
tool for a given topic through experience as well as interactions with other researchers and
educators. Some of the tools are well known and �nd widespread use in industry and
academia. Other tools for advanced topics have been recently developed but are stable
enough for use in teaching undergraduate classes. Currently, the selection of tools re
ects
the dominance of SUN computer systems in the student-accessible computational facilities
available to PUNCH.

Compiler and parallel programming curricula and tools

Existing curricula include courses introducing students to basic and advanced compiler top-
ics. For example, at Purdue two courses are available to undergraduate students: \(EE468)
Introduction to Compilers and Translation Engineering", and \(EE 573) Compilers & Trans-
lator Writing Systems". Currently, the �rst course introduces students to the design and
construction of compilers and other translators. Topics include compilation goals, orga-
nization of a translator, grammars and languages, symbol tables, lexical analysis, syntax

analysis (parsing), error handling, intermediate and �nal code generation, assemblers, in-
terpreters, and an introduction to optimization/parallelization. Emphasis is on engineering,
from scratch, a compiler or interpreter for a small programming language { typically a C or
Pascal subset. Projects involve the stepwise implementation of such a system.

The second course presents the concepts needed to e�ciently design and implement
translators. Basic compiler/translation theory and technology are brie
y reviewed, then
the course focuses on software tools for the automatic construction of translators, as well
as more complex concepts involving the construction of compiler symbol tables, etc. Each
student constructs a simple lexical-recognizer, parser, and code-generator.

The current curriculum also o�ers the course \(EE563) Programming Parallel Machines".
The course examines how to program parallel processing systems. Various parallel algorithms
are presented to demonstrate di�erent techniques for mapping tasks onto parallel machines.
Parallel architectures to be considered are: SIMD (synchronous), MIMD (asynchronous),
mixed-mode (SIMD/MIMD hybrid), shared-memory, and distributed memory architectures.
There are several programming projects, one on each machine. The similarities and di�er-
ences among the machines and their languages will be discussed. The curriculum at North-
western University also o�ers the course \(ECE D55) Distributed Computing Systems." It
examines the fundamentals, design issues and various paradigms of distributed systems in-
cluding message passing, client-server and distributed shared memory. The course includes
also programming assignments and projects.

Ongoing curriculum enhancements provide advanced research compilation tools that ex-
pose students to new compiler technology and let the students try out and experiment with
working compilers. Tables 3 and 4 show an initial set of tools and how they are related to
course topics.

IV. PUNCH, the enabling infrastructure for integration of tools into curricula

The proposed curricula innovations leverage software developed for the implementation of the
Purdue University Network-Computing Hubs (PUNCH) [15, 13, 14]. PUNCH is a Perl-based
infrastructure (with about 12,000 lines of code) that can be viewed as an operating-system
for the world-wide web. It provides: 1) transparent and universal access to remote pro-
grams and resources, 2) access-control (privacy and security) and job-control (run, abort,
and program-status) functionality in a multi-user, multi-process environment, and 3) sup-
port for logical (virtual) organization and management of resources. PUNCH allows users
to: a) upload and manipulate input-�les, b) run programs, and c) view and download output
- all via standard WWW browsers.

Figure 1 shows a global view of PUNCH's organization. PUNCH consists of the front-end,
called the Hub, and the back-end, called SCION for Scalable Infrastructure for On-demand
Network computing. The Hub consists of a collection of WWW interfaces and associated
logical groupings of tools (i.e. laboratories and discipline-speci�c hubs). SCION manages
the access and control of distributed resources and tools to serve requests from the front-end
(see Figure 1). A resource can be an arbitrary platform and can be added incrementally by
specifying its architecture (make, model, OS, etc.) and starting a server on it. A new tool can
be added by providing to PUNCH information about the location of the tool, input/output

User
Platform

User
Platform

User
Platform

. .
 .

U
se

r
n

U
se

r
2

U
se

r
1

Data Files
Preferences Restrictions

State Info.

Tool-Specific
Input Analysis

Resource
Resolution

Resource
AllocationT

oo
l-

K
ey

ed
 K

no
w

le
dg

e
B

as
e

A
rtificial Intelligence Subsystem

Management
User-Command

Authentication

URL Translation

View-Customization
HTML

Logical Resource-Interface
Scheduling Job Control

Application Specs.Tools

SCION

Units
Management Management

Units

Execution
Units

Resources
Managed

Execution
Units

Resources
Managed

Application
Repositories

Application
Repositories

. . .

Hub
Front-End

Virtual
Laboratory

Interface

Virtual
Laboratory

Interface

Virtual
Laboratory

Interface

Hub User
Accounts

Hub User
Accounts

. . .

P
ur

du
e

U
ni

ve
rs

it
y

N
et

w
or

k-
C

om
pu

ti
ng

 H
ub

3

4

5

2

World-Wide Web
Standard

Browser

1. User-access via standard WWW browsers

2. Virtual Laboratory processes and responds to all ‘‘non-application-invocation’’ requests.

3. Application-invocation requests are forwarded to an appropriate Management Unit.

4. Management Unit authenticates request, determines resource-requirements, and
 selects Execution Unit

5. Execution Unit processes run-request and notifies Management Unit on completion.

1

HTTP

Figure 1: The organization of PUNCH. All components of the infrastructure (virtual labo-
ratory interfaces, management units, and execution units) can be independently replicated.
The horizontal dashed lines indicate network interfaces. The client units (part of the SCION
infrastructure) are integrated into the virtual laboratory interfaces of the Hub front-end.

behavior, machines where it can run and its logical classi�cation in the Hub.

The Hub - the customizable user's view of PUNCH

Users can \enter" PUNCH either as members or as guests. Members have their own (private)
hub-accounts, and can access the full functionality of the Hub. Guests, on the other hand,
can only view example (public) input �les and precomputed output. PUNCH accounts can
be requested on-line. Tools on the Hub are indexed and cross-referenced by way of key-
words. For example, a tool may be indexed according to its functionality (e.g., parallelizing
compiler), and/or according to the university at which it was developed. Tools on the Hub
are also accompanied by descriptions of their capabilities, manuals, example input �les and
pre-computed output, and the email addresses of the associated support sites. If a tool has
a home-page on the web, a link to it is also provided. Running a simulation on the Hub is
a three-step process that can be started from any networked WWW client (Figure 2). The
�rst step involves the creation of the input �le(s) required for the relevant simulation, which
can be done via the Hub's editor interface. (General �le-manipulation and utility functions
such as copying, deleting, and compressing �les are also available). Files may also be up-
loaded to the Hub. In the second step, users de�ne the input parameters (e.g., command-line
arguments) for the program and start the simulation. In order to support programs with
a wide range of input characteristics, the Hub uses a programmable interface-generator to

Figure 2: The �rst form of the dynamically
generated user-interface for HPAM Sim.

Figure 3: The dynamically generated exe-
cution interface form for HPAM Sim.

dynamically generate the appropriate HTML pages from a template speci�cation; an exam-
ple page is shown in Figure 3. Finally, after the simulation is complete, the user can see,
postprocess and download the results of the simulation via the Hub's output interface.

The web-based environment can be customized for di�erent classes of users. Almost all
the pages displayed by the Hub are dynamically generated. This allows the Hub to present
di�erent views of available resources to di�erent users. For example, the Hub front-end can
be con�gured so that a proprietary tool `T' is only visible to a speci�ed sub-set of users `U'.
With this con�guration, the Hub will exclude `T' when generating pages for users who do
not belong to `U'. Moreover, the Hub enforces such access-restrictions regardless of the URL
used by the user.

Conclusions

A large percentage of computer engineering graduates will have to use computer-based tools
in their jobs. These tools are used by computer architects, system integrators, system and
application programmers, computer evaluators and consultants and others who must be able
to understand how computer systems features a�ect the performance of their engineering ar-
tifacts. In many cases it is up to the engineer to (re)design a tool that addresses a speci�c
project need. The knowledge and experience provided by the proposed curriculum innova-
tions (on the use and development of computer system tools) will uniquely qualify engineers
to succeed in carrying out the above mentioned activities.

Teaching students how to simulate systems and design tools for simulation and evalua-
tion purposes signi�cantly impacts their ability to master fundamental knowledge and think

critically. Simulation entails two intellectual challenges: how to reproduce the behavior of
the (sub)system of interest and how to do so at the appropriate level of abstraction. Perfor-
mance evaluation focuses the students' mind on optimization and modeling issues. Analyzing
software characteristics provides crucial insights into the applications that drive computer
systems innovation. These intellectual competencies are core to the practice of engineering.
By the inherent nature of tools and the assignments they enable, collaborative design and
tool development activities can be expected to ensue from the proposed innovations.

This article argues that an innovative approach to the integration of tools into existing
curricula is possible by leveraging emerging network-computing technology that reduces or
eliminates the overheads involved in locating, testing, learning, using and maintaining tools.
By complementing such a capability with educational materials developed in a modular
fashion it becomes possible to enhance existing classes so to cover fundamental and practical
aspects of computer tools. This allows for customized solutions that take into consideration
size, class level, instructor views and other aspects of a speci�c program. Evaluation results
of this project will be reported in future papers.

Bibliography

[1] G. Abandah and E. S. Davidson. Con�guration Independent Analysis for Characterizing Shared-
Memory Applications. 12th Int'l. Parallel Processing Symposium, 1998.

[2] D.C. Burger, T. M. Austin, and S. Bennett. Evaluating Future Microprocessors-the SimpleScalar
Tool Set. UW Computer Sciences Technical Report #1308, July, 1996.

[3] E. A. Brewer, C. N. Dellarocas, A. Colbrook and W. E. Weihl. PROTEUS: A High-Performance
Parallel Architecture Simulator. Technical report mit/lcs/tr-516, Massachusetts Institute of
Technology, Sept. 1991.

[4] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe
inger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger and P. Tu. Parallel Programming with Polaris. IEEE
Computer, Dec 1996.

[5] Z. Ben-Miled, J.A.B. Fortes, R. Eigenmann and V. Taylor. Towards the Design of a Heteroge-
neous Hierarchical Machine: A Simulation Approach. In 30th Simulation Symp., Apr. 1997.

[6] B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution pro�ling. In
Proceedings of the 1994 SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 1994.

[7] Helen Davis, Stephen R. Goldschmidt and John Hennessy. Multiprocessor Simulation and Trac-
ing Using Tango. In Proceedings of the 1991 International Conference on Parallel Processing
(ICPP, Vol. II, Software), August 1991.

[8] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion and M.
S. Lam. Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer,
December 1996.

[9] John Hennessy and David Patterson. Computer Organization and Design: The Hardware-
Software Interface (Appendix A, by James R. Larus). Morgan Kaufman, 1993.

[10] John L. Hennessy, David A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 1996.

[11] J. Robert Jump. NETSIM Reference Manual. Rice University, Houston, TX, May 1993.

[12] Kapadia, Nirav H. and Fortes, Jos�e A. B. On the Design of a Demand-Based Network-Computing
System: The Purdue University Network-Computing Hubs. In Proceedings of the 7th IEEE
International Symposium on High Performance Distributed Computing (HPDC'98), pp71-80,
July 1998.

[13] N. Kapadia, J. Fortes and M. Lundstrom. The Semiconductor Simulation Hub: A Network-
Based Microelectronics Simulation Laboratory. In 12th Biennial IEEE University Government
Industry Microelectronics Symposium, pp. 72-77, July 20-23, 1997.

[14] N. Kapadia, M. Lundstrom, J. Fortes and K. Roy. Network-Based Simulation Laboratories for
Microelectronics Systems Design and Education Multiprocessors. In International Conference
on Microelectronic Systems Education, pp. 23-24, July 21-23, 1997.

[15] N. Kapadia, J. Fortes and M. Lundstrom. The Computational Electronics Hub: A Network-
Based Simulation Laboratory. In Workshop on Materials and Process Research and the Infor-
mation Highway, National Materials Advisory Board, Commission on Engineering and Technical
Systems, National Research Council, Apr 12-13, 1996 (pp. 31 of summary record published by
National Academy Press).

[16] James R. Larus. E�cient Program Tracing. IEEE Computer, 26(5):52{61, May 1993.

[17] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K. Hollingsworth, R. Bruce
Irvin, Karen L. Karavanic, Krishna Kunchithapadam and Tia Newhall. The Paradyn Parallel
Performance Measurement Tools. IEEE Computer 28(11), November 1995.

[18] J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman, C. B. Hall, R. Miranda, S.-K. Chen and
A. Polyak. Simulation/evaluation environment for a VLIW processor architecture IBM Journal
of Research and Development, Vol. 41, No. 3, 1997

[19] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsa�, Mike Litzkow, Steve Huss-
Lederman, Mark D. Hill, James R. Larus and David A. Wood. Wisconsin Wind Tunnel II:
A Fast and Portable Architecture Simulator. In Proceedings, Workshop on Performance Anal-
ysis and its Impact on Design, June 1997 (PAID-97).

[20] Peter S. Magnusson and Bengt Werner. E�cient Memory Simulation in SimICS. In 28th Annual
Simulation Symposium, 1995.

[21] A-T. Nguyen, M. Michael, A. Sharma, J. Torrellas. The Augmint Multiprocessor Simulation
Toolkit for Intel x86 Architectures. In Proceedings of 1996 International Conference on Computer
Design, October 1996.

[22] Vijay S. Pai and Parthasarathy Ranganathan and Sarita V. Adve. RSIM: An Execution-Driven
Simulator for ILP-Based Shared-Memory Multiprocessors and Uniprocessors, In Proceedings of
the Third Workshop on Computer Architecture Education, October 1997.

[23] Insung Park, Michael J. Voss, Brian Armstrong, and Rudolf Eigenmann. Parallel programming
and performance evaluation with the ursa tool family. Int'l Journal of Parallel Programming,
1998. to appear.

[24] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A. Shields, Bradley
Schwartz and Luis F. Tavera. Scalable Performance Analysis: The Pablo Performance Analysis
Environment. In Proceedings of the Scalable Parallel Libraries Conference, IEEE Computer
Society, 1993.

[25] Mendel Rosenblum, Stephen A. Herrod, EmmettWitchel, and Anoop Gupta. Complete Com-
puter Simulation: The SimOS Approach. In IEEE Parallel and Distributed Technology, Fall
1995.

[26] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized Program
Analysis Tools. In Proceedings of the 1994 ACM Conference on Programming Language Design
and Implementation (PLDI), June 1994.

[27] Jack E. Veenstra and Robert J. Fowler. MINT: A Front End for E�cient Simulation of Shared-
Memory Multiprocessors. In Proceedings of the Second International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pages
201{207, 1994.

[28] J. Wilkes. The Pantheon Storage System Simulator Tech. report HPL-SSP-95-14, Hewlett
Packard, Palo Alto, CA

Dr. JOS�E A. B. FORTES is currently a Professor and Assistant Head for Education of the School of
Electrical and Computer Engineering at Purdue University. Dr. Fortes received a B.S.E.E. degree from
Univ. de Angola in 1978, a M.S.E.E. degree from Colorado State University in 1981, and a Ph.D. in Elec-
trical Engineering and Systems from the University of Southern California in 1984.

NIRAV KAPADIA is currently a doctoral candidate at Purdue University. Nirav Kapadia received his
B.E. degree in Electronics and Telecommunications from Maharashtra Institute of Technology (India) in
1990. He subsequently worked at the institution for a year as a lecturer. He received his M.S.E.E. degree
from Purdue University in 1994.

Dr. RUDOLF EIGENMANN is currently an Associate Professor of Electrical and Computer Engineer-
ing at Purdue University. Dr. Eigenmann received a Diploma in Electrical engineering from ETH Z�urich,
Switzerland in 1980, and a Ph.D. in Computer Science from ETH Z�urich in 1988.

RENATO FIGUEIREDO is currently a doctoral candidate at Purdue University. Renato Figueiredo re-
ceived both B.S.E.E. and M.S.E.E. degrees from the State University of Campinas (UNICAMP), Brazil, in
1994 and 1995.

Dr. VALERIE TAYLOR is currently an Associate Professor of Electrical and Computer Engineering at
Northwestern University. Dr. Taylor received a B.S.C.E.E. degree with highest honors from Purdue Univer-
sity in 1985, a M.S.E.E. degree from Purdue University in 1986, and a Ph.D. degree in Electrical Engineering
and Computer Science from the University of California at Berkeley in 1991.

Dr. ALOK CHOUDHARY is currently an Associate Professor of Electrical and Computer Engineering
at Northwestern University. Dr. Choudhary received a B.E. degree in Electrical Engineering from Birla
Institute of Technology and Science in 1982, a M.S. degree in Electrical and Computer Engineering from
the University of Massachusetts in 1986, and a Ph.D. in Electrical and Computer Engineering from the
University of Illinois in 1989.

Dr. LUIS VIDAL is currently an Associate Professor of Mathematics and Computer Science at Chicago
State University. Dr. Vidal received a B.S. degree in Mathematics from the University of Trujillo in 1970,
M.S. degrees in Computer Science and Mathematics from Washington State University in 1981 and 1983,
and a Ph.D. degree in Computer Science from the Illinois Institute of Technology in 1990.

Dr. JAN-JO CHEN is currently an Assistant Professor of Mathematics and Computer Science at Chicago
State University. Dr. Chen received a B.S. degree in Architecture from Tunghai University, Taiwan in
1985, a M.S. degree in Computer Science from the Illinois Institute of Technology in 1990, a M.S. degree
in Mathematics, Statistics and Computer Science from the University of Illinois at Chicago in 1996, a M.S.
degree in Management Information Systems from the University of Illinois at Chicago in 1997, and a Ph.D.
degree in Mathematics, Statistics and COmputer Science from the University of Illinois at Chicago in 1997.

