
A Methodology for Scientific Benchmarking
with Large-Scale Applications

Brian Armstrong Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University

West Lafayette, Indiana, USA

Abstract. The long-term goal of the project described in this paper is
to facilitate the use of realistic, large-scale applications in performance
evaluation projects. In prior work we have contributed to the creation of
a new benchmark suite, called SPEChpc. Here, we introduce a method-
ology that will (1) help researchers understand the behavior with these
large-scale applications, and (2) will guide the benchmark developers
in characterizing a new application from a comprehensive and consis-
tent set of perspectives. We will illustrate the proposed methodology by
characterizing the Seismic benchmark of the SPEChpc suite.

1 Introduction

Importance of performance evaluation with realistic problems: Performance eval-
uation is an essential part of every scientific project. In computer systems re-
search we generally use a suite of benchmark programs, for which we then quan-
tify the performance difference made by a new concept or prototype. In order
for our results to be of high value, the test suite needs to be representative and
shared. Representative means that the suite reflects the important properties
of realistic problems. It assures that the performance gains measured by the
researcher will hold in real-life applications. Shared benchmarks are necessary
so that we can compare our results with those obtained in related work. It re-
quires that the same test suite be used by the different researchers and that the
programs be executed under comparable conditions.

Today, the research community does not have available benchmark suites that
are both representative and shared. This is especially true in high-performance
computing, where realistic applications can be very large and require substan-
tial machine resources to run. Furthermore, for typical research projects it is
often not feasible to run such applications as part of a performance evaluation
subproject because of the extensive effort involved.

Making large-scale benchmarks available for scientific study: The present paper
addresses both of these issues. In an ongoing effort we have been developing
a benchmark suite representative of high-performance computing applications.
This effort is associated with the industry-oriented Standard Performance Eval-
uation Corporation, SPEC. While the primary intent of the industrial SPEC



110 Brian Armstrong Rudolf Eigenmann

members is market-oriented benchmarking, the mission of the academic partic-
ipants is to make the suite available as a shared resource for scientific research.
The primary issue in doing so is to facilitate its use for scientific performance
evaluation projects, such that executing, gaining an understanding of, and mod-
ifying the code become feasible tasks. To this end, we introduce a methodology
that will guide the benchmark users in asking the right questions and will give
a recipe to the benchmark developer for providing the right information to the
user.

Are large-scale application benchmarks necessary? While it is not our intent to
replace the many existing programs suites [13, 2, 10, 23, 14, 22], there are numer-
ous situations where large-scale benchmarks are necessary. For example, end-
users are interested in the performance of their discipline-specific production
application. Even if a researcher proves the value of a new innovation on a
scaled-down benchmark, the end user may not appreciate the scientific argu-
ment about the equivalence of the scaled-down and realistic benchmarks. More
formally, every reduction of a problem is an abstraction that makes assump-
tions that certain aspects of the application are more important than others.
For example, one may reduce the number of time steps in an application, as-
suming that, if the same data is traversed in every step, the “benchmarking
value” of every step is the same. However, our benchmarking objective may be
to evaluate adaptive optimization techniques, which, for example, may recom-
pile a part of the application after migrating to a new machine. In this case it
is crucial to measure whether the adaptation overhead gets amortized over the
remaining time steps of the computation. In general, we can say that, the higher
the optimization capabilities of a system, the more important it becomes to use
unabstracted, realistic applications for its evaluation.

Contributions: In this paper we will make the following specific contributions.

• We will describe a new benchmarking effort for parallel and high-
performance computing. We will describe our goal of creating a research
infrastructure that will make it feasible for diverse research groups to use
large-scale applications in evaluating and guiding their research.
• We will introduce a methodology for benchmark characterization with the

specific goal of facilitating the use of large-scale applications in research
projects. This methodology will identify the basic questions commonly asked
by the involved research groups. We will define the information that needs
to be gathered in order to find answers to these questions.
• To illustrate this methodology we will characterize the seismic processing

suite of the SPEChpc benchmarks extensively.

2 SPEChpc: A Performance Evaluation Infrastructure
with Realistic Applications

History: the SPEC High-Performance Group The High-Performance
Group of the Standard Performance Evaluation Corporation (SPEC/HPG) has



A Methodology for Scientific Benchmarking with Large-Scale Applications 111

been developing large-scale benchmarks for high-performance compute plat-
forms [12]. It grew out of a joint effort by the Perfect Benchmarks [4, 9] activity
and the Standard Performance Evaluation Corporation. The effort also bene-
fited from the participation of members of the Parkbench organization [16]. A
first suite of the benchmarks is available under the name SPEChpc. SPEC/HPG
is searching for applications that are industrially relevant, are being widely-used
to solve realistic problems, can be distributed with a simple not-for-profit agree-
ment, are available in a serial and a parallel code variant, and have a sponsor
that is able to support the development of the code into a benchmark.

The effort of SPEC/HPG has not only involved the search for such applica-
tions, but also the definition of appropriate data sets, validation procedures, and
run rules. For example, when generating SPEC-approved benchmark numbers,
these rules allow for most source-level code modifications but disallow excessive
tuning, such as assembly-level optimizations, and they require the full disclosure
of all code modifications.

Table 1. SPEChpc benchmarks

The SPEChpc96 V1.1 benchmark suite

Code Area Programming language #lines

SPECchem Molecular modeling Fortran 77 and C / PVM,MPI,OpenMP 110,000

SPECseis Seismic processing Fortran 77 and C / PVM,MPI,OpenMP 20,000

SPECclimate Weather modeling Fortran 77 / PVM,MPI,OpenMP 50,000

Current Status of the SPEChpc Benchmarks The current release of the
SPEChpc benchmarks includes three codes, SPECseis [19], SPECchem [21], and
SPECclimate [15]. They are representative of applications used in the seismic in-
dustry, the chemical and pharmaceutical industries, and in atmospheric research,
respectively. The codes are listed in Table 1. All benchmarks are available in a se-
rial and a parallel code variant. The parallel codes are available in both message
passing (PVM and MPI) and in parallel directive form (OpenMP.) SPEChpc
results are published on SPEC’s official web page (www.spec.org/hpg/.)

3 Towards a Methodology for Characterizing Large-Scale
Application Benchmarks

Goals The goal of our methodology is twofold. The first objective is to give
sufficient guidance to the benchmark user, so that it becomes feasible to use the
large-scale applications in scientific performance evaluation projects. The second
objective is to clearly define the information that the benchmark developer must
provide in order to make a benchmark ready for the stated purpose.



112 Brian Armstrong Rudolf Eigenmann

Several methodologies for benchmarking and application characterization
have been proposed. Benchmark suites typically come with guidelines on how to
generate results that conform to the intended benchmarking philosophy. They
may describe the metrics and the format of the result presentation. Examples are
the SPEC benchmarks, which define run rules and result submission formats,
and several PC benchmarks (e.g., [3]), which also define the requirements for
reporting results. The Perfect Club [4, 9] proposed a methodology of benchmark
diaries, in which the user reported applied code modifications and the result-
ing performance improvements. The Parkbench effort [16] defines several system
levels and provides benchmarks specific to the respective levels. Many projects
that study system components (such as cache studies, or compiler analyses) in-
troduce an implicit methodology, which defines metrics and presentation formats
that are most meaningful for the shown data. The same holds for the numerous
application studies presented in the literature.

Our methodology contrasts with the reporting methods of the commercially-
oriented benchmark suites in that we do not specify formal run requirements.
This addresses the need of the research-oriented performance analysis projects
to look at a benchmark from many different angles and allow modifications of
the code. We present brief recommendations on how to reconcile this require-
ment with the need to have comparable results across many different research
contributions in Section 3.1.

Compared to the individual methodologies used by computer systems and
application characterization projects, our approach will combine such contribu-
tions into an integrated set of information categories that are reported about
each benchmark. This information will help a new benchmark user gain an un-
derstanding of the overall application as well as the specific aspects that are
relevant for the study at hand. It will also provide much of the characteriza-
tion data (such as algorithmic decomposition, cache statistics, compiler analysis
results) that need to be gathered as a basis for every performance evaluation
project. Furthermore, the information categories define the data that needs to
be collected by the benchmark developers.

In addition, in an ongoing project we are creating tools that make available
this information on the Web (www.ece.purdue.edu/ParaMount/Benchmark).
This paper presents a subset of the information and the rationales behind our
effort. An important guideline for the definition of the proposed information cat-
egories is the availability of tools to collect them and the feasibility of creating
new tools for this purpose.

Information Categories Tables 2, 3, and 4 list the basic information cate-
gories, the research questions addressed, and the target audience. The categories
range from the basic problem analysis to details of the benchmark programs and
their execution behavior.

Many of these categories include measurements of the benchmarks on actual
machines or simulators. Complete information will include both overall appli-
cation measurements and per-program-section analysis. Program sections can



A Methodology for Scientific Benchmarking with Large-Scale Applications 113

Table 2. Information Categories of the Benchmark Characterization Methodology and
Objectives. Characteristics gathered from the Code.

Information
Category

Questions to be Answered and the Target Audience

Application
description

A basic understanding of the problem being solved by a
benchmark is important for all user classes. For many users
it is important to understand how representative of a specific
discipline a benchmark is. The latter also helps in selecting
the benchmarks and in evaluating the quality of the results.

Program
description

Describes programming languages, size, system requirements
(cpu, memory, I/O), number of subroutines, and software li-
braries. The problem is described from a software engineering
perspective.

Application compo-
nent structure

Describes the coarse-grain structure of the application and
opportunities for execution across parallel and/or heteroge-
neous, (globally) distributed systems.

Algorithmic
structure

Algorithmic decomposition is important for the general un-
derstanding, but specifically aimed at algorithm research.
This category includes measured improvements due to algo-
rithmic changes.

be application components (for multi-component benchmarks), subroutines, or
individual loops. Uniform naming schemes integrate the diverse information cat-
egories into an overall behavioral picture for each benchmark. Many of today’s
information gathering tools do not provide such uniform naming schemes. For
example, instruction analysis tools tend to express their results in terms of pro-
gram counters, call graphs use subroutine names, and compilers may report
information on loops. For the user, it is of paramount importance to be able to
compare information across the various categories. Therefore, the development
of tools that agree on a uniform naming scheme is an important future goal.

Section 4 characterizes the SPECseis suite using the presented methodol-
ogy. In doing so, we will also define the categories introduced in Tables 2,
3, and 4 more specifically. The scope of this paper would not allow the full
characterization of even a single SPEChpc benchmark. We have begun to de-
velop a facility that makes comprehensive information available on the Web
(www.ece.purdue.edu/ParaMount/Benchmark).

3.1 Run Requirements

Flexibility in scientific performance evaluation is important. A conflicting re-
quirement is equally important: results obtained by different researchers must
be comparable. We recommend that every evaluation project that uses the
SPEChpc benchmarks include the following information: (1) precise execution



114 Brian Armstrong Rudolf Eigenmann

Table 3. Information Categories of the Benchmark Characterization Methodology and
Objectives. Characteristics gathered from run-time measurements.

Information
Category

Questions to be Answered and the Target Audience

Measured
performance

This addresses basic performance questions of all audiences.
It indicated basic scalability, suitability of a code for spe-
cific machines, effectiveness of exploiting parallel processors,
and sensitivity to changes in input parameters. It also states
the baseline for improvements of algorithms, compilers, and
architectures.

Analysis with re-
spect to program-
ming models

SPEChpc benchmarks include a message passing parallel and
a shared-memory (directive-parallel) code variant. Message-
passing profiles answer questions about (1) suitability of a
distributed-memory architecture, its interconnections, and
message libraries, (2) scalability beyond the measured range,
(3) opportunities for communication optimizations, and (4)
heterogeneity of the application and coupling of the compo-
nents. Shared-memory analyses indicate (1) sources of perfor-
mance loss, (2) data-sharing patterns, and (3) opportunities
for shared data optimizations.

I/O
characterization

Leads to a basic understanding of the application’s I/O com-
ponent. Shows scalability with respect to I/O, and sensitivity
of the application with respect to the machine’s I/O sub-
systems, (e.g., parallel disk organizations and partitioning
schemes.)

Cache analysis Shows the application’s locality properties. Gives detailed in-
sight into the data sharing behavior of the shared-memory
application version and the data reuse of individual nodes in
the message-passing version. The analysis follows the compre-
hensive cache characterization model introduced in [18].

Instruction analysis Shows the number and type of instructions executed and the
instruction profile (e.g., loads vs. stores.) Indicates detailed
timing information, (e.g., pipeline stalls.) This information is
the basis for the detailed performance analysis of individual
code sections.

Program analysis This is a large category of primary interest to compiler re-
searchers and a basis for manual code improvements. It in-
cludes call-graph information, data use and access patterns,
the control-flow structure, and results of compiler analyses,
(e.g., applied and failed optimizations and program statistics.)



A Methodology for Scientific Benchmarking with Large-Scale Applications 115

Table 4. Information Categories of the Benchmark Characterization Methodology and
Objectives. Characteristics gathered from modeling the performance.

Information
Category

Questions to be Answered and the Target Audience

Simulation Analysis This is an open-ended category. Simulations can give insight
into almost all parameters of an application and its potential
execution behavior on a new or idealized machine.

Advanced model
analysis

Various advanced performance analysis and prediction models
have been proposed in the literature. They can give insight
into a code’s complex behavior, sources of performance loss,
and upper performance limits.

environment (including machine parameters, operating system, compiler flags),
(2) all code modifications of the released benchmark versions, (3) if only a subset
of the benchmarks is used, the reason must be indicated.

4 A Case Study: Characterization of the SPECseis Suite

In this section we describe a benchmark application in detail, using the intro-
duced methodology. The application is referred to as Seismic. As the benchmark
of the SPEChpc suite it has the name SPECseis. The application has also been
referred to as the ARCO suite, indicating its original site of development.

Application Description

The problem being solved: The application processes seismic signals that are
emitted from a sound source that moves along a grid, reflected on the earths
interior structures, and received by an array of receptors. The signals take the
form of a sequence of seismic traces, which are processed by applying a sequence
of data transformations. Table 5 gives an overview of these data transformation
steps. The transformation steps are combined into four phases of the application,
referred to as Phase 1: Data Generation, Phase 2: Stacking of Data, Phase 3:
Time Migration, and Phase 4: Depth migration. The problem is described in
more detail in [19].

Relevance as a benchmark: The application has been developed specifically as
a benchmark for parallel computers that realistically reflects the computational
methods used in seismic data processing [19]. The benchmark was created with
the intention to avoid the work involved in porting and analyzing proprietary
benchmark codes. It is in the public domain and has been included in several
benchmark suites.



116 Brian Armstrong Rudolf Eigenmann

10

100

1,000

10,000

100,000

1 10
Number of Processors

T
im

e 
(s

ec
on

ds
)

DS 1
DS 2
DS 3
DS 4
DS 5

2 4

Fig. 1. The performance of Seismic on a 4-processor SUN Ultra Enterprise 4000 with
five different datasets. The sizes of the datasets are: 16, 48, 96, 96, and 1,536 megabytes.
Datasets 4 and 5 both consist of 96 megabytes but with different dimensions and
precision. Dataset 5 has twice the number of samples per seismic trace and half the
number of traces per group. DS 1 corresponds to the test data set of the SPECseis
benchmark. DS 3 corresponds to small and DS 5 to medium.

Fig. 2. The performance of a 16-processor SGI PowerChallenge Array with Dataset 3.
The figure shows how each of the four seismic processing phases scale with respect
to the number of processors. Phase 1 is highly parallel, the communication overhead
in Phase 4 is hidden by its large computational load, Phase 3 performs only a fixed
number (three) of large communications and file reads, and Phase 2 is characterized
by a high communication-to-computation ratio, though it executes a fewer number of
communications than Phase 4 does.



A Methodology for Scientific Benchmarking with Large-Scale Applications 117

Table 5. A brief description of each seismic process which makes up the four processing
phases of Seismic. Each phase performs all of its processing on every trace in its input
file and stores the transformed traces in an output file.

Process Description

Phase 1: Data Generation

VSBF Read velocity function and provide access routines

GEOM Specify source/receiver coordinates

DGEN Generate seismic data

FANF Apply 2-D spatial filters to data via fourier transforms

DCON Apply predictive deconvolution

NMOC Apply normal move-out corrections

PFWR Parallel write to output files

Phase 2: Stacking of Data

PFRD Parallel read of input files

DMOC Apply residual move-out corrections

STAK Sum input traces into zero offset section

PFWR Parallel write to output files

Phase 3: Time Migration

PFRD Parallel read of input files

M3FK 3-D Fourier domain migration

PFWR Parallel write to output files

Phase 4: Depth Migration

VSBF Data generation

PFRD Parallel read of input files

MG3D A 3-D, one-pass, finite difference migration

PFWR Parallel write to output files

Program Description Seismic comes with ample documentation that de-
scribes the mechanisms of compiling and executing the program. A starting point
to this information is the web site of the SPEC High-Performance Group [8].

The specific Seismic processing steps to be applied in a particular program
run are specified via input parameters. An overall driver script defines these
parameters for each of the four Seimic phases, writes the parameter file and
invokes the application. The application loops through each trace, choosing the
appropriate processing routines (listed in Table 5) in sequence.

The program includes 20,000 lines of Fortran and C code, and includes about
230 Fortran subroutines and 120 C routines. The computational parts are written
in Fortran. The C routines perform file I/O, data partitioning, and message
passing operations. The benchmark includes 5 data sets, ranging from a small
set, for testing purposes, to a very large set. The currently largest set would run
approximately one day on a 1 GFlops machine and use 100 GB of disk space.
The code does not make use of any external libraries.



118 Brian Armstrong Rudolf Eigenmann

Fig. 3. Comparison of the performance from several architectures as the number of
processors is varied. Seismic benchmarks shows good scalability on all these architec-
tures.

Application Component Structure Seismic runs in four phases, as described
earlier. All phases communicate through file I/O. In the current implementation,
the phases need to run to completion before the next phase can start, except
for Phases 3 and 4, which can run in parallel. This parallelism is practically
insignificant since Phase 3 is very short.

More significant is the heterogeneous structure of the four phases. Phase 1
is highly parallel with little communication, while Phases 2 and 4 communicate
more intensely. Phase 1 is suitable for a distributed-memory machine while the
other two phases scale best on multiprocessor system with low communication
latency. Phase 3 performs three communication operations, independent of the
size of the input dataset.

Algorithmic Structure The low-level routines involved consist of complex-
to-real and real-to-complex FFT transformations, tridiagonal solvers for first-
order linear difference equations, which are executed over the two horizontal
dimensions, and parallel transposing of 3-D arrays, which are distributed across
processors.

Phases 1, 3 and 4 use complex-real FFT transformations. Phase 4 also per-
forms the tridiagonal solvers for the finite difference equations. Phase 2 applies
a dip move-out operator and performs common-midpoint stacking of the seismic



A Methodology for Scientific Benchmarking with Large-Scale Applications 119

Fig. 4. Short segments (three seconds) of the communication profiles for Phase 2 and
Phase 4 with Dataset 3 on an SGI PowerChallengeARRAY using sixteen processors.
The graphs show how many processors are waiting for communication at any point in
time. One can see that the communication-to-computation ratio in Phase 2 is higher
than in Phase 4.

traces [19], which amplifies the true reflections and compresses the data for the
following phases.

Measured Performance Figures 1, 2, and 3 give a picture of how Seismic
scales with respect to increasing the data size, increasing the number of pro-
cessors, and how it performs across a variety of architectures. Figure 1 shows
the overall execution time of Seismic on a four-processor SUN Ultra Enter-
prise 4000 server using five different data sets. Figure 2 shows the performance
on an SGI Origin2000 system, broken down into the four application phases.
Figure 3 compares the execution obtained by different architectures.

Parallel Message-Passing Analysis Figure 4 gives a close-up view of the
communication in Phase 2 and the later part of Phase 4. It provides a detailed
view of how communication is performed. The total time spent in communica-
tion per processor on sixteen processors is given in Figure 5. The communication



120 Brian Armstrong Rudolf Eigenmann

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

P#

P#

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P#

P#

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

1

0

2

3

0 5 1
0

1
5

2
0

2
5

3
0

3
5

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
50 10 20 30 40 50 60

0

1

2

3

N
od

e 
ID

Seconds

4 Processors 8 Processors 16 Processors

4 Processors 8 Processors 16 Processors

D
at

a 
S

et
 3

D
at

a 
S

et
 1

Fig. 5. The total time spent in communication per processor on four, eight, and sixteen
processors MIPS R8000 processors with Datasets 1 (upper graph) and 3 (lower graph)
on an SGI PowerChallengeARRAY. There is significant imbalance in the amount of
communication performed by the different processors.

Fig. 6. The average time between communication points for each phase with Dataset 3
on four, eight, and sixteen MIPS R8000 processors of an SGI PowerChallengeARRAY.
The communication in the seismic processing phases are regular. Phase 2 has the least
amount of computation per communication point.



A Methodology for Scientific Benchmarking with Large-Scale Applications 121

Fig. 7. A parallel execution of the shared-memory version showing the time spent in
productive computations and in barrier synchronizations per thread for a 4-processor
run. The number of barrier synchronizations is also shown.

Fig. 8. The percentage of execution time (from a uni-processor run) covered by loops
that Polaris determined are parallel. The total time spent in parallel and serial loops
is given as a number on the bars.

granularity is given in Figure 6. It shows the average time between two commu-
nication points for specific runs of the application.

Parallel Shared-Memory Analysis We have created a shared-memory im-
plementation of Seismic, written in the OpenMP parallel directive language.
OpenMP offers both loop parallelism and SPMD programming style. For Seis-
mic we have used the SPMD style. Except for the initialization section, the
entire code is enclosed in one OpenMP parallel region. Within this region, each
processor executes the same code. Data is statically partitioned. All data, except
for data exchange buffers, is localized to the processors, using OpenMP thread
private common block declarations. All processors exchange data in regular in-
tervals. They do so by copying a data section into a shared buffer, performing a



122 Brian Armstrong Rudolf Eigenmann

Fig. 9. The disk read/write time for the four seismic phases executed on an HP Exem-
plar S-Class machine with Dataset 5. Phase 2 is the only phase that reads the seismic
data trace by trace instead of in groups. Phase 1 writes the trace dataset to disk, con-
sisting of 1.5 GB of trace data for this data set. Phase 2 reads this file and writes a
reduced file, (after performing common-midpoint stacking,) producing a 70 MB data
file. Phases 3 and 4 read the reduced file written by Phase 2 and output two other files.

11,540 1,446 307 31,801

12,076
1,241

184 40,060

634
175

34,126

4,084

115

4,667
947 187

14,821

586 128 13,511

3,667

3,713

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4
Phase

P
er

ce
nt

ag
e

Conditional

Control

Stores

Loads

FloatingPoint

Integer

39,749 5,158 1,096 137,398 million

Fig. 10. The instructions executed for the four seismic phases from a serial run on
a SUN Ultra Enterprise 4000 with Dataset 3. The instructions are broken down by
category.



A Methodology for Scientific Benchmarking with Large-Scale Applications 123

71
46

58 59

11

70

39

29
54

42

100

41

89

30

61

0
10
20
30
40
50
60
70
80
90

100

INT FP INT FP INT FP INT FP

P
er

ce
n

ta
g

e

Not Taken

Taken

Phase 1 Phase 2 Phase 3 Phase 4

4,558 39 544 151 185 2 14,711 101 million

Fig. 11. The branch outcomes for the four seismic phases from a serial execution on
a SUN Ultra Enterprise 4000 with Dataset 3. The outcomes for both the integer and
the floating-point branches are given.

Fig. 12. A call graph for the DCON subroutines (part of Phase 1) and a segment of the
corresponding loop table information. The left graph shows the nesting of the loops and
the location of the subroutine calls within each subroutine. The loops are labeled and
marked as serial or parallel. Two subroutines are shown: DCONWNR, which consists
of a serial loop with three nested parallel loops, and DCONCNV, which consists of a
parallel loop with a nested parallel loop. The right graph shows the compile-time loop
information linked with some of the runtime information from a serial execution of
the code on a SUN UltraEnterprise 4000 server. For each loop, the total time spent
in the loop over the execution of the application (in both seconds and percentage of
total execution time), the number of times the loop is executed, and whether the loop
is serial or parallel are given in the columns.



124 Brian Armstrong Rudolf Eigenmann

0 200 400 600
0

1

2

3

4
x 10

6

Time Period

M
ax

im
um

 N
um

be
r 

of
 A

ct
iv

e 
O

pe
ra

tio
ns

Fig. 13. Maximum parallelism of the MaxPar tool for Phase 2 with Dataset 3. The
number of active operations is the number of operations that could be executed con-
currently within a certain time segment. For this execution of the code, the maximum
number of possible concurrent operations varies between one and four million.

barrier operation across all processors, and then copying from the shared buffer
into the private data structures.

Figure 7 shows the breakdown of processor cycles into productive and wait
time. The data is collected using the instrumented libraries provided with the
KAI OpenMP compiler, Guide, which record wait time at barrier operations. The
resulting graph shows that the wait times are very small, which is consistent with
the good scalability of the code. In Figure 8 we show the amount of execution
time covered by parallel loops. These loops were found to be parallel by the
Polaris automatically parallelizing compiler [5].

I/O Characterization Figure 9 breaks down the disk I/O time per application
phase into read and write operations. Phase 2 reads what Phase 1 writes. Both
of these phases spend significantly more time in disk I/O than the other phases.
But, the write time of Phases 2 and 4 remain near four seconds while the write
time of Phase 1 decreases as the processing is spread across more processors

Cache Analysis In related work we have developed a methodology for cache
analysis and a simulator that can capture the program behavior in the compre-
hensive terms defined by this methodology. For the presentation of results we
refer to [18].

Instruction Analysis Figure 10 shows the number of instructions executed in
each application phase and the breakdown into several categories. One fourth
of the instructions executed in Phase 4 are loads. Though Seismic is a scien-
tific application, it executes near the same number of integer instructions as
floating-point instructions. Figure 11 shows branch frequencies for both integer
and floating-point decisions.



A Methodology for Scientific Benchmarking with Large-Scale Applications 125

Program Analysis Figure 12 shows data gathered from compile-time tools
(Polaris) on code from Phase 1 of Seismic. The figure shows the call-graph of
two subroutines in the DCON seismic process as well as a loop table view, which
links the compiler information with timings from runtime instrumentation. The
subroutines perform matrix inversion and convolution.

Simulation Analysis Figure 13 shows the results of the simulated execution
of the second application phase on an ideal parallel machine. The simulator
identifies the maximum degree of parallelism that is inherent an execution of
the application [17, 20]. The figure shows the repetitive patterns in Seismic that
follows the compute and data exchange phases. The maximum number of parallel
operations found in this code is up to several million. Although this analysis does
not show how realistic it is to exploit this degree of parallelism, it makes clear
that the exploited parallelism, shown in the earlier figures, is orders of magnitude
below the code’s theoretical potential.

Advanced Methodologies The characterization information presented so far
shows basic measurements as they are gathered by various tools. Combining and
comparing these results in meaningful ways can lead to additional insights into a
code’s complex behavior. Several advanced performance analysis and prediction
methods have been proposed in the literature with this objective. For example,
The Hierarchical Performance Bound Model [7, 6] yield a hierarchy of bounds
on achievable performance that identify specific causes of performance degra-
dation and the sections of the code and data structures where they occur. The
PTOPP model [11] defines overhead factors, such as globalization penalty, par-
allelization overhead, and spreading overhead, and recipes that guide the user in
optimizing a parallel program. The Perfore methodology [1] extracts Resource
Usage Equations from an applications, which can be used to characterize the
scaling behavior of the application with respect to input data and architecture
parameters.

The presentation of the results of these methods is beyond the scope of this
paper. However, it is an important part of the characterization Web repository
of our benchmark suite, which is being created in a related project.

5 Conclusions

Using the proposed methodology we have characterized the Seismic application
of the SPEChpc benchmark suite. The gathered data is useful for understanding
the performance behavior of the application from diverse perspectives.

We have found that the Seismic benchmark scales well with respect to the
measured data sets and processor numbers, and it ports well between different
architectures. However we have also found significant differences in individual
phases of the code. These differences are with respect to the communication
and the input/output behavior. Significant communication imbalances became



126 Brian Armstrong Rudolf Eigenmann

apparent, and the parallel disk I/O scales only in some parts of the application.
However, on the measured machines, both the communication and the I/O is still
dominated by the computation time, leading to overall good scalability. We have
also analyzed the instruction profile of the code and have found that, despite the
numerical character of the code, the number of integer instructions is relatively
equal to the number of floating-point instructions.

Automatic program analysis for this code is not yet in the position to detect
parallelism near the degree available in the manually parallelized code. We have
also found that, although the parallel version of the application performs well on
parallel machines, there is a theoretical maximum parallelism of several orders
of magnitude beyond the currently exploited level.

The presented methodology offers guidelines both for the benchmark user,
who needs to grasp the gist of a large application quickly, and for the benchmark
developer who needs to know which code characteristics to presented to the user.
In this way, the methodology represents a significant step towards our goal of
making performance evaluation with realistic, large-scale applications a feasible
task that is part of every computer systems research project.

Acknowledgment

This work was supported in part by DARPA contract #DABT63-95-C-0097 and NSF

grants #9703180-CCR and #9872516-EIA. This work is not necessarily representative

of the positions or policies of the U. S. Government.

References

1. Brian Armstrong and Rudolf Eigenmann. Performance forecasting: Towards a
methodology for characterizing large computational applications. In Proceedings of
the International Conference on Parallel Processing, pages 518–525, August 1998.

2. D. H. Bailey, E. Barszcz, L. Dagum, and H. Simon. NAS parallel benchmark results.
In Proc. Supercomputing ‘92, pages 386–393. IEEE Computer Society Press, 1992.

3. BAPCo Benchmarks. Business application performance corporation.
http://www.bapco.com/, 1999.

4. M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Roloff,
A. Sameh, E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker,
C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, G. Swanson,
R. Goodrum, and J. Martin. The Perfect Club Benchmarks: Effective Perfor-
mance Evaluation of Supercomputers. Int’l. Journal of Supercomputer Applica-
tions, 3(3):5–40, Fall 1989.

5. William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel programming with Polaris. IEEE
Computer, pages 78–82, December 1996.

6. Eric L. Boyd. Performance Evaluation and Improvement of Parallel Application
on High Performance Architectures. PhD thesis, University of Michigan, Dept. of
Electrical Eng. and Comput. Sci., 1995.



A Methodology for Scientific Benchmarking with Large-Scale Applications 127

7. Eric L. Boyd, Gheith Abandah, Hsien-Hsin Lee, and Edward S. Davidson. Modeling
computation and communication performance of parallel scientific applications:
A case study of the IBM SP2. Technical Report CSE-TR-236-95, University of
Michigan, Dept. of Electrical Eng. and Comput. Sci., May 1995.

8. Standard Performance Evaluation Corporation. SPEC high-performance group.
http://www.spec.org/hpg/, 1996.

9. George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer Per-
formance Evaluation and the Perfect Benchmarks. Proceedings of ICS, Amsterdam,
Netherlands, pages 254–266, March 1990.

10. J. J. Dongarra. The Linpack benchmark: An explanation. In A. J. van der Steen,
editor, Evaluating Supercomputers, pages 1–21. Chapman and Hall, London, 1990.

11. Rudolf Eigenmann. Toward a Methodology of Optimizing Programs for High-
Performance Computers. Conference Proceedings, ICS’93, Tokyo, Japan, pages
27–36, July 20-22, 1993.

12. Rudolf Eigenmann and Siamak Hassanzadeh. Benchmarking with real industrial
applications: The SPEC High-Performance Group. IEEE Computational Science
& Engineering, 3(1):18–23, Spring 1996.

13. C. A. Addison et. al. The GENESIS distributed-memory benchmarks. In J. J. Don-
garra and W. Gentzsch, editors, Computer Benchmarks, pages 257–271. Elsevier
Science Publishers, Amsterdam, 1991.

14. Myron Ginsberg. Creating an automotive industry benchmark suite for assessing
the effectiveness of high-performance computers. In Proc. Ninth Int’l. Conf. on
Vehicle Structural Mechanics and CAE, pages 381–390. Society of Automotive
Engineers, Inc. Warrendale, PA, 1995.

15. Philip L. Haagenson, Jimy Dudhia, David R. Stauffer, and Georg A. Grell.
The Penn State/NCAR mesoscale model (MM5) source code documentation.
http://box.mmm.ucar.edu/mm5/documents/mm5-code-doc.html, Nov. 22 1998.

16. R. W. Hockney and M. Berry (Editors). PARKBENCH report: Public international
benchmarking for parallel computers. Scientific Programming, 3(2):101–146, 1994.

17. Seon-Wook Kim and Rudolf Eigenmann. Max/P: detecting the maximum par-
allelism in a Fortran program. Purdue University, School of Electrical and Com-
puter, Engineering, High-Performance Computing Laboratory, 1997. Manual ECE-
HPCLab-97201.

18. Seon Wook Kim, Michael Voss, and Rudolf Eigenmann. A methodology and a tool
for cache characterization of loop-parallel programs. Technical report, HPCLAB,
1998.

19. C. C. Mosher and S. Hassanzadeh. ARCO seismic processing performance evalu-
ation suite, user’s guide. Technical report, ARCO, Plano, TX., 1993.

20. Paul Marx Petersen. Evaluation of Programs and Parallelizing Compilers Using
Dynamic Analysis Techniques. PhD thesis, Univ. of Illinois at Urbana-Champaign,
Center for Supercomputing Res. & Dev., January 1993.

21. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elber, M. S. Gordon, J. H.
Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis,
and J. A. Montgonery. The general atomic and molecular electronics structure
systems. Journal of Computational Chemistry, 14(11):1347–1363, 1993.

22. Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. Splash: Stanford
parallel applications for shared-memory. Computer Architecture News, 20(1):5–44,
1992.

23. A. J. van der Steen. The benchmark of the EuroBen group. Parallel Computing,
17:1211–1221, 1991.


