Parallelizing Compilers for Multicores

Course Offered at the Universitat Politècnica de Catalunya

Rudi (Rudolf) Eigenmann
Purdue University
School of Electrical and Computer Engineering
Computing Research Institute
Summer 2010
www.ece.purdue.edu/~eigenman/app/
How to get to Purdue University
Course Schedule

Parallelizing Compilers for Multicore

During the period 7th June– 18th June

June 7th - 11th, 10:00 - 13:00 C6-E101
June 14th - 18th, 10:00 - 13:00 C6-E101

Grading will be based on several in-class exercises and class interaction

Office hours: by appointment eigenman@purdue.edu

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Course Content

- Introduction and motivation
- Detecting parallelism
- Mapping parallelism to the machine
Optimizing Compilers are the Center of the Universe

Translate increasingly advanced human interfaces onto increasingly sophisticated target machines

Today

Fortran, C, Java

Workstation, Multicores, NOW

Tomorrow

Problem Specification Language

Globally Distributed/Parallel Resources

Optimizing compilers are of particular importance where performance matters most. Hence our focus on High-Performance Computing.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Issues in Optimizing / Parallelizing Compilers

The Goal:

- We would like to run standard (C, Java, Fortran) programs on parallel computers

leads to the following high-level issues:

- How to detect parallelism?
- How to map parallelism onto the machine?
- How to create a good compiler architecture?
Detecting Parallelism

- Program analysis techniques
- Data dependence analysis
- Dependence removing techniques
- Parallelization in the presence of dependences
- Runtime dependence detection

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Mapping Parallelism onto the Machine

• Exploiting parallelism at many levels
 – Multiprocessors and multi-cores (our focus)
 – Distributed memory machines (clusters or global networks)
 – Heterogeneous architectures
 – Instruction-level parallelism
 – Vector machines

• Locality enhancement
Parallelizing Compiler Books and Survey Papers

Books:
- Utpal Banerjee: several books on Data Dependence Analysis and Transformations

Survey Papers:
Course Approach

There are many schools on optimizing compilers. Our approach is *performance-driven*

Initial course schedule:

- Blume study - the simple techniques
- The Cedar Fortran Experiments
- Analysis and Transformation techniques in the Cetus compiler
- Additional transformations (for GPGPUs and other architectures)
The Heart of Automatic Parallelization

Data Dependence Testing

If a loop does not have data dependences between any two iterations then it can be safely executed in parallel.

In science/engineering applications, loop parallelism is most important. In non-numerical programs other control structures are also important.
Data Dependence Tests: Motivating Examples

Loop Parallelization
Can the iterations of this loop be run concurrently?

```fortran
DO i=1,100,2
  B(2*i) = ...
  ... = B(2*i) + B(3*i)
ENDDO
```

Statement Reordering
can these two statements be swapped?

```fortran
DO i=1,100,2
  B(2*i) = ...
  ... = B(3*i)
ENDDO
```

A data dependence exists between two data references iff:
- both references access the same storage location
- at least one of them is a write access

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
This course would now be finished if:

- the mathematical formulation of the data dependence problem had an accurate and fast solution, and
- there were enough loops in programs without any data dependences, and
- dependence-free code could be executed by today’s multicores directly and efficiently.

There are enough hard problems to fill several courses!

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Part I: Performance of Basic Automatic Program Parallelization
15 Years of Parallelizing Compilers

A Performance study at the beginning of the 90es (Blume study)

Analyzed the performance of state-of-the-art parallelizers and vectorizers using the Perfect Benchmarks.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Overall Performance

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance of Individual Techniques

Missing Bars indicate that no measurement was obtained

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Transformations measured in the “Blume Study”

- Scalar expansion
- Reduction parallelization
- Induction variable substitution
- Loop interchange
- Forward Substitution
- Stripmining
- Loop synchronization
- Recurrence substitution
Scalar Expansion

DO j=1,n
 t = a(j)+b(j)
 c(j) = t + t^2
ENDDO

Privatization

DO PARALLEL j=1,n
PRIVATE t
 t = a(j)+b(j)
 c(j) = t + t^2
ENDDO

Expansion

DO PARALLEL j=1,n
 t0(j) = a(j)+b(j)
 c(j) = t0(j) + t0(j)^2
ENDDO

We assume a shared-memory model:
• by default, data is shared, i.e., all processors can see and modify it
• processor share the work of parallel loops

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Parallel Loop Syntax and Semantics

OpenMP:

```c
!$OMP PARALLEL PRIVATE(<private data>)
  <preamble code>
!$OMP DO
  DO i = ilow, iup
    <loop body code>
  ENDDO
!$OMP END DO
  <postamble code>
!$OMP END PARALLEL
```

- executed by all participating processors (threads) exactly once
- work (iterations) shared by participating processors (threads)
Reduction Parallelization

DO j=1,n
 sum = sum + a(j)
ENDDO

$OMP PARALLEL, PRIVATE (s)
s = 0
$OMP DO
DO j=1,n
 s = s + a(j)
ENDDO
$OMP ENDDO
$OMP ATOMIC
 sum=sum+s
$OMP END PARALLEL

$OMP PARALLEL DO
$OMP+REDUCTION(+:sum)
DO j=1,n
 sum = sum + a(j)
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Induction Variable Substitution

\[
\text{ind} = \text{ind0} \\
\text{DO j} = 1, n \\
\quad a(\text{ind}) = b(j) \\
\quad \text{ind} = \text{ind} + k \\
\text{ENDDO}
\]

\[
\text{ind} = \text{ind0} \\
\text{DO PARALLEL j} = 1, n \\
\quad a(\text{ind0} + k*(j-1)) = b(j) \\
\text{ENDDO}
\]

Note, this is the reverse of strength reduction, an important transformation in classical (code generating) compilers.

\[
\text{real d(20,100)} \\
\text{DO j=1,n} \\
\quad d(1,j)=0 \\
\text{ENDDO}
\]

loop:
\[
\begin{align*}
\cdots && R0 &\leftarrow \&d + 20*j \\
(R0) &\leftarrow 0 \\
\cdots && \text{jump loop}
\end{align*}
\]

\[
\begin{align*}
R0 &\leftarrow \&d \\
\text{loop:} \\
\cdots && (R0) &\leftarrow 0 \\
\cdots && R0 &\leftarrow R0 + 20 \\
\text{jump loop}
\end{align*}
\]

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Forward Substitution

\[m = n+1 \]
\[\ldots \]
\[\text{DO } j=1,n \]
\[a(j) = a(j+m) \]
\[\text{ENDDO} \]

\[a = x*y \]
\[b = a+2 \]
\[c = b + 4 \]

\[\text{dependences} \]

\[m = n+1 \]
\[\ldots \]
\[\text{DO } j=1,n \]
\[a(j) = a(j+n+1) \]
\[\text{ENDDO} \]

\[a = x*y \]
\[b = x*y+2 \]
\[c = x*y + 6 \]

\[\text{no dependences} \]

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
There are many variants of stripmining
(sometimes called *loop blocking*)

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Synchronization

\[
\text{DO } j=1, n \\
\quad a(j) = b(j) \\
\quad c(j) = a(j) + a(j-1) \\
\text{ENDDO}
\]

\[
\text{DOACROSS } j=1, n \\
\quad a(j) = b(j) \\
\quad \text{post}(\text{current_iteration}) \\
\quad \text{wait}(\text{current_iteration}-1) \\
\quad c(j) = a(j) + a(j-1) \\
\text{ENDDO}
\]
Basic idea of the recurrence solver:

DO j=1,n
 a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2)
ENDDO

call rec_solver(a(1),n,c0,c1,c2,c3)

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Interchanging

DO i= 1,n
 DO j=1,m
 a(i,j) = a(i,j)+a(i,j-1)
 ENDDO
ENDDO

DO j= 1,m
 DO i=1,n
 a(i,j) =a(i,j)+a(i,j-1)
 ENDDO
ENDDO

• stride-1 references increase cache locality
 – read: increase spatial locality
 – write: avoid false sharing
• scheduling of outer loop is important (consider original loop nest):
 – cyclic: no locality w.r.t. to i loop
 – block schedule: there may be some locality
 – dynamic scheduling: chunk scheduling desirable
• impact of cache organization?
• parallelism at outer position reduces loop fork/join overhead

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Effect of Loop Interchanging

Example: speedups of the most time-consuming loops in the ARC2D benchmark on 4-core machine

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Execution Scheme for Parallel Loops

 - machine instruction for parallel loop
 - HW concurrency bus supports loop scheduling

\[
\begin{align*}
 a &= 0 \\
 \text{DO } i &= 1, n \\
 b(i) &= 2 \\
 \text{ENDDO} \\
 b &= 3
\end{align*}
\]

\[
\begin{align*}
 \text{store } #0, <a> \\
 \text{load } <n>, D6 \\
 \text{sub } 1, D6 \\
 \text{load } &b, A1 \\
 \text{cdoall } D6 \\
 \text{store } #2, A1(D7.r) \\
 \text{endcdoall} \\
 \text{store } #3,
\end{align*}
\]

D7 is reserved for the loop variable. Starts at 0.
2. Microtasking scheme (dates back to early IBM mainframes)

Problem:
- Loop startup must be very fast

Microtask startup: 1 µs
Pthreads startup: up to 100 µs

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Compiler Transformation for the Microtasking Scheme

```
a=0
DO i=1,n
  b(i) = 2
ENDDO
b=3
```

```
call init_microtasking() // once at program start
...
a=0
call loop_scheduler(loopsub,i,1,n,b)
b=3
```

```
subroutine loopsub(mytask,lb,ub,b)
  DO i=lb,ub
    b(i) = 2
  ENDDO
END
```

Master task

- loop_scheduler: partition loop iterations
- wakeup
- call loopsub(...)
- barrier (all flags reset)
- return

Helper task

- wait for flag
- call loopsub(id,lb,ub,param)
- reset flag

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance of Parallelization Techniques

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Compiler Evaluation (1990)

<table>
<thead>
<tr>
<th>Study</th>
<th>Test Suite</th>
<th>Measures</th>
<th>Machines</th>
<th>Compilers</th>
</tr>
</thead>
<tbody>
<tr>
<td>[56]</td>
<td></td>
<td></td>
<td>simulated</td>
<td>FTN200, KAP, VAST</td>
</tr>
<tr>
<td>[149]</td>
<td>x</td>
<td>x</td>
<td>Cyber 203/5</td>
<td>Parafrase</td>
</tr>
<tr>
<td>[158]</td>
<td>x</td>
<td>x</td>
<td>simulated</td>
<td>Parafrase</td>
</tr>
<tr>
<td>[155]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[144, 143]</td>
<td>x</td>
<td>x</td>
<td>Cyber 205</td>
<td>FTN200, KAP, VAST</td>
</tr>
<tr>
<td>[150]</td>
<td>x</td>
<td>x</td>
<td>NAS 160</td>
<td>KAP, VAST</td>
</tr>
<tr>
<td>[145]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[151]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[148]</td>
<td>x</td>
<td>x</td>
<td>Alliant FX/8</td>
<td>KAP, VAST</td>
</tr>
<tr>
<td>[153]</td>
<td></td>
<td>x</td>
<td>Cray Y-MP</td>
<td>KAP, fpp</td>
</tr>
<tr>
<td>[152]</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[156]</td>
<td>x x</td>
<td></td>
<td>Alliant FX/8</td>
<td>VAST</td>
</tr>
<tr>
<td>[101, 154]</td>
<td>x x</td>
<td></td>
<td>FX/8, Cedar</td>
<td>KAP</td>
</tr>
<tr>
<td>[157]</td>
<td>x</td>
<td></td>
<td></td>
<td>KAP</td>
</tr>
</tbody>
</table>

Test suite:
- **K:** Kernels
- **A:** Algorithms
- **P:** Application programs

Measures:
- **V:** Shows rate of successfully vectorized loops
- **N:** Compares performance numbers of different compilers
- **T:** Compares transformations of different compilers
- **S:** Shows speed ups due to automatic parallelization
- **I:** Evaluates individual compiler techniques
- **F:** Discusses future compiler improvements

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Compiler Evaluation (1990)

<table>
<thead>
<tr>
<th></th>
<th>ADM</th>
<th>ARC2D</th>
<th>B DNA</th>
<th>DFESM</th>
<th>FLSM</th>
<th>MG3D</th>
<th>Ocean</th>
<th>QC</th>
<th>SPCT7</th>
<th>SPACE</th>
<th>TRACK</th>
<th>TRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>vectorized</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>1.2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(Y-MP, 1 CPU)</td>
<td></td>
</tr>
<tr>
<td>vector-concurrent</td>
<td>1</td>
<td>3.1</td>
<td>1</td>
<td>1.2</td>
<td>2.5</td>
<td>1</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>(Y-MP, 8 CPUs)</td>
<td></td>
</tr>
<tr>
<td>vectorized</td>
<td>1.1</td>
<td>2.0</td>
<td>1.1</td>
<td>3.6</td>
<td>3.4</td>
<td>1.2</td>
<td>2.3</td>
<td>1.3</td>
<td>1.2</td>
<td>2.2</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>(FX/8, 1 CPU)</td>
<td></td>
</tr>
<tr>
<td>vector-concurrent</td>
<td>1.3</td>
<td>8.0</td>
<td>3.3</td>
<td>4.3</td>
<td>10.2</td>
<td>1.1</td>
<td>1.6</td>
<td>1.3</td>
<td>1.2</td>
<td>2.3</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>(FX/8, 8 CPUs)</td>
<td></td>
</tr>
<tr>
<td>manually</td>
<td>7.5</td>
<td>4.2</td>
<td>7.7</td>
<td>16</td>
<td>5.5</td>
<td>4.4</td>
<td>8.3</td>
<td>7.0</td>
<td>5.5</td>
<td>5.1</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>improved</td>
<td></td>
</tr>
<tr>
<td>(FX/8, 8 CPUs)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Performance improvements of the Perfect Benchmarks. First two lines: Improvement over manually vector-optimized programs on Cray Y-MP [152]. Third and fourth line: Improvements over serial program execution on Alliant FX8 [153]. Fifth line: manual improvements over serial program execution on Alliant FX8 [154].
Improving Compiler-Parallelized Code (1995)
- beyond basic techniques -

<table>
<thead>
<tr>
<th>Technique</th>
<th>ADM</th>
<th>ARC2D</th>
<th>BDNA</th>
<th>DYFESM</th>
<th>FLO52</th>
<th>MDG</th>
<th>MG3D</th>
<th>OCEAN</th>
<th>QCD</th>
<th>SPEC77</th>
<th>TRACK</th>
<th>TRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>privatize arrays</td>
<td>9.6</td>
<td>1.2</td>
<td>1.4</td>
<td>2.2</td>
<td>1</td>
<td>21</td>
<td>18</td>
<td>3.8</td>
<td>8.2</td>
<td>6.8</td>
<td>6</td>
<td>13.3</td>
</tr>
<tr>
<td>parallelize complex reductions</td>
<td>a</td>
<td></td>
<td>3.3</td>
<td>2.1</td>
<td>1.1</td>
<td>21</td>
<td>15.2</td>
<td></td>
<td></td>
<td>3.4</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>substitute generalized induction variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td>12.7</td>
</tr>
<tr>
<td>parallelize loops with non-affine array subscripts</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
Effect of Array Privatization

<table>
<thead>
<tr>
<th>PROGRAM subroutine/loop</th>
<th>total loop execution time in seconds</th>
<th>$T_{\text{without}} / T_{\text{best}}$ for loop</th>
<th>$T_{\text{without}} / T_{\text{best}}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC2D-filerx/15</td>
<td>7.3</td>
<td>22.0</td>
<td>3.0</td>
</tr>
<tr>
<td>ARC2D-filerx/30</td>
<td>3.4</td>
<td>12.0</td>
<td>3.5</td>
</tr>
<tr>
<td>ADM-deltaz/40</td>
<td>3.8</td>
<td>92.5</td>
<td>24</td>
</tr>
<tr>
<td>ADM-deltaz/40</td>
<td>3.5</td>
<td>76.5</td>
<td>21</td>
</tr>
<tr>
<td>ADM-deltaz/40</td>
<td>3.8</td>
<td>76.8</td>
<td>21</td>
</tr>
<tr>
<td>ADM-deltaz/40</td>
<td>2.6</td>
<td>51.7</td>
<td>20</td>
</tr>
<tr>
<td>ADM-deltaz/60</td>
<td>2.5</td>
<td>37.6</td>
<td>15</td>
</tr>
<tr>
<td>ADMI-deltaz/60</td>
<td>3.8</td>
<td>86.8</td>
<td>23</td>
</tr>
<tr>
<td>ADMI-run /20</td>
<td>4.4</td>
<td>72.2</td>
<td>16.5</td>
</tr>
<tr>
<td>ADMI-run /30</td>
<td>4.4</td>
<td>72.0</td>
<td>16.4</td>
</tr>
<tr>
<td>ADMI-run /40</td>
<td>4.2</td>
<td>72.1</td>
<td>17</td>
</tr>
<tr>
<td>ADMI-run /50</td>
<td>3.4</td>
<td>50.8</td>
<td>15</td>
</tr>
<tr>
<td>ADMI-run /60</td>
<td>4.4</td>
<td>72.0</td>
<td>16.4</td>
</tr>
<tr>
<td>ADMI-run /100</td>
<td>3.2</td>
<td>50.0</td>
<td>15.6</td>
</tr>
<tr>
<td>ADMI-wecot /40</td>
<td>2.7</td>
<td>36.2</td>
<td>13.4</td>
</tr>
<tr>
<td>ADMI-smooth /10</td>
<td>1.4</td>
<td>18.5</td>
<td>13.2</td>
</tr>
<tr>
<td>BDNA-actfor /240</td>
<td>19.0</td>
<td>62.0</td>
<td>3.3</td>
</tr>
<tr>
<td>DYFSM-mxmult /10</td>
<td>19.0</td>
<td>60.0</td>
<td>3.2</td>
</tr>
<tr>
<td>DYFSM-solvth /20</td>
<td>11.5</td>
<td>26.5</td>
<td>2.3</td>
</tr>
<tr>
<td>MDG-interf /1000</td>
<td>163.0</td>
<td>3792.0</td>
<td>23.2</td>
</tr>
<tr>
<td>MDG-poteng /2000</td>
<td>13.4</td>
<td>352.0</td>
<td>26.3</td>
</tr>
<tr>
<td>MDG-intraf /1000</td>
<td>1.9</td>
<td>11.4</td>
<td>6.0</td>
</tr>
<tr>
<td>MG3D-migrat /200</td>
<td>264.0</td>
<td>5226.4</td>
<td>19.8</td>
</tr>
<tr>
<td>OCEAN-acac /30</td>
<td>3.3</td>
<td>92.5</td>
<td>28</td>
</tr>
<tr>
<td>OCEAN-ocean /60</td>
<td>0.3</td>
<td>0.05</td>
<td>3.6</td>
</tr>
<tr>
<td>OCEAN-ocean /270</td>
<td>1.3</td>
<td>16.2</td>
<td>12.5</td>
</tr>
<tr>
<td>OCEAN-ocean /310</td>
<td>2.9</td>
<td>30.7</td>
<td>10.6</td>
</tr>
<tr>
<td>OCEAN-ocean /350</td>
<td>2.7</td>
<td>25.6</td>
<td>9.5</td>
</tr>
<tr>
<td>OCEAN-ocean /400</td>
<td>2.3</td>
<td>20.9</td>
<td>9.1</td>
</tr>
<tr>
<td>OCEAN-ocean /420</td>
<td>2.3</td>
<td>25.6</td>
<td>11.1</td>
</tr>
<tr>
<td>OCEAN-ocean /440</td>
<td>2.6</td>
<td>24.5</td>
<td>9.5</td>
</tr>
<tr>
<td>OCEAN-ocean /460</td>
<td>7.7</td>
<td>103.7</td>
<td>13.5</td>
</tr>
<tr>
<td>OCEAN-ocean /490</td>
<td>4.1</td>
<td>91.4</td>
<td>22.3</td>
</tr>
<tr>
<td>OCEAN-ocean /500</td>
<td>2.2</td>
<td>48.0</td>
<td>21.8</td>
</tr>
<tr>
<td>OCEAN-scesc /40</td>
<td>2.5</td>
<td>48.0</td>
<td>19.2</td>
</tr>
<tr>
<td>QCD-measur /3</td>
<td>1.8</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>QCD-qqqmea /1</td>
<td>3.7</td>
<td>108.6</td>
<td>29.4</td>
</tr>
<tr>
<td>QCD-retinas /3</td>
<td>3.7</td>
<td>48.4</td>
<td>13.1</td>
</tr>
<tr>
<td>SPEC77-gloop /1000</td>
<td>58.7</td>
<td>743.7</td>
<td>12.7</td>
</tr>
<tr>
<td>SPEC77-gwater /1000</td>
<td>13.5</td>
<td>248.0</td>
<td>18.4</td>
</tr>
<tr>
<td>TRACK-extend /400</td>
<td>4.0</td>
<td>48.9</td>
<td>12.2</td>
</tr>
<tr>
<td>TRACK-fptrack /300</td>
<td>3.0</td>
<td>15.5</td>
<td>5.2</td>
</tr>
<tr>
<td>TRACK-nilfity /300</td>
<td>3.5</td>
<td>76.7</td>
<td>22</td>
</tr>
<tr>
<td>TRFD-olda /100</td>
<td>8.0</td>
<td>(174)</td>
<td>21.8</td>
</tr>
<tr>
<td>TRFD-olda /300</td>
<td>5.4</td>
<td>(85)</td>
<td>15.7</td>
</tr>
</tbody>
</table>
Effect of Advanced Parallel Reductions

<table>
<thead>
<tr>
<th>PROGRAM-subroutine/loop</th>
<th>total loop execution time in seconds</th>
<th>$T_{without}/T_{best}$ for loop</th>
<th>$T_{without}/T_{best}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_{best}</td>
<td>$T_{without}$</td>
<td></td>
</tr>
<tr>
<td>MDG-interf/1000</td>
<td>163</td>
<td>3792.0</td>
<td>23.2</td>
</tr>
<tr>
<td>MDG-poteng/2000</td>
<td>13.4</td>
<td>352.0</td>
<td>26.3</td>
</tr>
<tr>
<td>DYFESM-mxmult/10</td>
<td>19.0</td>
<td>60.0</td>
<td>3.2</td>
</tr>
<tr>
<td>DYFESM-formr0/20</td>
<td>7.0</td>
<td>20.0</td>
<td>2.8</td>
</tr>
<tr>
<td>BDNA-actfor/240</td>
<td>19.0</td>
<td>62.0</td>
<td>3.3</td>
</tr>
<tr>
<td>BDNA-actfor/500</td>
<td>21.0</td>
<td>253.0</td>
<td>12.0</td>
</tr>
<tr>
<td>FLO52-euler/70</td>
<td>0.5</td>
<td>5.7</td>
<td>11.4</td>
</tr>
<tr>
<td>MG3D-migrat/200</td>
<td>264.0</td>
<td>5226</td>
<td>19.8</td>
</tr>
<tr>
<td>SPEC77-gloop/1000</td>
<td>58.7</td>
<td>743.7</td>
<td>12.7</td>
</tr>
<tr>
<td>SPEC77-gwater/1000</td>
<td>13.5</td>
<td>248.0</td>
<td>18.4</td>
</tr>
</tbody>
</table>

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Effect of Generalized Induction Variable Substitution

<table>
<thead>
<tr>
<th>PROGRAM-subroutine/loop</th>
<th>total loop execution time in seconds</th>
<th>$T_{without}/T_{best}$ for loop</th>
<th>$T_{without}/T_{best}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEAN-ftrvmt/109</td>
<td>89</td>
<td>15.5</td>
<td>8.3</td>
</tr>
<tr>
<td>TRFD-olda/100</td>
<td>8.0</td>
<td>21.8</td>
<td>9.3</td>
</tr>
<tr>
<td>TRFD-olda/300</td>
<td>5.4</td>
<td>15.8</td>
<td>5.0</td>
</tr>
</tbody>
</table>

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Effect of Balanced Stripmining

<table>
<thead>
<tr>
<th>PROGRAM-subroutine/loop</th>
<th>total loop execution time in seconds</th>
<th>$T_{without}/T_{best}$ for loop</th>
<th>$T_{without}/T_{best}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLO52-eflux/10</td>
<td>T_{best} 3.9</td>
<td>5.9</td>
<td>1.5 (2D) 1.03</td>
</tr>
<tr>
<td>FLO52-eflux/20</td>
<td>T_{best} 1.1</td>
<td>3.0</td>
<td>2.7 (1D) 1.03</td>
</tr>
<tr>
<td>FLO52-eflux/30</td>
<td>T_{best} 3.9</td>
<td>5.7</td>
<td>1.5 (1D) 1.04</td>
</tr>
<tr>
<td>FLO52-dflux/30</td>
<td>T_{best} 3.2</td>
<td>5.5</td>
<td>1.7 (1D) 1.03</td>
</tr>
<tr>
<td>FLO52-dflux/38</td>
<td>T_{best} 0.4</td>
<td>0.5</td>
<td>1.25 (2D) 1.00</td>
</tr>
<tr>
<td>FLO52-bcwall/30</td>
<td>T_{best} 1.7</td>
<td>2.8</td>
<td>1.6 (MV) 1.02</td>
</tr>
</tbody>
</table>

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Effect of Increasing Parallel Loop Granularity

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Effect of Locality Enhancement

<table>
<thead>
<tr>
<th>PROGRAM-subroutine/loop</th>
<th>access</th>
<th>T_{best}</th>
<th>T_{without}</th>
<th>$T_{\text{without}}/T_{\text{best}}$ for loop</th>
<th>$T_{\text{without}}/T_{\text{best}}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLO52-psmoo/40&80</td>
<td>r/w</td>
<td>9.9</td>
<td>19.8</td>
<td>2.0</td>
<td>1.17</td>
</tr>
<tr>
<td>FLO52-step/20</td>
<td>r/o</td>
<td>1.7</td>
<td>2.4</td>
<td>1.4</td>
<td>1.01</td>
</tr>
<tr>
<td>ARC2D-xpenta/11</td>
<td>r/o</td>
<td>5.8</td>
<td>6.7</td>
<td>1.15</td>
<td>1.01</td>
</tr>
<tr>
<td>MDG-interf/1000</td>
<td>r/o</td>
<td>163</td>
<td>187</td>
<td>1.15</td>
<td>1.12</td>
</tr>
<tr>
<td>TRFD-elda/100 & 300</td>
<td>r/o</td>
<td>13.4</td>
<td>15.91</td>
<td>1.18</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Effect of Runtime Data-Dependence Testing

<table>
<thead>
<tr>
<th>PROGRAM-subroutine/loop</th>
<th>total loop execution time in seconds</th>
<th>$T_{without}/T_{best}$ for loop</th>
<th>$T_{without}/T_{best}$ for program</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEAN-ftrvmt/109</td>
<td>T$_{best}$ 89.3</td>
<td>1376.9</td>
<td>15.4</td>
</tr>
<tr>
<td>OCEAN-csr/20</td>
<td>T$_{best}$ 10.5</td>
<td>172.0</td>
<td>16.4</td>
</tr>
<tr>
<td>OCEAN-ftrvmt/116</td>
<td>T$_{best}$ 10.8</td>
<td>99.5</td>
<td>9.2</td>
</tr>
<tr>
<td>OCEAN-acac/30</td>
<td>T$_{best}$ 3.3</td>
<td>92.5</td>
<td>28.0</td>
</tr>
<tr>
<td>OCEAN-acac/40</td>
<td>T$_{best}$ 4.0</td>
<td>79.0</td>
<td>19.8</td>
</tr>
<tr>
<td>OCEAN-sesec/30</td>
<td>T$_{best}$ 2.3</td>
<td>59.3</td>
<td>25.8</td>
</tr>
<tr>
<td>OCEAN-res/20</td>
<td>T$_{best}$ 3.4</td>
<td>57.7</td>
<td>17.0</td>
</tr>
</tbody>
</table>

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Part II
A Catalog of Advanced Analysis and Transformation Techniques

• 1 Data-dependence testing
• 2 Parallelism enabling transformations
• 3 Techniques for multiprocessors/multicores
• 4 Techniques for heterogeneous multicores
• 5 Techniques for other architectures
 (vector, distributed-memory,…)

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
1 Data Dependence Testing

Earlier, we have considered the simple case of a 1-dimensional array enclosed by a single loop:

```
DO i=1,n
   a(4*i) = . . .
   . . .    = a(2*i+1)
ENDDO
```

the question to answer:
can 4*i ever be equal to 2*i+1 within i ∈[1,n] ?

In general: given
• two subscript functions f and g and
• loop bounds lower, upper.

Does
\[f(i_1) = g(i_2) \]
have a solution such that
\[lower \leq i_1, i_2 \leq upper \]?
Data Dependence Tests: Concepts

Terms for data dependences between statements of loop iterations.

• **Distance (vector):** indicates how many iterations apart are source and sink of dependence.

• **Direction (vector):** is basically the sign of the distance. There are different notations: (<,=,>) or (-1,0,+1) meaning dependence (from earlier to later, within the same, from later to earlier) iteration.

• **Loop-carried (or cross-iteration) dependence** and **non-loop-carried (or loop-independent) dependence:** indicates whether or not a dependence exists within one iteration or across iterations.
 – For detecting parallel loops, only cross-iteration dependences matter.
 – *equal* dependences are relevant for optimizations such as statement reordering and loop distribution.

• **Data Dependence Graph:** a graph showing statements as nodes and dependences between them as edges. For loops, usually there is only one node per statement instance.

• **Iteration Space Graphs:** the un-abstracted form of a dependence graph with one node per statement instance. The statements of one loop iteration may be represented as a single node.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
DDTests: doubly-nested loops

- Multiple loop indices:

```fortran
DO i=1,n
  DO j=1,m
    X(a1*i + b1*j + c1) = . . .
    . . . = X(a2*i + b2*j + c2)
  ENDDO
ENDDO
```

dependence problem:
\[a_1 * i_1 - a_2 * i_2 + b_1 * j_1 - b_2 * j_2 = c_2 - c_1 \]
\[1 \leq i_1, i_2 \leq n \]
\[1 \leq j_1, j_2 \leq m \]

Almost all DD tests expect the coefficients \(a_x \) to be integer constants. Such subscript expressions are called affine.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
DDTests: even more complexity

• Multiple loop indices, multi-dimensional array:

```
DO i=1,n
  DO j=1,m
    X(a_1*i_1 + b_1*j_1 + c_1, d_1*i_1 + e_1*j_1 + f_1) = ...
    ...
    = X(a_2*i_2 + b_2*j_2 + c_2, d_2*i_2 + e_2*j_2 + f_2)
  ENDDO
ENDDO
```

dependence problem:

```
a_1*i_1 - a_2*i_2 + b_1*j_1 - b_2*j_2 = c_2 - c_1
d_1*i_1 - d_2*i_2 + e_1*j_1 - e_2*j_2 = f_2 - f_1
1 \leq i_1, i_2 \leq n
1 \leq j_1, j_2 \leq m
```
Data Dependence Tests:
The Simple Case

Note: variables i_1, i_2 are integers \rightarrow diophantine equations.

Equation $a \times i_1 - b \times i_2 = c$ has a solution if and only iff

\[\text{gcd}(a,b) \ (\text{evenly}) \text{ divides } c \]

in our example this means: $\text{gcd}(4,2)=2$, which does not divide 1 and thus there is no dependence.

If there is a solution, we can test if it lies within the loop bounds. If not, then there is no dependence.
Performing the GCD Test

- The diophantine equation
 \[a_1 \cdot i_1 + a_2 \cdot i_2 + \ldots + a_n \cdot i_n = c \]

has a solution iff \(\text{gcd}(a_1, a_2, \ldots, a_n) \) evenly divides \(c \)

Examples:

- \(15\cdot i + 6\cdot j - 9\cdot k = 12 \) has a solution \(\text{gcd}=3 \)
- \(2\cdot i + 7\cdot j = 3 \) has a solution \(\text{gcd}=1 \)
- \(9\cdot i + 3\cdot j + 6\cdot k = 5 \) has no solution \(\text{gcd}=3 \)

Euklid Algorithm: find \(\text{gcd}(a,b) \)

\[\text{Repeat} \]
\[\hspace{1cm} a \leftarrow a \mod b \]
\[\hspace{1cm} \text{swap } a,b \]
\[\text{Until } b=0 \]

\[\text{The resulting } a \text{ is the } \text{gcd} \]

for more than two numbers:
\[\text{gcd}(a,b,c) = (\text{gcd}(a,\text{gcd}(b,c))) \]

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Other DD Tests

- The GCD test is simple but not accurate
- Other tests
 - Banerjee test: accurate state-of-the-art test
 - Omega test: “precise” test, most accurate for linear subscripts
 - Range test: handles non-linear and symbolic subscripts
 - many variants of these tests
The Banerjee(-Wolfe) Test

Basic idea:
if the total subscript range accessed by \textit{ref1}
does not overlap with the range accessed
by \textit{ref2}, then \textit{ref1} and \textit{ref2} are
independent.

\begin{verbatim}
DO j=1,100
 a(j) = …
 … = a(j+200)
ENDDO
\end{verbatim}

ranges accesses:
[1:100]
[201:300]
\rightarrow independent
Banerjee(-Wolfe) Test continued

Weakness of the test:

Consider this dependence

\[
\begin{align*}
\text{DO } j &= 1, 100 \\
a(j) &= \ldots \\
\ldots &= a(j+5) \\
\text{ENDDO}
\end{align*}
\]

ranges accessed:

\[[1:100] \]
\[[6:105] \]
\[\rightarrow \text{independent?} \]

We did not take into consideration that only \textit{loop-carried} dependences matter for parallelization.

A loop-carried dependence only exists, if the reference in some iteration, \[j_1 \], conflicts with a reference in some later iteration, \[j_2 > j_1 \]

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
• Solution idea:
 for loop-carried dependences, make use of the fact that \(j \) in \(ref2 \) is greater than in \(ref1 \)

\[
\text{DO } j=1,100 \\
\text{a}(j) = \ldots \\
\ldots = \text{a}(j+5) \\
\text{ENDDO}
\]

This is commonly referred to as the **Banerjee test with direction vectors**.

Clearly, this loop has a dependence. It is an anti-dependence from \(a(j+5) \) to \(a(j) \).
Considering direction vectors can increase the complexity of the DD test substantially. For long vectors (corresponding to deeply-nested loops), there are many possible combinations of directions.

A possible algorithm:
1. try (*,*…*) , i.e., do not consider directions
2. (if not independent) try (<,*,*…*), (=,*,*…*)
3. (if still not independent) try (<,<,*…*),(<,>,*…*),(<,=,*…*)
 (=,<,*…*),(=,>,*…*),(=,=,*…*)

... (This forms a tree)
Non-linear and Symbolic DD Testing

Weakness of most data dependence tests: subscripts and loop bounds must be affine, i.e., linear with integer-constant coefficients.

Approach of the Range Test:
capture subscript ranges symbolically
compare ranges: find their upper and lower bounds by determining monotonicity. Monotonically increasing/decreasing ranges can be compared by comparing their upper and lower bounds.
The Range Test

Basic idea:
1. Find the range of array accesses made in a given loop iteration
2. If the upper(lower) bound of this range is less (greater) than the lower(upper) bound of the range accesses in the next iteration, then there is no cross-iteration dependence.

Example: testing independence of the outer loop:

```fortran
DO i=1,n
  DO j=1,m
    A(i*m+j) = 0
  ENDDO
ENDDO
```

range of A accessed in iteration \(i_x\):
\[
[i_x * m + 1 : (i_x + 1) * m]
\]

range of A accessed in iteration \(i_{x+1}\):
\[
[(i_{x+1}) * m + 1 : (i_{x+2}) * m]
\]

\(u_b_x < l_b_{x+1} \implies\) no cross-iteration dependence

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Range Test

Assume \(f, g \) are monotonically increasing w.r.t. all \(i_x \):
- find upper bound of access range at loop \(k \):
 - successively substitute \(i_x \) with \(U_x \), \(x = \{n, n-1, \ldots, k\} \)
 - lower bound is computed analogously

If \(f, g \) are monotonically decreasing w.r.t. some \(i_y \), then substitute \(L_y \) when computing the upper bound.

Determining monotonicity: consider \(d = f(..., i_k, ...) - f(..., i_k - 1, ...) \)
- If \(d > 0 \) (for all values of \(i_k \)) then \(f \) is monotonically increasing w.r.t. \(k \)
- If \(d < 0 \) (for all values of \(i_k \)) then \(f \) is monotonically decreasing w.r.t. \(k \)

What about symbolic coefficients?
- in many cases they cancel out
- if not, find their range (i.e., all possible values they can assume at this point in the program), and replace them by the upper or lower bound of the range.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Range Test: handling non-contiguous ranges

```
DO i1=1,u1
  DO i2=1,u2
    A(n*i1+m*i2)) = ...
  ENDDO
ENDDO
```

The basic Range Test finds
independence
of the outer loop
 if n >= u2 and m=1
But not
 if n=1 and m>=u1

Idea:
- temporarily (during program analysis) interchange the loops,
- test independence,
- interchange back

Issues:
• legality of loop interchanging,
• change of parallelism as a result of loop interchanging

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Some Engineering Tasks and Questions for DD Test Pass Writers

- Start with the simple case: linear (affine) subscripts, single nests with 1-dim arrays. Subscript and loop bounds are integer constants. Stride 1 loop, lower bound =1
- Deal with multiple array dims and loop nests
- Add capabilities for non-stride-1 loops and lower bounds ≠1
- How to deal with symbolic subscript coefficients and bounds
- Ignore dependences in private variables and reductions
- Generate DD vectors
- Mark parallel loops
- Things to think about:
 -- how to handle loop-variant coefficients
 -- how to deal with private, reduction, induction variables
 -- how to represent DD information
 -- how to display the DD info
 -- how to deal with non-parallelizable loops (IO op, function calls, other?)
 -- how to find eligible DO loops?
 -- how to find eligible loop bounds, array subscripts?
 -- what is the result of the pass? Generate DD info or set parallel loop flags?
 -- what symbolic analysis capabilities are needed?
Data-Dependence Test, References

- **Banerjee/Wolfe test**

- **Power Test**

- **Range test**

- **Omega test**

- **I Test**

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
2 Parallelism Enabling Techniques
DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

loop-carried
anti dependence

scalar privatization

array privatization

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Array Privatization

Capabilities needed for Array Privatization
- array Def-Use Analysis
- combining and intersecting subscript ranges
- representing subscript ranges
- representing conditionals under which sections are defined/used
- if ranges too complex to represent: overestimate Uses, underestimate Defs

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Array privatization algorithm:

- For each loop nest:
 - iterate from innermost to outermost loop:
 - for each statement in the loop
 - find definitions; add them to the existing definitions in this loop.
 - find array uses; if they are covered by a definition, mark this array section as *privatizable* for this loop, otherwise mark it as upward-exposed in this loop;
 - aggregate defined and upward-exposed, used ranges (expand from range per-iteration to entire iteration space); record them as Defs and Uses for this loop
Some Engineering Tasks and Questions for Privatization Pass Writers

• Start with scalar privatization
• Next step: array privatization with simple ranges (contiguous; no range merge) and singly-nested loops
• Deal with multiply-nested loops (→ range aggregation)
• Add capabilities for merging ranges
• Implement advanced range representation (symbolic bounds, non-contiguous ranges)
• Deal with conditional definitions and uses (too advanced for this course)
• Things to think about
 – what symbolic analysis capabilities are needed?
 – how to represent advanced ranges?
 – how to deal with loop-variant subscript terms?
 – how to represent private variables?
Array Privatization,
References

• Zhiyuan Li, Array Privatization for Parallel Execution of Loops, Proceedings of the 1992 ACM International Conference on Supercomputing
Induction Variable Substitution

This is the simple case of an induction variable
Generalized Induction Variables

ind=k
DO j=1,n
 ind = ind + j
 A(ind) = B(j)
ENDDO

Parallel DO j=1,n
 A(k+(j**2+j)/2) = B(j)
ENDDO

DO i=1,n
 ind1 = ind1 + 1
 ind2 = ind2 + ind1
 A(ind2) = B(i)
ENDDO

DO i=1,n
 DO j=1,i
 ind = ind + 1
 A(ind) = B(i)
 ENDDO
ENDDO
Recognizing GIvs

- **Pattern Matching:**
 - find induction statements in a loop nest of the form $iv = iv + expr$ or $iv = iv * expr$, where iv is a scalar integer.
 - $expr$ must be loop-invariant or another induction variable (there must not be cyclic relationships among IVs)
 - iv must not be assigned in a non-induction statement

- **Abstract interpretation:** find symbolic increments of iv per loop iteration

- **SSA-based recognition**
Computing Closed Form, Substituting additive GIVs

Loop structure L_0: \texttt{stmt type}

For j: 1..ub

...

S_1: \texttt{iv=iv+exp} \quad \texttt{I}$

...

S_2: loop using iv \quad \texttt{L}$

...

S_3: stmt using iv \quad \texttt{U}$

...

Rof

Step 1: find the increment rel. to start of loop L

\texttt{FindIncrement(L)}

\begin{verbatim}
inc=0
foreach s_i of type I,L
 if type(s_i)=I \quad inc += exp
 else /* L */ \quad inc+= \texttt{FindIncrement}(s_i)
 inc_after[s_i]=inc
inc_into_loop[L]= $\sum_{i=1}^{j-1}(inc)$; inc may depend
return $\sum_{i=1}^{ub}(inc)$; on j
\end{verbatim}

Step 2: substitute IV

\texttt{Replace (L,initval)}

\begin{verbatim}
val = initval
foreach s_i of type I,L,U
 if type(s_i)=L \quad \texttt{Replace}(s_i,val)
 if type(s_i)=L,I \quad val=initialval
 +inc_into_loop[L]
 +inc_after[s_i]
 if type(s_i)=U \quad \texttt{Substitute}(s_i.expr,iv,val)
\end{verbatim}

Main:

$\texttt{totalinc = FindIncrement(L_0)}$

$\texttt{Replace($L_0$.iv)}$

$\texttt{InsertStatement(\text{“iv = iv+totalinc”})}$

For coupled GIVs: begin with independent iv.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Induction Variables, References

• B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris Parallelizing Compiler. ACM Int. Conf. on Supercomputing (ICS'95), June 1995. (Extended version: Parallelization in the presence of generalized induction and reduction variables. www.ece.ecn.purdue.edu/~eigenman/reports/1396.pdf)

• Mohammad R. Haghighat, Constantine D. Polychronopoulos, Symbolic analysis for parallelizing compilers, ACM Transactions on Programming Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996

Reduction Parallelization

Scalar Reductions

DO i=1,n
 sum = sum + A(i)
ENDDO

Note, OpenMP has a reduction clause, only reduction recognition is needed:

!$OMP PARALLEL PRIVATE(s)
s=0
!$OMP DO
DO i=1,n
 s=s+A(i)
ENDDO
!$OMP ATOMIC
sum = sum+s
!$OMP END PARALLEL

DO i=1,num_proc
 s(i)=0
ENDDO

!$OMP PARALLEL DO
!$OMP+REDUCTION(+:sum)
DO i=1,n
 s(my_proc)=s(my_proc)+A(i)
ENDDO

DO i=1,num_proc
 sum=sum+s(i)
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Reduction Parallelization continued

Reduction recognition and parallelization passes:

- induction variable recognition
- reduction recognition
- privatization
- data dependence test
- reduction parallelization

compiler passes

recognizes and annotates reduction variables

for parallel loops with reduction variables, performance the reduction transformation

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Reduction Parallelization

Array Reductions (a.k.a. irregular or histogram reductions)

DIMENSION sum(m)
DO i=1,n
 sum(expr) = sum(expr) + A(i)
ENDDO

DIMENSION sum(m),s(m)
$OMP PARALLEL PRIVATE(s)
s(1:m)=0
$OMP DO
DO i=1,n
 s(expr)=s(expr)+A(i)
ENDDO
$OMP END PARALLEL

Note, OpenMP 1.0 does not support such array reductions
R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Recognizing Reductions

• Pattern Matching:
 – find reduction statements in a loop of the form
 \[X=X \otimes \text{expr}, \]
 where \(X \) is either scalar or an array expression (\(a[\text{sub}] \),
 where \(\text{sub} \) must be the same on the LHS and the RHS),
 \(\otimes \) is a reduction operation, such as +, *, min, max
 – \(X \) must not be used in any non-reduction statement
 in this loop (however, there may be multiple reduction
 statements for \(X \))

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance Considerations for Reduction Parallelization

• Parallelized reductions execute substantially more code than their serial versions ⇒ overhead if the reduction \((n)\) is small.
• In many cases (for large reductions) initialization and sum-up are insignificant.
• False sharing can occur, especially in expanded reductions, if multiple processors use adjacent array elements of the temporary reduction array \((s)\).
• Expanded reductions exhibit more parallelism in the sum-up operation.
• Potential overhead in initialization, sum-up, and memory used for large, sparse array reductions ⇒ compression schemes can become useful.
Recurrence Substitution

DO j=1,n
 a(j) = c0 + c1 * a(j) + c2 * a(j-1) + c3 * a(j-2)
ENDDO

call rec_solver(a,n,c0,c1,c2,c3)
Basic idea of the recurrence solver:

DO j=1,40
 a(j) = a(j) + a(j-1)
ENDDO

Error:
(30) 0 ∆a(10) ∆a(10)+∆a(20) ∆a(10)+∆a(20)+Δa

Issues:

• Solver makes several parallel sweeps through the iteration space (n). Overhead can only be amortized if n is large.

• Many variants of the source code are possible. Transformations may be necessary to fit the library call format → additional overhead.

Example from FLO52

DO 40 II=3,IL
 I = I -1
ENDDO

DO 40 J=2,JL
 DW(I,J,N) = DW(I,J,N) -R*(DW(I,J,N) -DW(I+1,J,N))
40 CONTINUE

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Loop Skewing

Iteration space graph:
Shared regions show wavefronts of iterations in the transformed code that can be executed in parallel.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Skewing

Iteration space graph:
Shared regions show wavefronts of iterations in the transformed code that can be executed in parallel.

DO i=1,4
 DO j=1,6
 A(i,j) = A(i-1,j-1)
 ENDDO
ENDDO

!$OMP PARALLEL DO
 DO wave=1,9
 i = max(5-wave,1)
 j = max(-3+wave,1)
 wsize = min(4,5-abs(wave-5))
 DO k=0,wsize-1
 A(i+k,j+k) = A(i-1+k,j-1+k)
 ENDDO
 ENDDO
ENDDO
3 Techniques for Multiprocessors: Mapping parallelism to shared-memory machines
Loop Fusion

• Loop fusion is the reverse of loop distribution.
• reduces the loop fork/join overhead.
• Both transformations reorder computation;
 → data dependences show legality
Enforcing Data Dependence

- Criterion for correct transformation and execution of a computation involving a data dependence with vector $v : (=, \ldots<,\ldots*)$

Let L_s be the outermost loop with non-“=” DD-direction:
- The direction at L_s must be “<”
- L_s must be executed serially

Note that a data dependence is defined with respect to an ordered (usually serial) execution. A fully parallel loop by definition does not have any cross-iteration dependence.
Loop Coalescing

- can increase the number of iterations of a parallel loop → load balancing
- adds additional computation → overhead
Loop Interchange

Loop interchange affects:
• granularity of parallel computation (compare the number of parallel loops started)
• locality of reference (compare the cache-line reuse)
these two effects may impact the performance in the same or in opposite directions.

Loop interchange is subject to DD legality constraints.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Blocking

This is basically the same transformation as stripmining, but followed by loop interchanging.

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Loop Blocking
continued

\begin{align*}
\text{DO } j &= 1, m \\
\text{DO } i &= 1, n \\
B(i,j) &= A(i,j) + A(i,j-1) \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}

\begin{verbatim}
!$OMP PARALLEL
DO j=1,m
!$OMP DO
DO i=1,n
B(i,j)=A(i,j)+A(i,j-1)
ENDDO
!$OMP ENDDO NOWAIT
ENDDO
!$OMP END PARALLEL
\end{verbatim}

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Choosing the Block Size

The block size must be small enough so that all data references between the use and the reuse fit in cache.

DO j=1,m
 DO k=1,block
 … (r1 data references)
 … = A(k,j) + A(k,j-d)
 … (r2 data references)
 ENDDO
ENDDO

Number of references made between the access A(k,j) and the access A(k,j-d) when referencing the same memory location:
(r1+r2+3)*d*block
→ block < cachesize / (r1+r2+2)*d

If the cache is shared, all processors use it simultaneously. Hence the effective cache size appears smaller:

block < cachesize / (r1+r2+2)*d*num_proc

In a program with multiply-nested loops, there can be a large number of possible program variants obtained through distribution and interchanging

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Multi-level Parallelism from Single Loops

DO i=1,n
A(i) = B(i)
ENDDO

PARALLEL DO (inter-cluster) i1=1,n,strip
PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n)
A(i) = B(i)
ENDDO
ENDDO

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
References

4 Techniques for Vector Machines
Vector Instructions

A vector instruction operates on a number of data elements at once.

Example: \texttt{vadd va, vb, vc, 32}
vector operation of length 32 on vector registers \texttt{va}, \texttt{vb}, and \texttt{vc}

- \texttt{va}, \texttt{vb}, \texttt{vc} can be
 - Special cpu registers or memory \rightarrow classical supercomputers
 - Regular registers, subdivided into shorter partitions (e.g., 64bit register split 8-way) \rightarrow multi-media extensions

- The operations on the different vector elements can overlap \rightarrow vector pipelining

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Applications of Vector Operations

• Science/engineering applications are typically regular with large loop iteration counts. This was ideal for classical supercomputers, which had long vectors (up to 256; vector pipeline startup was costly).

• Graphics applications can exploit “multi-media” register features and instruction sets.
Basic Vector Transformation

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

A(1:n)=B(1:n)+C(1:n)

DO i=1,n
 A(i) = B(i)+C(i)
 C(i-1) = D(i)**2
ENDDO

A(1:n)=B(1:n)+C(1:n)
C(0:n-1)=D(1:n)**2

The triplet notation is interpreted to mean “vector operation”. Notice that this is not (necessarily) the same meaning as in Fortran 90,
Distribution and Vectorization

The transformation done on the previous slide involves loop distribution. Loop distribution reorders computation and is thus subject to data dependence constraints.

The transformation is not legal if there is a lexical-backward dependence:

DO i=1,n
A(i) = B(i)+C(i)
D(i) = A(i)+A(i-1)
ENDDO

Statement reordering may help resolve the problem. However, this is not possible if there is a dependence cycle.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Vectorization Needs Expansion

... as opposed to privatization

\[
\begin{align*}
\text{DO } & i=1,n \\
& t = A(i)+B(i) \\
& C(i) = t + t^{**2} \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{DO } & i=1,n \\
& T(i) = A(i)+B(i) \\
& C(i) = T(i) + T(i)^{**2} \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
T(1:n) &= A(1:n)+B(1:n) \\
C(1:n) &= T(1:n)+T(1:n)^{**2}
\end{align*}
\]

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Conditional Vectorization

\[
\text{DO } i=1,n \\
\quad \text{IF } (A(i) < 0) \ A(i)=-A(i) \\
\text{ENDDO}
\]

\[
\downarrow \text{conditional vectorization}
\]

\[
\text{WHERE } (A(1:n) < 0) \ A(1:n)=-A(1:n)
\]
Stripmining turns a single loop into a doubly-nested loop for two-level parallelism. It also needs to be done by the code-generating compiler to split an operation into chunks of the available vector length.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
5 Advanced Program Analysis
Interprocedural Constant Propagation

Making constant values of variables known across subroutine calls

Subroutine A
j = 150
call B(j)
END

Subroutine B(m)
DO k=1,100
X(i)=X(i+m)
ENDDO
END

knowing that m>100 allows this loop to be parallelized

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
An Algorithm for Interprocedural Constant Propagation

Step 1: determine *jump functions* for all subroutine arguments

```plaintext
Subroutine X(a,b,c)
e = 10
d = b+2
call somesub(c)
f = b*2
call this sub(a,d,c,e,f)
END
```

- J1 = a
 (jump function of first parameter)
- J2 = b+2
- J3 = ⊥
 (called *bottom*, meaning non-constant)
- J4 = 10
- J5 = ⊥

- Mechanism for finding jump functions: (local) forward substitution and interprocedural MAYMOD analysis.
- Here we assume jump functions are of the form \(P+\text{const} \) (\(P \) is a subroutine parameter of the callee).

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Constant Propagation Algorithm
continued

Step 2:

• initialize all formal parameters to the value T (called \textit{top}, meaning non-yet-known)

• for all jump functions:
 – if it is \bot: set formal parameter value to \bot
 – if it is constant and the value of the formal parameter is the same constant or T : set it to this constant
Constant Propagation Algorithm

continued

Step 3:

1. put all formal parameters on a work queue
2. take a parameter from the queue:
 for all jump functions that contain this parameter:
 • determine the value of the target parameter of this jump function. Set it to this value, or to ⊥ if it is different from a previously set value.
 • if the value of the target parameter changes, put this parameter on the queue
3. repeat 2 until the queue is empty
Interprocedural Data-Dependence Analysis

- Motivational examples:

<table>
<thead>
<tr>
<th>Subroutine clear(x,j)</th>
<th>Subroutine dupl(x,j)</th>
<th>Subroutine smooth(x,j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO i=1,n</td>
<td>DO i=1,n</td>
<td>DO i=1,n</td>
</tr>
<tr>
<td>call clear(a,i)</td>
<td>a(i) = b(i)</td>
<td>a(i) = b(i)</td>
</tr>
<tr>
<td>END</td>
<td>call dupl(a,i)</td>
<td>call smooth(a,i)</td>
</tr>
<tr>
<td>x(j) = 0</td>
<td>END</td>
<td>END</td>
</tr>
<tr>
<td>END</td>
<td>x(j) = 2*x(j)</td>
<td>x(j) = (x(j-1)+x(j)+x(j+1))/3</td>
</tr>
<tr>
<td>END</td>
<td>END</td>
<td>END</td>
</tr>
</tbody>
</table>
Interproc. DD-analysis

• **Overall strategy:**
 – subroutine inlining
 – move loop into called subroutine
 – collect array access information in callee and use in the analysis of the caller
 → will be discussed in more detail
Interproc. DD-analysis

• Representing array access information
 – summary information
 • [low:high] or [low:high:stride]
 • sets of the above
 – exact representation
 • essentially all loop bound and subscript information is captured
 – representation of multiple subscripts
 • separate representation
 • linearized
Interproc. DD-analysis

• Reshaping arrays
 – simple conversion
 • matching subarray or 2-D→1-D
 – exact reshaping with div and mod
 – linearizing both arrays
 – equivalencing the two shapes
 • can be used in subroutine inlining

Important: reshaping may lose the implicit assertion that array bounds are not violated!
Symbolic Analysis

• Expression manipulation techniques
 – Expression simplification/normalization
 – Expression comparison
 – Symbolic arithmetic

• Range analysis
 – Find lower/upper bounds of variable values at a given statement
 • For each statement and variable, or
 • Demand-driven, for a given statement and variable
6 Techniques Specific to Distributed-memory Machines
Execution Scheme on a Distributed-Memory Machine

Typical execution scheme:
- All nodes execute the same program
- Program uses node_id to select the subcomputation to execute on each participating processor and the data to access.

For example,

\[
\text{mystrip} = \left\lfloor \frac{n}{\text{max_nodes}} \right\rfloor \\
\text{lb} = \text{node_id} \times \text{mystrip} + 1 \\
\text{ub} = \min(\text{lb} + \text{mystrip} - 1, n) \\
\text{DO} \ i = \text{lb}, \text{ub} \\
\quad \ldots \\
\text{ENDDO}
\]

This is called Single-Program-Multiple-Data (SPMD) execution scheme

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Data Placement

Single owner:
• Data is distributed onto the participating processors’ memories

Replication:
• Multiple versions of the data are placed on some or all nodes.
Data Distribution Schemes

numbers indicate the node of a 4-processor distributed-memory machine on which the array section is placed

1 2 3 4

block distribution

12341234123412341234...
cyclic distribution

1 2 3 4 1 3 4 2 1...
block-cyclic distribution

[IND(1) IND(2) IND(3) IND(4) IND(5) ...]
indexed distribution

index array

Automatic data distribution is difficult because it is a global optimization.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Message Generation for single-owner placement

DO $i=1,n$
\[B(i) = A(i) + A(i-1) \]
ENDDO

send $(A(ub), my_proc+1)$
receive $(A(lb-1), my_proc-1)$

DO $i=lb, ub$
\[B(i) = A(i) + A(i-1) \]
ENDDO

• lb, ub determine the iterations assigned to each processor.
• array distributions assumed to match the iteration distribution
• my_proc is the current processor number

Compilers for languages such as HPF (High-Performance Fortran) have explored these ideas extensively

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Owner-computes Scheme

In general, the elements accessed by a processor are different from the elements owned by this processor as defined by the data distribution.

DO i=1,n
A(i)=B(i)+B(i-m)
C(ind(i))=D(ind2(i))
ENDDO

DO i=1,n
send/receive what’s necessary
IF I_own(A(i)) THEN
A(i) = B(i)+B(i-m)
ENDIF
send/receive what’s necessary
IF I_own(C(ind(i)) THEN
C(ind(i))=D(ind2(i))
ENDIF
ENDDO

• nodes execute those iterations and statements whose LHS they own
• first they receive needed RHS elements from remote nodes
• nodes need to send all elements needed by other nodes

Example shows basic idea only. Compiler optimizations needed!

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Compiler Optimizations
for the raw owner computes scheme

• Eliminate conditional execution
 – combine if statements with same condition
 – reduce iteration space if possible

• Aggregate communication
 – combine small messages into larger ones
 – tradeoff: delaying a message enables message aggregation but increases the message latency.

• Message Prefetch
 – moving send operations earlier in order to reduce message latencies.

there is a large number of research papers describing such techniques

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Message Generation for replication

- Fully parallel section w. local reads and writes
- Broadcast written data
- Fully parallel section w. local reads and writes

Optimization: reduce broadcast operations to necessary point-to-point communication

Advantages:
- Fully parallel sections with local reads and writes
- Easier message set computation (no partitioning per processor needed)

Disadvantages:
- Not data-scalable
- More write operations necessary (but, collective communication can be used)
Data distribution and message generation:
(there is a large number of references on these topics)

Message Generation under Replication:

7 Techniques for Instruction-Level Parallelization
Implicit vs. Explicit ILP

Implicit ILP: ISA is the same as for sequential programs.

- most processors today employ a certain degree of implicit ILP
- parallelism detection is entirely done by the hardware, however,
- compiler can assist ILP by arranging the code so that the detection gets easier.
Implicit vs. Explicit ILP

Explicit ILP: ISA expresses parallelism.

- parallelism is detected by the compiler
- parallelism is expressed in the form of
 - VLIW (very long instruction words): packing several instructions into one long word
 - EPIC (Explicitly Parallel Instruction Computing): bundles of (up to three) instructions are issued. Dependence bits can be specified.

Used in Intel/HP IA-64 architecture. The processor also supports predication, early (speculative) loads, prepare-to-branch, rotating registers.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Trace Scheduling
(invented for VLIW processors, still a useful terminology)

Two big issues must be solved by all approaches:
1. Identifying the instruction sequence that will be inspected for ILP.
 Main obstacle: branches
2. Reordering instructions so that machine resources are exploited efficiently.
Trace Selection

- It is important to have a large instruction window (block) within which the compiler can find parallelism.
- Branches are the problem. Instruction pipelines have to be flushed/squashed at branches
- Possible remedies:
 - eliminate branches
 - code motion can increase block size
 - block can contain out-branches with low probability
 - predicated execution
Branch Elimination

• Example:

\[
\begin{array}{c}
\text{comp } R0 \ R1 \\
\text{bne } L1: \\
\text{bra } L2: \\
L1: \ldots \\
\ldots \\
L2: \ldots \\
\end{array}
\]

\[
\begin{array}{c}
\text{comp } R0 \ R1 \\
\text{beq } L2: \\
L1: \ldots \\
\ldots \\
L2: \ldots \\
\end{array}
\]
Code motion can increase window sizes and eliminate subtrees

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Predicated Execution

IF (a>0) THEN
 b=a
ELSE
 b=-a
ENDIF

\[p = a>0 \quad ; \text{assignment of predicate} \]
\[p: b=a \quad ; \text{executed if predicate true} \]
\[\bar{p}: b=-a \quad ; \text{executed if predicate false} \]

Predication
- increases the window size for analyzing and exploiting parallelism
- increases the number of instructions “executed”

These are opposite demands!

Compare this technique to conditional vectorization

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Dependence-removing ILP Techniques

\[\text{ind} = \text{i0} \]
\[\text{ind} = \text{ind+1} \]
\[\text{ind} = \text{ind+1} \]

\[\text{sum} = \text{sum+expr1} \]
\[\text{sum} = \text{sum+expr2} \]
\[\text{sum} = \text{sum+expr3} \]
\[\text{sum} = \text{sum+expr4} \]

\[\text{sum} = \text{sum+s1+s2} \]

shaded blocks of statements are independent of each other and can be executed as parallel instructions

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Speculative ILP

Speculation is performed by the architecture in various forms

- Superscalar processors: compiler only has to deal with the performance model. ISA is the same as for non-speculative processors
- Multiscalar processors: (research only) compiler defines tasks that the hardware can try execute speculatively in parallel. Other than task boundaries, the ISA is the same.

References:

Compiler Model of Explicit Speculative Parallel Execution (Multicalar Processor)

- **Overall Execution**: speculative threads choose and start the execution of any predicted next thread.
- **Data Dependence and Control Flow Violations** lead to roll-backs.
- **Final Execution**: satisfies all cross-segment flow and control dependences.
- **Data Access**: Writes go to thread-private speculative storage. Reads read from ancestor thread or memory.

- **Dependence Tracking**: Data Flow and Control Flow dependences are detected directly. Lead to roll-back. Anti and Output dependences are satisfied via speculative storage.
- **Segment Commit**: Correctly executed threads (i.e., their final execution) commit their speculative storage to the memory, in sequential order.
8 OpenMP for Distributed Parallel Systems
Is OpenMP a Useful Programming Model for Distributed Processors?

- OpenMP is a parallel programming model that assumes a shared address space

  ```
  #pragma OMP parallel for
  for (i=1; 1<n; i++) {a[i] = b[i];}
  ```

- Why is it difficult to implement OpenMP for distributed processors?
 The compiler or runtime system will need to
 - partition and place data onto the distributed memories
 - send/receive messages to orchestrate remote data accesses
 HPF (High Performance Fortran) was a large-scale effort to do so - without success

- So, why should we try again?
 OpenMP is an easier programming (higher-productivity?) programming model.
 OpenMP
 - allows programs to be parallelized incrementally, starting from the serial versions,
 - relieves the programmer of the task of managing the movement of logically shared data.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Baseline Translation of OpenMP to MPI Compiler

• Execution Model
 – SPMD model
 • Serial Regions are replicated on all processes
 • Iterations of parallel *for* loops are distributed (using static block scheduling)
 – Shared Data is allocated on all nodes
 • There is no concept of “owner” (contrast to HPF)
 There are only producers and consumers of shared data
 • At the end of a parallel loop, producers communicate shared data to *potential* future consumers
 • The compiler uses array section analysis for summarizing array accesses

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Baseline Translation

Translation Steps:

1. Identify all shared data
2. Create annotations for accesses to shared data (use regular section descriptors to summarize array accesses)
3. Use interprocedural data flow analysis to identify potential consumers; incorporate OpenMP relaxed consistency specifications
4. Create message sets to communicate data between producers and consumers
Message Set Generation

Processor p writes array section A from l1(p) to u1(p)

Message Set at RSD vertex V1, for array A from process p to process q computed as

$$S_{Apq} = \text{Elements of A with subscripts in the set}$$

$$\{[l1(p),u1(p)] \cap [l2(q),u2(q)]\} \cup$$

$$\{[l1(p),u1(p)] \cap [l4(q),u4(q)]\}$$

$$\cup \{[l1(p),u1(p)] \cap ([l5(q),u5(q)] - [l3(p),u3(p)])\}$$
mydo = 1;
#pragma omp parallel
{
 /* Loop L1 */
 #pragma omp for nowait
 for(j=1;j<N;j++) {
 #pragma omp flush(myflag)
 ...myflag.. ;
 A[j] = ...
 }
 /* Loop L2 */
 #pragma omp for nowait
 for(j=1;j<M;j++) {
 ... = A[i]...
 }
 myflag++;
}

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Translation of Irregular Accesses

• Irregular Access – $A[B[i]]$, $A[f(i)]$ where $B[i]$ is a subscript array or $f(i)$ is a non-affine function of the loop index.
 – Reads: assumed the whole array accessed
 – Writes: inspect at runtime, communicate at the end of parallel loop

• A key property is Monotonicity: $i > j \rightarrow B[i] > B[j]$
 Monotonicity is useful because it provides bounds on the irregular subscript in terms of the loop bounds
 • For $lb < i < ub$, $B[lb] < B[i] < B[ub]$

Monotonicity allows the compiler to
 • tighten array sections
 • avoid runtime inspection of written array sections that do not overlap
Optimizations based on Collective Communication

- **Recognition of Reduction Idioms**
 - Recognize program patterns that implement array reductions
 - usually: combination of parallel loop and critical section.
 - Translate them to MPI_Reduce / MPI_Allreduce functions.

- **Casting sends/receives in terms of alltoall calls**
 - In general, communication between producers and consumers are done using non-blocking send/recv and MPI_Wait
 - There may be insufficient distance between the production and consumption points in the program to allow overlap of computation and communication
 - When the producer-consumer relationship is many-to-many and there is insufficient distance between producers and consumers, cast the sends/recvs into a single MPI_Alltoallv call
Performance Evaluation of Baseline Translation

Platform I – Cluster of sixteen PIII 800 MHz Linux nodes, with 256 MB memory per node, connected by a commodity 100 Mbps Ethernet network.

From NAS Par. Benchmarks

From SPEC OMP2001

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance on IBM-SP2

Platform II – Sixteen IBM SP-2 WinterHawk-II nodes connected by a high-performance switch.

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Comparison with SDSM on Linux Cluster

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance Comparison with HPF on Linux Cluster

CG (CLASS B) on Ethernet

LU (CLASS A) on Ethernet

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
We can do more for Irregular Applications

L1 : #pragma omp parallel for
for(i=0;i<10;i++)
 A[i] = ...

L2 : #pragma omp parallel for
for(j=0;j<20;j++)
 B[j] = A[C[j]] + ...

- Subscripts of accesses to shared arrays not always analyzable at compile-time
- Baseline OpenMP to MPI translation:
 - Conservatively estimate that each process accesses the entire array
 - Try to deduce properties such as monotonicity for the irregular subscript to refine the estimate
- Still, there may be redundant communication
 - Runtime tests (inspection) are needed to resolve accesses

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Inspection

- Inspection allows accesses to be differentiated (at runtime) as local and non-local accesses.
- Inspection can also map iterations to accesses. This mapping can then be used to re-order iterations:
 - first, iterations that access local data
 - then, iterations that access remote data
=> Communication of remote data can be overlapped with the computation of iterations that access local data

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Restructuring

- Simple iteration reordering may not be sufficient to expose the full set of possibilities for computation-communication overlap.

L1: #pragma omp parallel for
for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2: #pragma omp parallel for
for(j=0;j<N;j++) {
 w[j] = 0 ;
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
}

Reordering loop L2 may still not club together accesses from different sources

L1: #pragma omp parallel for
for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1: #pragma omp parallel for
for(j=0;j<N;j++) {
 w[j] = 0 ;
}

L2-2: #pragma omp parallel for
for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
}

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Loop Restructuring continued

L1: #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

L1: #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1: #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L3: for(i=0;i<num_iter;i++)
 w[T[i].j] = w[T[i].j] +
 a[T[i].k]*p[T[i].col] ;

Coalesce nested loop L2-2 to form loop L3

Reorder iterations of loop L3 to achieve computation-communication overlap

Final restructured and reordered loop

The T[i] data structure is created and filled in by the inspector

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Achieving Actual Computation-Communication Overlap

- Non-blocking send/recv calls may not actually progress concurrently with computation.
 - Use a multi-threaded runtime system with separate computation and communication threads – on dual CPU machines these threads can progress concurrently.

- The compiler extracts the send/recvs along with the packing/unpacking of message buffers into a communication thread.
Communication Thread on Process p

- Initiate sends to process q, r.
- Pack data and send to processes q and r.
- Receive data from process q.
- Receive data from process r.

Computation Thread on Process p

- Execute iterations that access local data.
- Execute iterations that access data received from process q.
- Execute iterations that access data received from process r.
- Wait for receives from process q to complete.
- Wait for receives from process r to complete.

Program Timeline

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance of Equake

Computation-communication overlap in Equake

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance of Moldyn

Computation-communication overlap in Moldyn

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance of CG

Computation-communication overlap in CG

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Summary
OpenMP for Distributed Systems

• There is hope for easier programming models on distributed processing systems (DPS)

• OpenMP can be translated effectively onto DPS; we have used benchmarks from
 – SPEC OMP
 – NAS
 – additional irregular codes

• Caveats:
 – black-belt programmers will always be able to do better
 – advanced compiler technology is involved. There will be performance surprises
 – Larger set of and full compiler implementation are needed
 => this is ongoing work
References

9. Autotuning: Moving Compile-time Decisions Into Runtime
Why Autotuning?

Ultimate goal: Dynamic Optimization Support For Compilers and More

- Runtime decisions for compilers are necessary because compile-time decisions are too conservative
 - Insufficient information about program input, architecture
 - When to apply what transformation in which flavor?
 - Polaris compiler has some 200 switches
 - Example of an important switch: parallelism threshold
 - Early runtime decisions:
 - Multi-version loops, runtime data-dependence test, 1980s

- My goals:
 - Looking for tuning parameters and evidence of performance difference
 - Go beyond the “usual”: unrolling, blocking, reordering
 - Show performance on real programs
Is there Potential?

You bet!

- Imagine you (the compiler) had full knowledge of input data and execution platform of the program

“Amdahl’s law of dynamic optimization”

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Early Results on Fully-Dynamic Adaptation

• ADAPT system (Michael Voss - 2000)
• Features:
 – Triage
 • tune the most deserving program sections first
 – Used remote compilation
 • Allowed standard compilers and all options to be used
 – AL - adapt language
• Issues:
 – Scalability to large number of optimizations
 – Shelter and re-tune
More Recent Work

Offline Tuning - “Profile-time” tuning
Zhelong Pan

Challenges:

1. Explore the optimization space
 * Empirical optimization algorithm - CGO 2006

2. Comparing performance
 * Fair Rating methods - SC 2004
 • Comparing two (differently optimized) subroutine invocations

3. Choosing procedures as tuning candidates
 * Tuning section selection - PACT 2006
 • Program partitioning into tuning sections

Two goals: increase program performance and reduce tuning time
Whole-Program Tuning

Search Algorithms

- **BE: batch elimination**
 - Eliminates “bad” optimizations in a batch => fast
 - Does not consider interaction => not effective

- **IE: iterative elimination**
 - Eliminates one “bad” optimization at a time => slow
 - Considers interaction => effective

- **CE: combined elimination (final algorithm)**
 - Eliminates a few “bad” optimizations at a time

- Other algorithms
 - optimization space exploration, statistical selection, genetic algorithm, random search

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Performance Improvement

Tuning Goal: determine the best combination of GCC options

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Tuning at the Procedure Level

1. Tuning Section Selection (TSS)
2. Rating Method Analysis (RMA)
3. Code Instrumentation (CI)
4. Driver Generation (DG)
5. Performance Tuning (PT)
6. Final Version Generation (FVG)

Pre-Tuning:
- Tuning Section Selection (TSS)
- Rating Method Analysis (RMA)
- Code Instrumentation (CI)
- Driver Generation (DG)

During Tuning:
- Performance Tuning (PT)

Post-Tuning:
- Final Version Generation (FVG)
Reduction of Tuning Time through Procedure-level Tuning

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Tuning Time Components

Average Percentage of the total time spent in tuning

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Ongoing Work

Beyond autotuning of compiler options

• New applications of the tuning system
 – MPI parameter tuning
 – Tuning library selection - (ScalaPack, …)
 – OpenMP to MPI translator
TCP Buffer Size Effect on NPB

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: MPICH1

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Alltoall collective call performance

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010
Segmentation Effect on Basic Linear Alltoall Algorithm

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2

R. Eigenmann, Parallelizing Compilers for Multicores , Summer 2010
Automatic Tuning for Multicore

• Starting point was the Polaris compiler
 – 200 switches
• Early results on dynamic serialization
• Goal: parallelizing compiler that never lowers the performance of a program
• OpenMP to MPI translation
• Tuning NICA architectures
 – Multicore + niche capabilities (accelerators and more)
Conclusions and Discussion

Dynamic Adaptation is one of the most exciting research topics

There are still issues to Sink your Teeth in

• Runtime overhead: when to shelter/re-tune
• Fine-grain tuning
• Model-guided pruning of search space
• Architecture of an autotuner
 – If we could agree, we could plug-in our modules
• AutoAuto - autotuning autoparallelizer
• How to get order(s) of magnitude improvement
 – Wanted: tuning parameters and their performance effects
Tuning Speculative Section Selection

<table>
<thead>
<tr>
<th>Benchmark Single Thread [Vijay Micro 98] [Johnson PLDI 04]</th>
<th>[Johnson PPoPP 07]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPC</td>
</tr>
<tr>
<td>bzip2</td>
<td>0.70</td>
</tr>
<tr>
<td>gzip</td>
<td>0.72</td>
</tr>
<tr>
<td>mcf</td>
<td>0.07</td>
</tr>
<tr>
<td>parser</td>
<td>0.51</td>
</tr>
<tr>
<td>vpr</td>
<td>0.63</td>
</tr>
<tr>
<td>geometric mean</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Speedup factors

R. Eigenmann, Parallelizing Compilers for Multicores, Summer 2010